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Erstprüfer Prof. Dr. Martin Frank
First examiner Lehrstuhl für Mathematik (MathCCES)

RWTH Aachen University
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Nomenclature

Symbols

βk Shadowing factor

Ct Thrust coefficient

D Diameter of the turbine rotor [m]

δu Velocity deficit

ε Eddy viscosity [m2/s]

Ia Ambient turbulence intensity

Itot Total turbulence intensity

Iw Wake-induced turbulence intensity

κ Von Kármán constant

k Wake decay constant

KM Eddy diffusivity [m2/s]

r Radial distance, radius [m]

ρ Air density [kg/m3]

u Velocity in downstream direction [m/s]

u0 Free stream velocity [m/s]

v Velocity in radial direction [m/s]

x Downstream distance [m]

z Hub height of turbine [m]

z0 Surface roughness of the site [m]

Subscripts

0 Undisturbed, concerning the site

a Ambient

c Centerline

inc Incident

n Near wake

r Directly behind rotor

w Wake
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AEP Annual energy production

CDF Cumulative distribution function
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GIS Geographic information system
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NS Navier-Stokes

ODE Ordinary differential equation
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RNA Rotor nacelle assembly
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1 Introduction

Wind is one of the leading forms of renewable energy production as it is always present
compared to solar energy, which can only be efficiently used in certain parts of the
world and not during the night. The kinetic energy of the wind is transferred into
electrical energy using wind turbines.

For cost reduction reasons, the wind turbines are clustered to wind farms. This
makes the installation, maintenance and grid connection easier and cheaper. On the
other hand, the clustering of wind turbines leads to energy reduction due to turbulence
and undirected flow behind the turbines.

It is desirable to choose the positioning of the wind turbines such that the impact
of wake effects is minimized, i.e. the wind farm energy output is maximized. This
problem is known as the wind farm layout optimization problem (WFLOP).

As it is computationally expensive to numerically solve the equations describing the
turbulent flow, there are simplified models approximating the speed of the directed,
exploitable flow. Two of such models (and a modification for one of them) are presented
in this thesis. With a computationally cheap wake computation it is possible to solve
the WFLOP with different optimization approaches.

Wind farms are divided into onshore and offshore wind farms. The reasons for
building offshore wind farms, which are difficult to access compared to onshore wind
farms (as there is no existing infrastructure), are the following: The wind offshore is
often stronger than onshore and the flow field is more homogeneous as there are no
hills, trees or buildings disturbing the flow. Furthermore the noise occurring at the
turbine blade tips does not bother at sea. In this thesis, only the offshore case is
considered as it covers the basic modeling of wind farms. The simulation of onshore
wind farms can be implemented in the future as an extension of the here described
models.

This thesis gives an insight into the wake modeling, the simulation of wind farms and
the solution of the WFLOP. In section 2 an overview of the literature on modeling and
optimization of wind farms is given. Section 3 consists of the model descriptions: The
calculation of the annual energy production (AEP), the treatment and representation of
wind data, and the wake models PARK, modified PARK and Eddy-Viscosity. Finally a
simple cost function is presented. The implementation of the models is briefly described
in section 4. In section 5 the models are validated using test cases before they are
applied in the optimization of the offshore wind farm Horns Rev in subsection 5.4. In
the last section 6 a proposal for the future work on this project is given.
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2 State of the art

The modeling of offshore wind farms is a subject in literature since the early 1980s.
Publications on wind farms can be partitioned into three major categories: The mod-
eling of wake effects, which are responsible for energy reductions in wind farms, the
development of cost functions and the optimization of the wind farm layout. In [34]
and [36] the state of the art of wake models, cost models and optimization approaches
for the WFLOP are summarized. Comparisons and evaluations of several models were
published by Barthelmie et al. [3] and Beaucage et al. [4].

2.1 Wake models

The first notable wake model was developed and published by Jensen [19] in 1983
and Katic et al. [21] in 1986. This model was used in the computer program PARK
[20] as a simple and fast model, that can be used for optimizing wind farm layouts.
The PARK model is designed for far wake cases, i.e. it can be used for calculations
at a downstream distance of at least three rotor diameters (3D) [4]. Although the
velocity deficit calculated by the model has a top-hat shape, the computations are
quite accurate [3]. For further descriptions of PARK, see section 3.4.

Another remarkable model is the one published by Ainslie [1] in 1988. It is based on
a numerical solution of the thin-shear layer approximation of the Navier-Stokes (NS)
equations in cylindrical coordinates with several assumptions, e.g. axial symmetry and
an eddy viscosity turbulence closure [3]. The model is therefore referred to as Eddy-
Viscosity (EV) wake model in the following. It is valid for downstream distances of
two rotor diameters (2D) or more [4]. Lange et al. [23] developed an extension for the
Eddy-Viscosity model, which improves the results of the wake simulations in offshore
cases. The EV model is described in detail in section 3.6.

The model developed by Larsen et al. [24] is based on the EV model but its focus is
more on the calculation of the wake meandering than on the calculation of the velocity
deficit.

Ott [27] introduced a model that is based on the linearized Reynolds-averaged
Navier-Stokes (RANS) equations. This leads to good results with a relatively small
computational expense.

The developers of Openwind [37] implemented the so-called Deep-array wake model
[5]. With this model they try to achieve better results for turbines that are affected
by several upwind turbines.

Stovall et al. [35] simulated the atmospheric boundary layer in OpenFOAM using
Large Eddy Simulations (LES) and RANS solvers with the intention of giving reference
values for the improvement of simple models such as PARK.

Getting even more accurately the wake properties of horizontal-axis wind turbines
(HAWTs), Vermeer et al. [38] investigated the wake decay in experiments with con-
trolled flow conditions.

2



2.2 Cost models

In some situations it is not only required to optimize the positions of a fixed number of
wind turbines but e.g. the ideal number of turbines in a given area may be desired. In
such a case instead of optimizing the expected annual energy output the costs for the
wind farm need to be minimized. The therefore used cost function can have a varying
scope. There is a simple cost model where the levelized cost of energy (LCOE) only
depends on the number of turbines in the wind farm. This model was repeatedly used
in wind farm layout optimization [14, 26, 40].

On the other hand there are two more complex cost models that consider more
parameters [36]. One is presented by Elkinton et al. [9] and used in the OWFLO
project. The other one introduced by Réthoré et al. [32] is implemented in the TopFarm
software. The models are based on very different ideas. TopFarm only calculates
relative costs, which are costs that depend on the wind farm layout, while OWFLO
computes the absolute costs of the wind farm. In table 1 the costs that are respected
in these models are listed.

OWFLO TopFarm
Foundation X X
Electrical grid X X
Maintenance X X
Degradation X X
Decommissioning X X
Rotor nacelle assembly (RNA) X
Inflation X
Interest X

Table 1: Costs respected in OWFLO and TopFarm, see [36]

2.3 Optimization approaches

There are several approaches for solving the WFLOP in literature. Especially meta-
heuristic models are widely spread in the optimization of wind farms, whereof genetic
algorithms (GAs) are the most common [36]. Mosetti et al. [26] used a GA to optimize
wind farms with a multi-objective function of power and costs on a grid of discrete
positions [34]. It is the first work on GAs in wind farm layout optimization and forms
the foundation for other works. Grady et al. [14] also used a GA, but modified the
parameters to get even better results. Other optimization approaches using GAs can
be found in [25] and [40]. In the genetic algorithms mentioned above the solution space
is discrete, which distinguishes these from the one used in this thesis [17].

Another meta-heuristic approach was developed by Eroğlu and Seçkiner [10]. They
use an ant colony algorithm for optimizing the wind farm layout by maximizing the
expected energy output for different wind scenarios.
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The method by Wan et al. [41] is based on a particle swarm algorithm. It optimizes
turbine placement in the continuous space and considers a fixed minimal distance
between turbines.

Ituarte-Villarreal and Espiritu [16] presented a viral based optimization algorithm,
which yields good results for simple cases. However the algorithm needs to be developed
further for more complex problems, e.g. more than one wind direction and speed.

Pérez et al. [29] published a paper on a two-step optimization for the wind farm
layout. For the first step they implemented a heuristic method to set a layout to
be optimized. As a second step they optimize locally using nonlinear mathematical
programming techniques.
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3 Model

In this section the different fields of modeling offshore wind farms are examined. The
first part is about wake model independent equations and parameters: In subsection 3.1
the turbine properties are described. The following subsection 3.2 deals with the
representation of wind speed and direction data and the analysis of measured data. In
subsection 3.3 the calculation of the annual energy production (AEP) dependent of the
wind distribution is presented. Subsequently the wake models are presented: PARK,
modified PARK and Eddy-Viscosity (EV). Finally this is followed by the description
of a simple cost function.

3.1 Turbine properties

z

D

Figure 1: Turbine measurements

There are different types of wind turbines. The most common type is a horizontal-
axis wind turbine (HAWT) and consists of 3 blades where the propulsion mainly comes
from the lift force perpendicular to the blades. As it is the most common type it is also
the only one that is considered in this thesis. HAWTs are characterized by their hub
height z and their rotor diameter D, see figure 1, a cut-in speed ucutin and a cut-out
speed ucutout. Cut-in speed and cut-out speed specify the range of wind speed, in which
the turbine is working. If the wind speed is lower than ucutin there is not enough wind
for efficient power production, and for wind speeds larger than ucutout the turbine may
be damaged. Furthermore, wind turbines have a power curve specifying the power
output, a thrust curve specifying the thrust coefficient, and an RPM curve specifying
the revolutions per minute, all of them depending on the incident wind speed. There
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are often several curves for different air density values. However, in this work it is
assumed that the density is constant at 1.225 kg/m3, which is the air density at a
temperature of 15 ◦C at sea level. As an example, figure 2 shows the characteristic
curves of the wind turbine E-82 by Enercon. The curves start at 2 m/s and end at
25 m/s as this is the cut-in and respectively the cut-out wind speed of the considered
turbine.

The thrust coefficient Ct defined by the turbine’s Ct curve influences the thrust that
affects the turbine rotor [15]. Therefore it is a measure for the velocity leap at the
rotor as well. The velocity deficit is lower for small values of Ct and grows with an
increasing thrust coefficient.
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Figure 2: Characteristic curves of wind turbine Enercon E-82, from Openwind [37]

3.2 Wind data

When using real wind data measured by an anemometer, we first have to process it.
The measured data typically consists of thousands of pairs of wind speed and direction.
The datasets are then clustered by wind direction, usually in 12 to 72 sectors of equal
width (in angle). The probability for the wind blowing from one of the directions is
determined by the fraction of datasets in that direction sector.
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Instead of also clustering the speed data a speed probability distribution function is
set up by fitting it to the measured data for each direction sector. This way, only the
parameters describing the distribution are saved instead of a probability value for each
speed class. Furthermore, there is no requirement to choose an integration method for
the integral in equation (7) at this point.

As the Weibull distribution is a good approximation to measured wind speed data [8],
it is used for representing the measured data. The Weibull distribution is described by
the scale parameter A and the shape parameter k, and its probability density function
is defined as follows:

fA,k(x) =

(
k

A

)( x
A

)k−1
exp

(
−
( x
A

)k)
. (1)

The goodness of the Weibull distribution as an approximation to the measured data
is examined in subsection 3.2.2.

3.2.1 A Maximum likelihood estimate for the Weibull parameters

For approximating the Weibull density function to the measured values, we have to
estimate the two Weibull parameters A and k. This will be done using the method of
maximum likelihood [11]. Therefore, the natural logarithm of the likelihood function

L(A, k;x) = L(A, k;x0, x1, ..., xN−1) = fA,k(x0, x1, ..., xN−1) =
N−1∏
i=0

fA,k(xi), (2)

where N is the number of of speed data, is derived by A and k respectively and both
derivations are equated to zero. The resulting equations are then solved for the two
parameters A and k.

logL(A, k;x) = log
N−1∏
i=0

fA,k(xi)

= log
N−1∏
i=0

(
k

A

)(xi
A

)k−1
exp

(
−
(xi
A

)k)

=
N−1∑
i=0

log

((
k

A

)(xi
A

)k−1
exp

(
−
(xi
A

)k))

=
N−1∑
i=0

log(k)− k log(A) + (k − 1) log(xi)−
(xi
A

)k
= N log(k)−Nk log(A) + (k − 1)

N−1∑
i=0

log(xi)− A−k
N−1∑
i=0

xki (3)

The likelihood function is now derived by A

∂

∂A
logL(A, k;x) = −Nk

A
+ kA−(k+1)

N−1∑
i=0

xki = 0
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⇔ NAk =
N−1∑
i=0

xki

⇔ A =

(
1

N

N−1∑
i=0

xki

)1/k

(4)

and by k:

∂

∂k
logL(A, k;x) =

N

k
−N log(A) +

N−1∑
i=0

log(xi)−
N−1∑
i=0

(xi
A

)k
log
(xi
A

)
= 0

⇔ 1

k
− log(A) +

1

N

N−1∑
i=0

log(xi)

− 1

N

[
1

Ak

N−1∑
i=0

xki log(xi)−
1

Ak

N−1∑
i=0

xki log(A)

]
= 0

⇔ 1

k
− log

( 1

N

N−1∑
i=0

xki

)1/k
+

1

N

N−1∑
i=0

log(xi)

− 1

N


( 1

N

N−1∑
i=0

xki

)1/k
−k N−1∑

i=0

xki log(xi)

−

( 1

N

N−1∑
i=0

xki

)1/k
−k N−1∑

i=0

xki log

( 1

N

N−1∑
i=0

xki

)1/k

 = 0

⇔ 1

k
− 1

k
log

(
1

N

N−1∑
i=0

xki

)
+

1

N

N−1∑
i=0

log(xi)

−

N−1∑
i=0

xki log(xi)

N−1∑
i=0

xki

+

N−1∑
i=0

xki
1
k

log

(
1
N

N−1∑
i=0

xki

)
N−1∑
i=0

xki

= 0

⇔ 1

k
+

1

N

N−1∑
i=0

log(xi)−

N−1∑
i=0

xki log(xi)

N−1∑
i=0

xki

= 0 (5)

As equation (5) can’t be solved analytically we use the Newton-Raphson method to
get the shape parameter k. The scale parameter A can then be found by placing k in
equation (4).

The following figures show the wind direction and speed distributions of the years
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2011 to 2014 measured at the FINO3 research platform1, which is located in the Ger-
man North Sea. In figure 3 the probabilities for the direction sectors are visualized for
data clustered into 12 direction sectors. Figure 4 shows the fitted direction-independent
Weibull probability density functions (PDFs) for the years 2011 to 2014 respectively.
This corresponds to a single direction sector of 360◦. In figure 5 the fitted distributions
of the four years are compared to their mean. From the differences between the fitted
Weibull density functions in figure 5 it can be seen that the wind distributions slightly
change from year to year. The annual energy production calculated by the simulation
depends on the wind data used. To be able to make meaningful predictions for the
energy output of a wind farm one either has to find a typical year or use measured
data from several years.

5%

10%

15%

Figure 3: Combined wind direction distribution at FINO3 for the years 2011 to 2014,
clustered into 12 direction sectors

1http://www.fino3.de/
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(a) 2011. k = 2.256, A = 11.6699
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(b) 2012. k = 2.391, A = 11.4819
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(c) 2013. k = 2.2256, A = 11.3477
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(d) 2014. k = 2.2515, A = 11.209

Figure 4: Direction independent wind speed distributions at FINO3 for the years 2011
to 2014
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Figure 5: Comparison of annual wind speed distributions at FINO3 for the years 2011
to 2014

3.2.2 Quality of the Weibull fit for representing wind data

In the previous subsection we fitted the Weibull distribution to a set of measured wind
speed values. Now we want to know if it is a good approximation for the given set
of values. We therefore compare the quality of a Weibull fit to the quality of other
distribution fits: Normal (Gaussian), Nakagami and Rice distribution.

As can be seen in the visual comparison of the PDFs with the histogram of clustered
speed data in figure 6, the fitted Rice distribution is the most suitable representation
of the measured data, followed by the Weibull distribution.

The graphical evaluation of quality with figure 6 may be wrong or at least imprecise
as it strongly depends on the number of speed classes. Therefore, in figure 7 the root-
mean-squared error (RMSE) for the four distribution fits concerning the clustered
measured data is plotted for different numbers of speed classes. The RMSE of the Rice
distribution is smaller than the RMSEs of the other distribution fits for all numbers of
speed classes, which strengthens the observation from above. The oscillation effect of
the curves in figure 7 for large numbers of speed classes comes from strongly varying
fill of the speed classes which arise when the class widths get very small. With more
measurements the oscillation would be reduced.

Figures 6 and 7 are based on measured data from FINO3 of the years 2011 to 2014.
The dataset consists of more than 190 thousand values.

As another measurement for the fitting quality, which is independent of the cluster-
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ing, we look at the Kolmogorov-Smirnov statistic [33]

Dn = sup
x
|Fn(x)− F (x)| , (6)

where Fn(x) denotes the empirical distribution function associated to the measured
data, and F (x) is the cumulative distribution function of the fitted distribution. The
Kolmogorov-Smirnov statistics of the tested distributions are listed in table 2. The test
again strengthens the observation that the Rice distribution is a better approximation
for the measured wind data than the other considered distributions.

Distribution Parameters Kolmogorov-Smirnov statistic
Normal distribution µ = 10.1356, σ = 4.6967 0.025051
Nakagami distribution µ = 1.21322, ω = 124.789 0.021663
Weibull distribution A = 11.4322, k = 2.27993 0.012846
Rice distribution s = 7.96172, σ = 5.54079 0.005770

Table 2: Quality of fitted distributions to measured wind data

In this thesis, the Weibull distribution is still used for describing the wind speed
probabilities for the following reasons: The PDF of the Weibull distribution has a
much simpler form than the PDF of the Rice distribution as it contains the Bessel
function. Therefore it is also easier to fit the Weibull distribution. Furthermore the
representation of the wind data using Weibull is common practice in wind farm mod-
eling. Also the software Openwind, which is used for the verification of the models,
needs the Weibull parameters for each direction sector as input.

Note that the normal distribution is only included into the tests for its popularity
but in fact it is not eligible as it allows negative wind speeds, see figure 6.

As the here presented results are based on data of 4 years, they are probably also
valid for different years and different sites in the North Sea. However for a good
reliability of the wind data processing a similar test should be performed for each set
of data.
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3.3 Annual energy production

The expected power value of a wind farm for all wind speeds u in one wind direction
ϕi is given by

Eϕi
:= Eϕi

[P (ϕi, u)]

=

∞∫
0

P (ϕi, u) · Fϕi
(u) du

=

ucutout∫
ucutin

P (ϕi, u) · Fϕi
(u) du

≈
Nspeeds∑
j=1

wj · P (ϕi, uj) · Fϕi
(uj) (7)

where Fϕi
(u) describes the PDF of the wind speed distribution, see 3.2, ucutin and

ucutout are the turbines’ cut-in and cut-out speed respectively, wj is the weight for
speed class j and

P (ϕ, u) =

NTurbines∑
k=1

P (uinc,ϕ,k) (8)

denotes the total power output of the wind farm at wind speed u and direction ϕ.
P (u) is the power production of one turbine at wind speed u and uinc,ϕ,k is the incident
wind speed at turbine k at wind direction ϕ and wind speed u. The incident speed is
computed by

uinc = (1− δu)u0, (9)

where u0 is the undisturbed free stream speed and

δu =
u0 − uw
u0

= 1− uw
u0

(10)

is the velocity deficit at the turbine rotor with disturbed wind speed uw inside another
turbine’s wake. The calculation of the velocity deficit is subject to the wake models
described below.

The expected power value for all directions is

E :=

2π∫
0

Eϕdϕ

≈
Ndirections∑

i=1

wϕi
· Eϕi

(11)

with wϕi
weight for direction ϕi.
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As E describes the mean power for a given wind distribution in MW, this must be
projected to the length of one year to get the AEP measured in MWh:

AEP = (8760 h + 6 h) · E

≈ (8760 h + 6 h) ·
Ndirections∑

i=1

wϕi
·
Nspeeds∑
j=1

wj ·Wϕi
(uj) ·

NTurbines∑
k=1

P (uinc,ϕi,j,k), (12)

with uinc,ϕi,j,k representing the incident velocity at turbine k, wind speed uj and wind
direction ϕi. 8760 is the number of hours in a year and the additional six hours is a
correction to get the mean number of hours per year with leap years respected. This
complies to 365.25 days per year.

3.4 PARK wake model

x

D Dw = D + 2kx

u0

u0

ur uw

Figure 8: Visualization of the wake as described in PARK, cf. [21]

In this model, which was developed by Jensen [19] and Katic et al. [21], the velocity
deficit inside the wake only changes in stream direction, i.e. the velocity deficit as
defined in equation (10) only depends on x: δu = δu(x). Therefore, it is not suitable
for the calculation of a flow field with an exact velocity distribution. The model is
designed for the far wake case, i.e. it is only valid for downstream distances of 3
rotor diameters or more. The wake radius grows with a factor k so the wake diameter
Dw = Dw(x) grows linearly by 2k, see figure 8. The scalar k is defined as follows [34]:

k =
0.5

ln z
z0

, (13)

where z is the hub height of the turbine and z0 is called surface roughness. The
surface roughness is dependent on the site ground. It can be assumed as a constant
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for most cases. There is a formula presented in [23] to compute the surface roughness
dependent on the sea state based on the dependency of the waves on the wind velocity.
Nevertheless, in this thesis we assume z0 to be constant as the focus of the work is on
the wake models. A typical value for offshore sites is 0.0002 m [8].

For the derivation of the velocity deficit inside a turbine’s wake we assume conser-
vation of momentum inside the wake and start with a balance of momentum∑

mass · velocity =
∑

density · area · velocity = 0 (14)

around the system shown in figure 8 (red, dashed box). Assuming incompressibility
we get

− ρπ
(
D

2

)2

ur − ρπ

((
Dw

2

)2

−
(
D

2

)2
)
u0 + ρπ

(
Dw

2

)2

uw = 0, (15)

which can be simplified to

D2ur +
(
D2
w −D2

)
u0 = D2

wuw. (16)

Placing the initial velocity deficit right behind the turbine δur = 1 − ur
u0

in (16) and
solving for uw

u0
yields

uw
u0

= 1− δur
(

D

D + 2kx

)2

. (17)

Replacing the initial velocity deficit δur by the axial induction factor, which is defined
as the relative velocity loss at the turbine2 [15].

a(u0) = 1−
√

1− Ct(u0) (18)

gives us the final equation for the velocity deficit at any point inside the wake of a
turbine inside the free stream with velocity u0.

δu(x) = 1− uw(x)

u0
=

1−
√

1− Ct(u0)(
1 + 2kx

D

)2 . (19)

As the above derivation is only valid for the wake of a turbine in the free stream,
we now want to generalize it to get the velocity deficit at a turbine inside the wake
of another turbine that is not necessarily inside the free stream. A few things have to
be changed so the above requirements are met: We call the wake generating turbine
i and the wake affected turbine j. The incident velocity of turbine i then is uinc,i. If
turbine j is fully affected by the wake, we can use the above formulation. However if

2The definition of the axial induction factor in Katic et al. [21] is not consistent with the derivation
of the velocity deficit. The here used definition of the induction factor (18) is taken from Peña
and Rathmann [28], assuming that a = δur = 2aKatic. This way we can derive formula (19) for
the velocity deficit as it is frequently used in literature, e.g. [10, 12, 22, 40, 41].
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turbine j is only partially affected, we need to introduce a shadowing factor βk ∈ [0, 1]
as presented in [7] and [37]:

βk =
AIntersection
ATurbine

, (20)

where AIntersection is the circular intersection of the wake cross section with the turbine’s
circular area ATurbine, see figure 9. The equation for the velocity deficit has changed
as follows:

1− uw
uinc,i

=
βk

(
1−

√
1− Ct(uinc,i)

)
(
1 + 2kx

D

)2 . (21)

As this formulation depends on the incident velocity at turbine i, we need to transform
it to make it dependent on the free stream velocity u0:

δuij = 1− uw,i
u0

= 1− uinc,j
u0

=
u0
uinc,i

βk
(

1−
√

1− Ct(uinc,i)
)

(
1 + 2kx

D

)2
 . (22)

For the case of two interacting wakes the velocity deficits are added as follows:

δu2j = δu21,j + δu22,j

⇔
(

1− uinc,j
u0

)2

=

(
1− uw,1

u0

)2

+

(
1− uw,2

u0

)2

,
(23)

with uw,1 and uw,2 representing the velocities inside the two wakes. In a more general
case with an arbitrary number of interacting wakes we can compute

δuj =

√√√√ N∑
i=1

δu2ij, (24)

where N is the number of interacting wakes and δuij represents the velocity deficits of
the single wakes i affecting turbine j.

In Openwind the resulting velocity deficit for wake intersections is not combined
from the single wake velocity deficits but complies with the largest single wake deficit:

δuj = max
i=1,...,N

(δui,j) (25)

This equation must be used instead of (24) when validating the wake model with
Openwind, see section 5.

3.5 Modified PARK wake model

The modified PARK model [37] introduces only small changes to the original PARK
model. The intersection factor βk is calculated in one dimension and complies with the
ratio between the radial distance and the rotor diameter D, see figure 9. Furthermore,
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Turbine 0

Turbine 1

Original PARK Modified PARK

Figure 9: Calculation of the shadowing factor βk in original and modified PARK, cf.
[37]

the velocity deficit calculated by equation (19) always depends on the free stream
velocity instead of the incident velocity at the wake generating turbine. Only the thrust
coefficient Ct depends on the incident velocity. Equation (22) changes as follows:

δuij = 1− uw,i
u0

=
βk

(
1−

√
1− Ct(uinc,i)

)
(
1 + 2kx

D

)2 . (26)

The above modifications lead to lower wake losses compared to those expected by the
original PARK model.

3.6 Eddy-Viscosity wake model

The model introduced by Ainslie [1] in 1988 is based on the numerical solution of the
thin shear layer approximation of the NS equations. It is assumed, that the wake is
axisymmetric, fully turbulent and has no circumferential velocities. The flowfield is
assumed to be stationary in time and the pressure gradients outside the wake to be
negligible.

The momentum equation with the above assumptions is

u
∂u

∂x
+ v

∂u

∂r
= −1

r

∂ (ruv)

∂r
(27)

with u velocity in downstream direction (x) and v velocity in radial direction (r). The
shear stresses are expressed by an eddy viscosity turbulence closure

− uv = ε
∂u

∂r
, (28)

with ε eddy viscosity as described below. Placing (28) in (27) and applying the product
rule yields

u
∂u

∂x
+ v

∂u

∂r
=
ε

r

(
∂u

∂r
+ r

∂2u

∂r2

)
. (29)
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3.6.1 Eddy viscosity turbulence closure

The definition of the eddy viscosity is composed of the wake generated eddy viscosity
and the ambient eddy viscosity

ε = lw(x)uw(x) + εa, (30)

where lw is a characteristic length proportional to the wake width rw, which is defined
as3

rw =

√
3.56Ct

4δuc (2− δuc)
·D, (31)

uw is a characteristic velocity corresponding to the velocity difference u0 − uc with u0
free-stream velocity and uc centerline velocity inside the wake. Both lw and uw depend
on the downstream distance x. With the given proportionality we can write

lw(x)uw(x) = klrw(x)(u0 − uc(x)) (32)

where kl is a proportionality factor, which was estimated by Ainslie to be 0.015. The
ambient eddy viscosity εa can be replaced by the eddy diffusivity which is defined for
neutral conditions as

εa = KM =
κ2

log
(
z
z0

)u0D (33)

with κ von Kármán constant, z0 surface roughness of the site and z the height above
the ground, which complies to the turbine hub height. The eddy diffusivity is a measure
for the diffusion due to eddies inside the flow.

After wind tunnel experiments the eddy viscosity is lower than expected from the
equations for downstream distances smaller than 5 rotor diameters. Therefore Ainslie
introduced a filter function

F (x) =

{
0.65 +

(
x/D−4.5
23.32

)1/3
x ≤ 5.5D

1 x > 5.5D
, (34)

which gives us the final equation for the eddy viscosity4

ε = F (x)

klrw(x)(u0 − uc(x)) +
κ2

log
(
z
z0

)u0D
 . (35)

The slope of the original filter function at x = 4.5D is infinite. This leads to a leap
in the distribution of v, see figure 10a. As this leads to a leap in the eddy viscosity at
this point, some modifications for F (x) are introduced, see figure 11. One approach is

3In literature this is called wake width, although it is a measure for the wake radius. See [1], [37]
4After [23] the filter function is not applied to the ambient eddy viscosity.
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(a) Original filter function, see equation (34)
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(b) Exponential filter function, see equation (37)

Figure 10: Comparison of radial speed distributions with different filter functions

to replace the critical part of the function by a linear function around x = 4.5D with
a more moderate slope:

Flin(x) =

{
F (x) x ≤ 4.1D or x ≥ 4.9D
F (4.9D)−F (4.1D)

0.8D
(x− 4.9D) + F (4.9D) 4.1D < x < 4.9D

(36)

Another idea is to take another S-shaped function similar to the original one. Here,
an exponential function and the cumulative distribution function (CDF) of the normal
distribution were fitted to the characteristic points at x = {0, 4.5, 5.5}, giving

Fexp(x) =

{ 1.16004
1+exp(1.39713·(4.5−x/D))

+ 0.069979 x ≤ 5.5D

1 x > 5.5D
and (37)
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Fnormal(x) =


1.15588 ·

[
1

2

(
1 + erf

(
x/D − µ√

2σ2

))]
︸ ︷︷ ︸

CDF of N (µ,σ2)

+0.0720596 x ≤ 5.5D

1 x > 5.5D

(38)

with µ = 4.5 and σ = 1.1740957. As can be seen on figure 11 the exponential approach
is a slightly better approximation to the original filter function. Exemplary for the
modified filter functions, the distribution of v when using the exponential filter function
Fexp(x) is plotted in figure 10b. Note that the physical quality of the above equations
was not tested. The modifications are proposals for getting a smoother course for the
eddy viscosity ε.

3.6.2 Discretization

We now want to solve the partial differential equation (PDE) (29) numerically using
finite differences. Therefore, the approach given in literature ([13]. [37]) is used. We
first discretize the radial direction and understand x as a time variable, since the
problem is assumed to be stationary and the flow evolves in downstream direction.
This way we get a set of ordinary differential equations (ODEs) which can be solved
by the below methods.

For each discretization step in x a linear system of equations is set up and solved for
the velocity at that x.
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Equation (29) has a singularity at r = 0. By multiplying by r we get

ru
∂u

∂x
+ vr

∂u

∂r
= ε

(
∂u

∂r
+ r

∂2u

∂r2

)
. (39)

Placing r = 0 in this equation gives the following condition for the solution:

ε
∂u

∂r
= 0 (40)

As ε is non-zero, the radial derivative must equal zero at the wake centerline (r = 0).
This condition complies with our assumption of radial-symmetry.

For solving the given PDE, equation (29) is again slightly rearranged before dis-
cretizing:

u
∂u

∂x
=
(ε
r
− v
) ∂u
∂r

+ ε
∂2u

∂r2
(41)

Now the derivatives with respect to r are discretized using central differences

∂u

∂r
=
ui+1 − ui−1

2∆r
∂2u

∂r2
=
ui+1 − 2ui + ui−1

(∆r)2
.

(42)

This gives a set of ODEs which can then be solved numerically using one of the below
methods.

Backward Euler discretization scheme The backward Euler method is a one-sided
finite differences scheme which can be used for flow problems in flow direction. Apply-
ing on equation (29) yields

ui,j
ui,j+1 − ui,j

∆x
=

(
εj
ri
− vi,j

)
ui+1,j+1 − ui−1,j+1

2∆r
+ εj

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆r)2
.

(43)
After multiplying by 2ri∆x(∆r)2 and sorting by the velocities at j + 1 we get

(∆x∆rεj − ri∆x∆rvi,j − 2εjri∆x)ui−1,j+1

+
(
2riui,j(∆r)

2 + 4εjri∆x
)
ui,j+1

+ (ri∆x∆rvi,j −∆x∆rεj − 2εjri∆x)ui+1,j+1

= 2ri(∆r)
2u2i,j

(44)

with i = 1, ..., n− 1. The boundary i = 0 is treated in 3.6.3. (44) can be expressed by

aiui−1,j+1 + biui,j+1 + ciui+1,j+1 = di, (45)

where
ai = ∆x (∆rεj − ri∆rvi,j − 2εjri) ,

bi = 2ri
(
ui,j(∆r)

2 + 2εj∆x
)
,

ci = ∆x (ri∆rvi,j −∆rεj − 2εjri) and

di = 2ri(∆r)
2u2i,j.

(46)
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Crank-Nicolson discretization scheme The Crank-Nicolson scheme is based on the
trapezoidal rule. It is a combination of the forward and the backward Euler methods.

ui,j
ui,j+1 − ui,j

∆x
=

1

2

(
εj
ri
− vi,j

)(
ui+1,j+1 − ui−1,j+1

2∆r
+
ui+1,j − ui−1,j

2∆r

)
+
εj
2

(
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆r)2
+
ui+1,j − 2ui,j + ui−1,j

(∆r)2

) (47)

The discretized formulation in equation (47) is multiplied by 4ri∆x(∆r)2 and sorted
by the velocities at j + 1 so we get

(εj∆x∆r − rivi,j∆x∆r − 2εjri∆x)ui−1,j+1

+
(
4riui,j(∆r)

2 + 4εjri∆x
)
ui,j+1

+ (rivi,j∆x∆r − εj∆x∆r − 2εjri∆x)ui+1,j+1

= 4ri(∆r)
2u2i,j + (εj∆x∆r − rivi,j∆x∆r) (ui+1,j − ui−1,j)

+ 2εjri∆x (ui+1,j − 2ui,j + ui−1,j) .

(48)

Analogous to equation (45) this is expressed by

aiui−1,j+1 + biui,j+1 + ciui+1,j+1 = di, (49)

with
ai = ∆x (εj∆r − rivi,j∆r − 2εjri) ,

bi = 4ri
(
ui,j(∆r)

2 + εj∆x
)
,

ci = ∆x (rivi,j∆r − εj∆r − 2εjri) and

di = 4ri(∆r)
2u2i,j + (εj∆x∆r − rivi,j∆x∆r) (ui+1,j − ui−1,j)

+ 2εjri∆x (ui+1,j − 2ui,j + ui−1,j) .

(50)

Setting up the matrix system Equation (45) or (49) respectively can be written as
matrix equation

Au = d (51)

with

A =


b0 c∗0 0 · · · 0

a1 b1 c1
...

0
. . . . . . . . . 0

... an−2 bn−2 cn−2
0 · · · 0 an−1 bn−1

 , u =


u0,j+1

u1,j+1
...

un−2,j+1

un−1,j+1

 , d =


d0
d1
...

dn−2
d∗n−1

 . (52)

As vi,j is required for solving the set of equations, another equation is needed. The
continuity equation is therefore used and discretized with the upwind discretization
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scheme [37].
∂u

∂x
+

1

r

∂(rv)

∂r
= 0

⇔ ∂u

∂x
+
∂v

∂r
+
v

r
= 0

⇔ v = −r
(
∂u

∂x
+
∂v

∂r

) (53)

vi,j = −ri
(
vi,j − vi−1,j

∆r
+
ui,j − ui,j−1

∆x

)
⇔ vi,j =

ri
∆r + ri

(
vi−1,j −

∆r

∆x
(ui,j − ui,j−1)

)
=

i

1 + i

(
vi−1,j −

∆r

∆x
(ui,j − ui,j−1)

) (54)

3.6.3 Boundary conditions

From equation (40) we know that ∂u
∂r

is zero at the wake centerline and we get

u
∂u

∂x

∣∣∣∣
r=0

= ε
∂2u

∂r2
. (55)

Discretizing this simplified equation of momentum with the Crank-Nicolson discretiza-
tion scheme yields the coefficients for the equation system (51) stated in equation (56).
Using the backward Euler scheme yields equation (57).

a0 = −εj∆x
b0 = 2u0,j(∆r)

2 + 2εj∆x

c0 = a0 = −εj ∆x

d0 = 2u20,j(∆r)
2 + εj∆x(u1,j − 2u0,j + u−1,j)

= 2u20,j(∆r)
2 + 2εj∆x(u1,j − u0,j)

(56)

a0 = −εj∆x
b0 = u0,j(∆r)

2 + 2εj∆x

c0 = a0 = −εj∆x
d0 = u2i,j(∆r)

2

(57)

With the symmetry around r = 0 we have ui−1,j+1 = ui+1,j+1 and thus

c∗0 = c0 + a0 = 2a0. (58)

For the outer wake border the velocity complies with the free stream velocity u0. We
can move cn−1u0 to the right-hand side and get

d∗n−1 = dn−1 − cn−1u0. (59)
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As the wake develops in downstream direction it can be divided into different regions.
The near wake region is the region directly behind the rotor, which is dominated by
pressure gradients and has the length xn, which was fixed by Ainslie to 2D. The EV
wake model is only defined for downstream distances of more than 2D.

The distribution of the velocity deficit at the transition between near wake and far
wake at x = xn is assumed to be Gaussian with its peak at the centerline of the wake

1− uc,n
uinc

= Ct − 0.05− (16Ct − 0.5)
Ia
10
. (60)

For an initial centerline velocity deficit δuc,n with respect to the ambient wind speed
u0 we transform this equation and get

δuc,n = 1− uc,n
u0

= 1 +
uinc
u0

(
Ct − 0.05− (16Ct − 0.5)

Ia
10
− 1

)
. (61)

The wake width at x = xn is then calculated using equation (31) with δuc = δuc,n and
the velocity deficit for any r is given by

δu(xn, r) = δuc,ne

(
−3.56( r

rw
)
2
)
. (62)

In addition to the boundary conditions for u there are also boundary conditions for v
required. There is no radial velocity outside the wake and at the centerline. Therefore
v0,j is set to 0. As the wake edge does not have influence on the calculation of v there
are no boundary conditions required for the outer wake border.

For the width of the cylindrical grid equation (31) is used. We set δuc to a sufficiently
small number, e.g. 0.1 %, so we get the maximal wake width if the calculation is stopped
for centerline velocity deficits lower than the provided number.

3.6.4 Solution

The matrix given in equation (52) is now tested for different properties to find a suitable
solution algorithm. It can easily be seen that the matrix is in tridiagonal form.

At first, the matrix is tested for diagonal dominance. Therefore, the sum of all off-
diagonal entries in a row must be lower than the diagonal entry. This must be checked
for all lines, so we check the first line, which is set by the boundary condition, and an
arbitrary line i with i ∈ [1, n− 1]: We start with backward Euler:

|ai|+ |ci| < |bi|
2εj∆x < ui,j(∆r)

2 + 2εj∆x

0 < ui,j(∆r)
2 (63)

|a0|+ |c0| < |b0|
2εj∆x < u0,j(∆r)

2 + 2εj∆x
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0 < u0,j(∆r)
2 (64)

Now we do the same for Crank-Nicolson:

|ai|+ |ci| < |bi|
εj∆x < ui,j(∆r)

2 + εj∆x

0 < ui,j(∆r)
2 (65)

|a0|+ |c0| < |b0|
2εj∆x < u0,j(∆r)

2 + 2εj∆x

0 < u0,j(∆r)
2 (66)

This shows that the matrix that is set up by both methods is diagonally dominant
with the assumption that u > 0 holds.

In the next step, the matrix is tested for irreducibility. A tridiagonal matrix is
irreducible if the entries of the secondary diagonals are non-zero. This can’t be shown
for the considered matrix.

As we also cannot show symmetry the matrix is not symmetric positive-definite.
Therefore, the most suitable solvers are the Thomas algorithm for tridiagonal ma-

trices [30], which solves the system directly in O(n), and the Gaussian elimination
method.

3.6.5 Wake generated turbulence

Until now, only the velocity loss inside the wake was considered. But with the deficit
in velocity the turbulence intensity increases, so this should also be respected in the
wake model. The effect is implemented as an extension for the EV model in [13] and
[37]. The calculation of the turbulence intensity inside the wake is as follows: The
provided equation from [37] for the wake-induced turbulence intensity is

Iw = 5.7C0.7
t I0.68a

(
x

xn

)−0.96
, (67)

where xn is the near-wake length as given below and x
xn

must not be lower than 1.5.
The total turbulence intensity at a rotor inside another turbine’s wake is then

Itot =
u0
uinc

√
βkI2w + I2a (68)

with βk the shadowing factor as given in the PARK model, see equation (20). The
wake width for the calculation of βk is twice the Eddy-Viscosity wake width 2 rw.

The near-wake length xn is calculated as follows:
After Vermeulen [39] the near wake region can be separated into two sub-regions

whereof the first has a length

xh = rr

[(
dr

dx

)2

a

+

(
dr

dx

)2

λ

+

(
dr

dx

)2

m

]−1/2
(69)

26



with rr effective radius of the fully expanded rotor disc as defined in [39]

rr =
D

2

√
m+ 1

2
with m =

u0
ur

=
1√

1− Ct
, (70)

ur denotes the velocity directly behind the rotor, and the turbulence contributions
describing the ambient, the rotor-generated and the shear-generated turbulence(

dr

dx

)
a

=

{
2.5Ia + 0.05 Ia ≥ 0.02
5Ia Ia < 0.02(

dr

dx

)
λ

= 0.012Bλ(
dr

dx

)
m

=
(1−m)

√
1.49 +m

9.76(1 +m)

(71)

where B denotes the number of blades and λ is the tip speed ratio

λ =
RPM πD

60uinc
. (72)

RPM is a velocity dependent turbine property (Revolutions per minute) and uinc the
incident velocity of the wake generating turbine. The near-wake length then is

xn =

√
0.212 + 0.145m

1−
√

0.212 + 0.145m

1−
√

0.134 + 0.124m√
0.134 + 0.124m

xh. (73)

Because of a singularity at Ct = 0.97, Ct is set to 0.9 for the calculation of xn if it is
greater than 0.9.

When calculating the turbulence intensity gain the new total turbulence intensity
at a turbine is the incident turbulence intensity. It can be seen as the ambient turbu-
lence intensity for this turbine. Therefore, the ambient turbulence intensity has to be
replaced by the total turbulence in the description of the EV model.

3.6.6 Wake rotor intersections

To determine the incident speed at a turbine rotor the mean velocity deficit over
the rotor area is calculated. This part of the model is not described in literature.
The integral is therefore solved numerically using a quadrature rule such as Gaussian
quadrature for the radial direction combined with the midpoint rule for the angle.
The velocity deficits at the evaluation points are determined by bilinear interpolation
between 4 grid points. As the velocity deficit is computed on a 2D grid and the
wake rotor intersection is a 3D problem the grid needs to be rotated around the wake
centerline to get a cylindrical 3D grid, see figure 12. A derivation for the mean velocity
deficit is stated below.

δu =
1

A(Ω)

∫ ∫
δu(x, y) dΩ
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Figure 12: Wake turbine intersections in Eddy-Viscosity
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=
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α=1

Nr∑
i=1

wi,α δui,α ri (74)

where δu denotes the mean velocity deficit, R is the rotor radius D
2

, Nr and Nϕ are the
numbers of supporting points in radial direction and the number of angles respectively,
Ω describes the circular rotor disk in a general formulation and A(Ω) denotes the area
of Ω. The incident speed is then

uinc = u0
(
1− δu

)
. (75)

If more than one wake affects a grid point, equation (24) applies for velocity deficits
at the evaluation points.

δuj =

√√√√ N∑
i=1

δu2ij (24 revisited)
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3.7 Cost Model

As mentioned in section 2.2 there are some cost models of varying complexity. The
cost model used in this thesis is the most simple one used for instance by Mosetti
et al. [26]. It is assumed that the costs only depend on the number of turbines in the
farm.

LCOE =
C

Ea
, (76)

where Ea is the annual energy production (AEP) and C describes the costs

C = N

(
2

3
+

1

3
· e−0.00147N2

)
. (77)

This cost function could be used to optimize the number of turbines in a wind farm. For
an optimization of the turbine type another model which respects different component
costs of a wind farm would be required.
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4 Software

4.1 Implementation

1*

1 1

Optimization

PosObject Simulation SimulationData

Turbine OffshoreWind OffshoreWindData

Figure 13: Class diagram

The models presented in section 3 are implemented in C++. The implementation is
affiliated to an existing simulation and optimization framework that is used to optimize
the heliostat field layout of solar tower power plants, see [17]. The employed optimiza-
tion is a genetic algorithm (GA) specialized for optimizing two dimensional positions
of objects. As the existing software is extensible the optimization can be applied to
the newly implemented offshore wind farm simulation. A class diagram is shown in
figure 13. The central class is the Simulation class, which includes the management of
PosObjects (Turbines) and the simulation itself, which can be seen as an evaluation
of the positions. The parameters and additional data are managed by the Simulation-
Data class. Turbine, OffshoreWind and OffshoreWindData are specializations of the
three previously mentioned classes respectively.

The parameters required for the simulation are provided using an INI-file, which is
read by the SimulationData/OffshoreWindData class on initialization.

For the wake computations using the implemented models, the positions of the tur-
bines are calculated in a rotated coordinate system such that the wind comes from −x
for each wind direction. The turbines are then sorted by their rotated x coordinates so
only the turbines with a lower x coordinate need to be considered for the calculation
of the incident speed at a turbine. Also the y coordinate can then be used to easily
find out if a turbine’s wake affects another turbine.
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4.2 Openwind

Openwind [2, 37] is a software developed by AWS Truepower for professional planning
and analysis of wind farms. The implemented wake models are those presented in
this thesis and the so-called Deep-Array Wake Model (DAWM), see [5]. Therefore
Openwind is used for the verification of the during this work developed simulation
code. The software is based on the geographic information system (GIS), i.e. the user
interface and files are structured as map layers.

4.2.1 Input files

For the use of Openwind there are several files required:

. If it is desired to use one of the in Openwind predefined turbine types, a new
turbine type needs to be created. One option is to enter the turbine properties
manually in the user interface. Easier is loading a turbine file. Therefore an xml

file with the extension .owtg is used.

. For the representation of wind data more than one file is used. Openwind can
read wind resource grids (.wrg files) as used in the WAsP software, see [8]. This
file format can specify more than only the wind distribution, also dimension such
as surface roughness can be saved in wind resource grids.

. Additionally to the .wrg file a .tab file representing a met mast is required. The
format of this file type is also provided in [8].

. Lastly the position of the met mast is fixed by loading a Point wind resource
grid, which complies with a normal .wrg file but contains only one grid point.

. In the future it may be useful to also load .asc files. These are ESRI grids
(ASCII grids), which can contain several different parameters such as surface
roughness, elevation or maybe water depth. This can be helpful when extending
the implementation.

For the verification of the models there were methods implemented to write and read
the above file types.
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5 Verification and results

In this section the procedures and results of the model verification are presented. In
the last subsection 5.4 the presented model is used to simulate and optimize a real
offshore wind farm.

5.1 Verification of the AEP computation

For testing the computation of the AEP, it is assumed that the wind comes from
one direction with an artificial Weibull probability distribution. The annual energy
production of one single turbine is calculated. Then different quadrature rules with
varying number of points are tested against each other and against the results of
Openwind. For a very simple case, where the power curve is set to a constant value of
1 MW, the integral can be computed analytically. The analytical solution is then used
as a reference for the test.

5.1.1 One turbine, constant power curve, one wind direction
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Figure 14: AEP verification: One turbine with a constant power curve and one wind
direction

In this test the integral from equation (7) is solved numerically. The turbine type
used for this test is Enercon E-82, see figure 2, with a cut-in speed of 2 m/s and a cut-out
speed of 25 m/s but the power curve is replaced by a constant value of P (ϕi, u) ≡ 1 MW.
The tested integration methods are the trapezoidal rule, the midpoint rule and the
Gaussian quadrature rule. The results are then compared to the exact solution. The
exact result of the integral for the used speed distribution (A = 11.1846, k = 2.14525)
is 8518.48 MWh. The test results are plotted in figure 14. It can be seen that the
implemented quadrature rules converge to the exact integration result while Openwind
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gives a worse approximation. For the default preferences in Openwind, where the
integration steps are 1 m/s (24 quadrature points in this case), the computation gives
an error of about 0.3 %, which is about three times the error of the trapezoidal or
midpoint rule with the same step size. Gaussian quadrature is even better.

5.1.2 One turbine, constant power curve, wind data of one year

0.995

0.996

0.997

0.998

0.999

1

0 50 100 150 200

A
cc

u
ra

cy

Number of quadrature points

Gaussian
Midpoint

Trapezoidal
Openwind

Figure 15: AEP verification: One turbine with a constant power curve

This test complies with the previous test but now it is based on measured wind data
at FINO3, see section 3.2, of the year 2013. The as exact assumed reference value is
the result of Gaussian quadrature with 1000 points. Figure 15 shows the results. As
there is no big difference between figure 14 and 15, it can be seen that the accuracy of
the quadrature methods is independent of the weighted sum over the wind directions,
see equation (12).

5.1.3 One turbine, real power curve

In this subsection the two previous tests are repeated with a real power curve as
plotted in figure 2a. The results are given in figures 16 and 17. As the accuracies
for the different quadrature rules are wiggling with a changing number of quadrature
points it is not possible to say, which method is the best. But it can be seen that
the results of Openwind for a small range of numbers of points are similar to those
obtained by the implemented quadrature methods.
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Figure 16: AEP verification: One turbine and one wind direction
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Figure 17: AEP verification: One turbine and 12 wind directions
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From the above tests, where the simplest test case was checked with an analytical
solution we know that we have an inexplicable discrepancy of less than 0.1 % compared
to Openwind. So, for none of the following test cases our code will obtain the exactly
same result as Openwind.

5.2 Verification of the wake models

In this section the implemented wake models are compared to Openwind and test
cases from literature. The Openwind simulation parameters that are used for the wake
model verification are stated in table 3. Note that only those parameters are listed,
that differ from the default values.

Air density lapse rate 1E-12 kg/m3/km
Wind speed steps 0.1 m/s
Direction steps 12
Wake decay constant 0.07

Table 3: Openwind simulation parameters used for wake model verification

5.2.1 Analytical reference value for PARK/Modified PARK

For the PARK wake model and the modified PARK model the velocity deficit and given
can be calculated by hand for special cases. For this test we have two turbines in a row
with a distance of 5D, the wind comes from one direction with a constant speed. As
the shaded turbine is fully inside the wake, and since there are only these two turbines,
the more upwind one is standing in the free stream. The following parameters are
used:

D = 82 m

x1,2 = 5D = 410 m

k = 0.07

u0 = 15 m/s

(78)

Ct is obtained using the thrust curve of turbine type Enercon E-82. With the above
assumptions equation (22) is used for the calculation of the velocity deficit at the
shaded turbine and we get:

δu1,2 =
1−

√
1− Ct(u0)(

1 + 2kx
D

)2 = 0.0705048 (79)

The same value can be computed when setting up this test case in the implementation.

5.2.2 Verification of the wake rotor intersection in the Eddy-Viscosity model

The numerical solution of the integral in equation (74) is tested by setting the initial
condition as given in equation (62) to a constant value of 1

2
u0. Then, two turbines
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are placed, one behind the other, with a distance of exactly 2D, so the downstream
turbine is affected by the initial condition of the EV wake model. For the quadrature
the number of angles Nϕ is 12 and the number of supporting points Nr is chosen to be
120.

As the velocity is manually set to half the ambient velocity, the exact value of the
mean velocity deficit at the downstream turbine at x = 2D is 0.5. In our code the
result is 0.500028, which corresponds to an error of 0.0056 %. This result is sufficiently
exact.

The same test can be carried out for a Gaussian distribution instead of a constant
initial condition. Here, the reference value is calculated using Mathematica5, see ap-
pendix B. The discretization step sizes ∆x and ∆r are respectively set to 0.01D. The
wind speed is 10 m/s and the thrust coefficient Ct at this speed is 0.778. In Mathe-
matica we get a velocity deficit of 0.3708240. Our implementation yields 0.370856, i.e.
the relative error is 0.0086 %.

Now we want to compare the power production of a wind turbine at 2D with Open-
wind. The parameters are the same as used above but now we have a wind speed
distribution instead of one single speed value. The energy calculation of Openwind
yields 15.6367104694 GWh, while our implementation gives 16.4306 GWh. This is an
error of 6.53 %. The discrepancy leads to the assumption that the wake rotor intersec-
tion is implemented with another approach in Openwind. The same result is yielded
by the following test case.

5.2.3 Fully shaded turbine

Turbine type Enercon E-82
AEP quadrature Trapezoidal
Quadrature points 231

(a) General parameters

Wake decay constant k 0.07

(b) PARK and modified PARK

Turbulence intensity 10 %
Discretization scheme Crank-Nicolson
Solution algorithm Thomas alg.
Near-wake filter Original
Max. wake length 6D
∆x 0.5D
∆r 0.2D

(c) Eddy-Viscosity

Table 4: Parameters for testing wake models with two turbines in a row

The first test for checking both wake models with Openwind complies with the
analytical test above (subsection 5.2.1) as the wind comes from one direction and
there are two turbines standing in a row with a distance of 5D. Now the wind speed is
described by an artificial Weibull distribution (The Weibull parameters are the same
as in 5.1.1). Table 4 shows the input parameters for this test scenario.

5Mathematica: http://www.wolfram.com/mathematica/
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The results are stated in table 5 sorted by the wake model. For each model the
result of the implementation, the result of Openwind and the relative error of the
implementation, assuming Openwind is the exact result, is given.

As can be seen the discrepancy between the Eddy-Viscosity implementation and the
Openwind result is very large. In the Openwind validation paper [37] their version
of Eddy-Viscosity also has an even larger discrepancy to their reference. Therefore
our implementation can neither proved right nor wrong using Openwind. We need to
find other test cases and reference values. In the following, the models are validated
separately.

5.2.4 Partially shaded turbine with PARK

u0

Turbine 1

Turbine 2

1D

5D

Figure 18: Test setup: Partially shaded turbine

In this test the energy output of a configuration of two turbines as shown in figure
18 is tested. The same turbine type as above is used here and the parameters given in
tables 4a and 4b apply. The wind comes from one direction with the speed distribution
that was already used above.

Table 6 shows the results for this test configuration. It is obvious from the last
column that again a good accordance with Openwind was achieved.

5.2.5 Intersecting wakes

The intersecting wakes test is similar to the partially shaded turbine test but now the
wake-affected turbine is affected by two intersecting wakes. The parameters for this
test are the same as above and the distances between the turbines are shown in figure
19.

5.2.6 Ten turbines in a row

In this last test case for the PARK and modified PARK wake models there are ten
turbines standing in a row on one axis with the wind direction, always with a distance
of 5D between two turbines, see figure 20. The used wind speed distribution and
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Figure 19: Test setup: Intersecting wakes

simulation parameters are again the same as in the previous tests. The results are
shown in table 8.

1 2 3 4 5 6 7 8 9 10

5D 5D 5D 5D 5D 5D 5D 5D 5D

u0

Figure 20: Test setup: Ten turbines in a row

Implementation Openwind Error
No wake 21.0017 GWh 20.9977 GWh 0.019 %
Original PARK 18.7167 GWh 18.7154 GWh 0.007 %
Modified PARK 18.7167 GWh 18.7154 GWh 0.007 %
Eddy-Viscosity 18.1198 GWh 17.1532 GWh 5.635 %

Table 5: Test results: Two turbines in a row

Implementation Openwind Error
No wake 21.0017 GWh 20.9977 GWh 0.019 %
Original PARK 20.4429 GWh 20.4396 GWh 0.016 %
Modified PARK 20.2515 GWh 20.2484 GWh 0.015 %

Table 6: Test results: Partially shaded turbine
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Implementation Openwind Error
No wake 31.5026 GWh 31.4965 GWh 0.019 %
Original PARK 30.2672 GWh 30.2626 GWh 0.015 %
Modified PARK 30.1766 GWh 30.1721 GWh 0.015 %

Table 7: Test results: Intersecting wakes

Implementation Openwind Error
No wake 105.009 GWh 104.989 GWh 0.019 %
Original PARK 77.0026 GWh 77.013 GWh 0.0001 %
Modified PARK 83.6233 GWh 83.627 GWh 0.004 %

Table 8: Test results: Ten turbines in a row

5.2.7 Development of the centerline velocity deficit

To validate the EV wake model, figure 3 from [1] is generated with our implementation
of the model and compared to the original figure. The development of the centerline
velocity deficit with the downstream distance is shown. For the test the ambient
turbulence intensity Ia is set to 14 %, the turbine hub height is 50 m and the surface
roughness of the site is 0.05 m. The grid resolution is chosen as ∆x = ∆r = 0.1D.

The results of this test compared to the original results are plotted in figure 21.
Unfortunately there are no exact values that can be used for comparison. Instead the
results can only be compared visually with the copy of the original plot.

For further verification the EV wake computation for the simple case of one sin-
gle wake was implemented in MATLAB6, which yields the same results as the C++
implementation. The code can be found in appendix C.

The implementation of the EV wake model was not completely verified in this thesis
as there are no reference results for simple test cases such as 5.2.3, 5.2.4 or 5.2.5. There
are some ambiguities left in the model since the original description in the paper by
Ainslie [1] is restricted to the basic idea of the model. The different implementations
therefore use diverse equations for wake intersections, turbulence increase, boundary
conditions, etc. and finally yield different velocity fields.

A detailed verification of the Eddy-Viscosity model in the future could consist of
carefully studying the model descriptions of existing implementations, e.g. Openwind
[37] or WindFarmer [13], to finally get a comparable result.

As the use of dimension in the original model description is not clear (some lengths
depend on D), this can lead to confusion and possible errors in the implementation.
It is assumed that this is the case in Openwind and thus the reason for the large
discrepancy, see table 5. It is a task for the future work to prove this assumption.

6MATLAB: http://www.mathworks.com/products/matlab/index.html
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(a) Original Ainslie [1]
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Figure 21: Development of the centerline velocity deficit with downstream distance x

5.3 Validation of discretization schemes for the Eddy-Viscosity
model

In the following test the discretization grid sizes using Finite Differences and Back-
ward Euler and Crank-Nicolson respectively are validated. Therefore, the accuracies
of the centerline velocity deficit at x = 10D at different values of ∆x and ∆r are
plotted: Figure 22 shows the plots for the backward Euler scheme and the plot for the
Crank-Nicolson method is given in figure 23. The accuracy plots vary with the thrust
coefficient Ct as the velocity deficit inside the wake strongly depends on this coefficient.

It can be seen that the accuracy is very sensitive to the the choice of ∆x and ∆r. It
is, thus, necessary to find a good choice of these parameters to achieve exact results.
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Figure 22: Analysis of the discretization grid size. Backward Euler
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Figure 23: Analysis of the discretization grid size. Crank-Nicolson
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5.4 Optimization of the Horns Rev 1 offshore wind farm

As mentioned in section 4.1 the simulation code developed during this thesis can be
used as an objective function for the optimization of the turbine positions. The em-
ployed optimization method is a GA as described in [17].
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Figure 24: Layout of the Horns Rev offshore wind farm

The optimized field is the real world wind farm Horns Rev 1 in the North Sea. The
wind data used to optimize the turbine field are the data measured at the FINO3 met
mast from 2011 to 2014, about 50 km southwest of Horns Rev. The turbine data (power
and Ct curve, hub height, rotor diameter) are those provided by Jensen et al. in [18].
The positions of the turbines and the area of the site are extracted from OpenSeaMap7.

The simulation parameters used to run the optimization are given in table 9.

Wake model Modified PARK
Objective function Annual energy production
Calculate wake decay constant False
Wake decay constant 0.04

Table 9: Simulation parameters for the optimization of Horns Rev

The optimization was run twice, the first run was completely without restriction
and in the second run the valid positions were given by a regular grid. When using a
free optimization, the energy output was much higher than the energy output of the

7http://www.openseamap.org/

43

http://www.openseamap.org/


reference field (original Horns Rev layout), see figure 25. The positions after 1, 10, 50
and 100 steps are shown in figure 26.

In the restricted optimization the turbines were forced to positions on a regular grid
with horizontal and vertical distances of exactly 5D.

Figure 27 shows the AEP for the best field of each optimization step of the restricted
optimization compared to the reference value, which complies with the original layout
shown in figure 24.

Analogous to figure 26 in figure 28 the field layout is plotted for the first and the
last step of the optimization and two intermediate steps.
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Figure 25: Convergence of a free optimization of Horns Rev
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Figure 26: Freely optimized positions for the Horns Rev wind farm
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Figure 27: Convergence of the optimization of Horns Rev on a regular grid
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Figure 28: Optimized positions for the Horns Rev wind farm on a grid structure
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6 Conclusion & Outlook

In this thesis the basic approach of modeling offshore wind farms was presented. There
were two common wake models implemented and affiliated to an existing simulation
and optimization framework. During the work on this thesis several issues and ideas
came up that need to be left for the future work as they would have gone beyond the
scope of this bachelor thesis. The items left for the future are listed in the following:

. As the EV wake model is not clearly defined for wake intersections and turbulence
increases due to the wake, there are several variants implemented in different wind
simulation programs such as Openwind and WindFarmer. An aim for the future
could be to reimplement the versions of Openwind and WindFarmer and validate
the code with the existing software.

. The EV model can be solved with another method than finite differences. Ap-
proaches for solving the (simplified) Navier-Stokes equations numerically can be
found in literature. See for example [6] and [31].

. As the assumption of axial symmetry in the EV model strongly conflicts with
reality, a generalization of the model to a non-symmetric 3D calculation should
improve the accuracy of the current model.

. The physical goodness of the filter functions presented in section 3.6.1 is not yet
validated. This should be done in the future.

. For the optimization it could be interesting to implement a more complex cost
model and to introduce the option to optimize the number of turbines or the
used turbine type.

. In the development of a new cost function the water depth could be respected:
The deeper the sea, the higher the installation costs.

. The water depth could also be respected in the definition of a restricted area,
e.g. turbines can only be placed where the water depth is lower than 30 m.

. Finally additional wake models could be implemented or the existing wake models
could be developed further. Here, measured data are needed.
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[13] GH WindFarmer Theory Manual. Garrad Hassan and Partners Ltd, St. Vincent’s
Works, Silverthorne Lane, Bristol BS2 0QD England, 4.0 edition, May 2009.

[14] SA Grady, MY Hussaini, and Makola M Abdullah. Placement of wind turbines
using genetic algorithms. Renewable energy, 30(2):259–270, 2005.

48



[15] Martin OL Hansen. Aerodynamics of wind turbines. Earthscan, 2010.

[16] Carlos M Ituarte-Villarreal and Jose F Espiritu. Optimization of wind turbine
placement using a viral based optimization algorithm. Procedia Computer Science,
6:469–474, 2011.

[17] Georg Jennessen. Optimierung eines heliostatenfeldes unter einsatz eines genetis-
chen algorithmus. Diploma thesis, RWTH Aachen University, March 2013.

[18] Leo E Jensen, C Mørch, PB Sørensen, and KH Svendsen. Wake measurements
from the horns rev wind farm. In European wind energy conference, page 9, 2004.

[19] Niels Otto Jensen. A note on wind generator interaction. Number 2411 in Risø-M.
1983.

[20] I Katic. Program park, calculation of wind turbine park performance, release
1.3++. Risø National Laboratory, Rosklide, 1993.

[21] I Katic, J Højstrup, and NO Jensen. A simple model for cluster efficiency. In
European Wind Energy Association Conference and Exhibition, pages 407–410,
1986.

[22] Matthew Lackner and Christopher Elkinton. An analytical framework for offshore
wind farm layout optimization. Wind Engineering, 31(1):17–31, 2007.

[23] Bernhard Lange, Hans-Peter Waldl, Algert Gil Guerrero, Detlev Heinemann, and
Rebecca J Barthelmie. Modelling of offshore wind turbine wakes with the wind
farm program flap. Wind Energy, 6(1):87–104, 2003.

[24] Gunner Chr Larsen, Helge Madsen Aagaard, Ferhat Bingöl, Jakob Mann, Søren
Ott, Jens N Sørensen, Valery Okulov, Niels Troldborg, Niels Morten Nielsen,
Kenneth Thomsen, et al. Dynamic wake meandering modeling. Technical report,
Risø National Laboratory, 2007.

[25] Xiaolan Li, Jun Wang, and Xing Zhang. Equilateral-triangle mesh for optimal
micrositing of wind farms. In Proceedings of the 14th WSEAS international con-
ference on Computers, Corfu Island, Greece, pages 23–25, 2010.

[26] G Mosetti, Carlo Poloni, and B Diviacco. Optimization of wind turbine positioning
in large windfarms by means of a genetic algorithm. Journal of Wind Engineering
and Industrial Aerodynamics, 51(1):105–116, 1994.

[27] Søren Ott. Fast linearized models for wind turbine wakes. In Euromech Collo-
quium, volume 508, pages 11–13, 2009.

[28] A Peña and O Rathmann. The atmospheric stability dependent infinite wind farm
and wake decay coefficient. Wind Energy, in review, 2011.

49
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