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1. Introduction

Renewable energy sources have become one of the most used generators for electrical
energy providing 19.2% [11] of humanities global energy consumption. Compared to
fossil and nuclear sources, they have the advantage of being environmentally friendly
and unlimited as the providing sources are based on earths steady or periodical natural
phenomena.
The most common provider of renewable energies are the solar and wind energy, but
other sources as e.g. tides and geothermal heat are also very common. Solar energy
though, if compared to wind energy, has an obvious disadvantage. It is not available
at night and not equally efficient over the whole globe due to the earths axis orienta-
tion and its orbit around the sun. Wind on the other hand is a more steady resource,
where these drawbacks are not existent and energy production is possible throughout
the entire day.
Wind energy in general is harvested by turbines, which convert the kinetic energy of
the free flowing wind into electrical current. After grid specific transformations, this
current can directly be provided into the power grid. No additional transformations
are needed and the efficiency is not diminished any further. The turbines are usually
clustered into wind farms as this minimizes the costs per turbine. These wind farms
can either be built on- or offshore, each having its own advantages and disadvantages.
Here the focus is laid on offshore wind farms, which profit from unrestricted air flow
and only occupy widely unused space, but suffer from higher construction costs.
Due to the dense clustering, the turbines influence each others performance, as wind
passing one turbine creates a wake behind it from which less energy can be generated.
Therefore it is desirable to choose an optimal positioning that minimizes this effect
and thus maximizes the farms energy output.
For the solution of this so called ’wind farm layout optimization problem (WFLOP)’,
measurement data is required to gain information about different unknown parameters
such as weather data at the construction ground and turbine properties. Even though
this measurement data is provided, these measurements are always subject to uncer-
tainties from e.g. the inaccuracies of measurement processes themselves. Depending
on the physical process of the wake generation, these uncertainties can possibly have a
big impact on the quality of final prediction of the optimal turbine positioning. There-
fore modeling these uncertainties and tracing them through the wake models provides
a better understanding to the WFLOP problem and primarily also to the statistics of
the generated power output.
In this thesis, the propagation of uncertainties through two different wake models is
examined. The parameters considered as uncertain are the wind speed, power curve
and thrust curve, where the latter two are a characteristic parameter of the turbine. To
propagate and evaluate these uncertainties, stochastic spectral methods of uncertainty
quantification (UQ) are used to determine the stochastics of the quantity of interest
(QoI), namely the annual energy production (AEP).
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2. Problem description

This section explains the WFLOP problem, covering the most important details.
The first part is about the setup of the offshore wind park and more specifically about
the turbine properties. This is followed by a description of the weather data used for
the simulation. Knowledge about both of the first parts is required as the turbines
thrust and power curve as well as wind speed will be considered uncertain in the later
sections. Models for the wake generation as well as for the calculation of the AEP
are described afterwards to wrap up the overview of problem modeling. The complete
modeling process is based on the work of Heiming [4].

2.1. Turbine properties

Wind turbines can be categorized into different types, where the most common type is
a 3-bladed horizontal-axis wind turbine (HAWT). For this type of turbine, propulsion is
mainly generated from the lift force perpendicular to the blades. As the HAWT turbine
is the most common type, it is the only one considered in the modeling process.

z

D

Figure 1: Turbine measurements

The general HAWT can be characterized by the hub height z and the rotor diameter
D (see figure 1). Additionally the cut-in speed ucutin and cut-out speed ucutout are
of interest, as they determine the range of wind speeds for which the turbine will be
generating energy efficiently and without risking damage.
Furthermore, additional knowledge of the relations between the incident wind speed
u and the thrust curve Ct as well as the turbines power output P is needed. Usually
these curves have a dependence on the airs density ρair, but nevertheless the density
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is assumed constant in this work with ρair = 1.225 kg
m3 .

In figure 2 these curves can be seen for the example for the E-82 Enercon turbine, with
ucutin = 2m

s
and ucutout = 25m

s
. The thrust coefficient Ct influences the overall thrust,

that acts on the turbine rotor. Therefore it also is a measure for the velocity deficit at
the rotor.
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Figure 2: Enercon E-82 characteristics, from Openwind [13]

2.2. Wind data

The wind data used in this work has been gathered by the FINO3 research station,
which is located at the german part of the north sea. The data recorded spans over
the years 2011 to 2014 and provides roughly 190 thousand measurement points. A
Weibull probability function has then been fitted to the data as described in [4]. The
Weibull distribution has been used due to its good characteristics in approximating
natural velocity distributions and also because of having a simple form that is less
difficult to fit to the data, than other similarly good distribution fits. Figure 3 shows
the wind directions where the data is clustered in 12 different direction sectors. Figure
4 shows each annual wind speed distribution and compares it to the four-year mean
speed distribution.

2.3. Wake modeling

As the wind turbines individual wake generation is the key in maximizing the wind
farms energy output, modeling the wake is a very important task. In this section two
models will be highlighted. These are the same models, which will later also be used
for the uncertainty quantification.
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Figure 3: Combined wind direction distribution at FINO3 for the years 2011 to 2014,
clustered into 12 direction sectors of with a total of 360 degrees

2.3.1. PARK model

The first model is the so called PARK model. It was originally developed by Jensen
[5] and Katic et al [7]. The velocity deficit in this model is assumed to only change in
stream direction. Therefore the velocity deficit

δu =
uo − uw
u0

= 1− uw
u0

, (1)

with wake disturbed velocity uw and u0 as free stream velocity, is solely depend on x:

δu = δu(x) (2)

Due to this assumption the model is not suitable for the calculation of an exact velocity
distribution and is therefore only valid for the far wake case of a downstream distance
of three rotor diameters (D) or higher. In figure 5 it can also be seen that the wake
width increases linearly by 2k. The corresponding wake growth factor k is defined as:

k =
0.5

ln z
z0

, (3)

where z is the turbines hub height and z0 refers to the surface roughness, which is
dependent on the on the building ground. The surface roughness will also be considered
as constant in this thesis with z0 = 0.03m.
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Figure 4: Comparison of annual wind speed distributions at FINO3 for the years 2011
to 2014

To calculate the velocity deficit inside the wake a momentum balance is applied for
the system in figure 5. This leads to:

− ρπ
(
D

2

)2

ur − ρπ

((
Dw

2

)2

−
(
D

2

)2
)
u0 + ρπ

(
Dw

2

)2

uw = 0 (4)

Under the previous assumption of incompressibility (ρ = const) for the air, the equa-
tion can be simplified to:

D2ur +
(
D2
w −D2

)
u0 = D2

wuw (5)

For the velocity behind the rotor ur, the initial velocity deficit is defined as δur = 1− ur
u0

.
Together with Dw = D + 2kx this yields:

uw
u0

= 1− δur
(

D

D + 2kx

)2

(6)

According to Peña and Rathmann [10] the initial velocity deficit can be replaced by
the axial induction factor, such as:

a(u0) = 1−
√

1− Ct(u0) (7)

It is linked to the thrust coefficient Ct and can be interpreted as the relative velocity
loss at the turbine. Now it is possible to derive a formulation for the velocity deficit
at any point inside the wake from 1 as:
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x

D Dw = D + 2kx

u0

u0

ur uw

Figure 5: Visualization of the wake as described in PARK, cf. [7]

δu(x) = 1− uw(x)

u0

=
1−

√
1− Ct(u0)(

1 + 2kx
D

)2 (8)

It is important to note that the derived equation is only valid for the velocity deficit
behind a turbine in free stream. In practice this is not the case as only the wind
turbines at the front of the wind park (stream-wise) will meet this condition. To
address the issue a shadowing factor βk ∈ [0, 1] is introduced as presented in [3] and
[13] as:

βk =
AIntersection

ATurbine

(9)

AIntersection describes the circular intersection of the wake cross section between wake
generating turbine i and wake affected turbine j. The introduction of this shadowing
factor changes the formula for the velocity deficit as follows:

1− uw
uinc,i

= βk

(
1−

√
1− Ct(uinc,i)

)
(
1 + 2kx

D

)2 , (10)

with uinc as the incident velocity from turbine i. As this relation is only valid for the
incident velocity from turbine it needs to be transformed in order to be depending on
the free stream velocity u0:

δuij = 1− uw,i
u0

= 1− uinc,j
u0

=
u0

uinc,i

βk
(

1−
√

1− Ct(uinc,i)
)

(
1 + 2kx

D

)2

 (11)
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For the case of multiple interacting wakes, velocity wakes are simply added up in a
least squares sense:

δuj =

√√√√ N∑
i=1

δu2
ij (12)

2.3.2. Eddy-viscosity model

The eddy-viscosity model originates in fluid dynamics as a turbulence closure for the
stress tensor in the Reynolds averaged Navier-Stokes (RANS) equations. The model
was first introduced in 1988 by Ainslie [1], based on numerical solutions of the shear
layer approximations of the NS equations. The wake is assumed axisymmetric, turbu-
lent and without any circumferential velocities. Additionally the flow field is stationary
in time and pressure gradients outside of the wake are negligible. From these assump-
tions the momentum equation of the NS equations yields:

u
∂u

∂x
+ v

∂u

∂r
= −1

r

∂ (ruv)

∂r
, (13)

with u as downstream velocity, v radial velocity.
In general the equations is not closed as the stress tensor uv is unknown. The eddy
viscosity approximation provides the closure term as

uv = −ε∂u
∂r
, (14)

with ε as eddy viscosity. Equation 13 combined with equation 14 further yields:

u
∂u

∂x
+ v

∂u

∂r
=
ε

r

(
∂u

∂r
+ r

∂2u

∂r2

)
(15)

As the eddy viscosity ε is also unknown for now, the term needs to be closed by further
assumptions. Therefore the eddy viscosity is modeled to consist of an ambient eddy
viscosity and a wake generated viscosity:

ε = lw(x)uw(x) + εa (16)

The characteristic length lw in this context is proportional to the wake width rw with
proportionality factor kl (≈ 0.015 [1]) as:

lw(x)uw(x) = klrw(x)(u0 − uc(x)) (17)

and

rw =

√
3.56Ct

4δuc (2− δuc)
·D, (18)
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where uc corresponds to the wake centerline velocity. The ambient eddy viscosity can
also be defined by the eddy diffusivity for neutral conditions:

εa = KM =
κ2

log
(
z
z0

)u0D, (19)

with κ as von Kármán constant.

2D 3D 4D 5D 6D 7D 8D

x

0

0.5D

1D

1.5D

2D

r

Figure 6: Original filter function, see equation (20)

Wind tunnel experiments showed a discrepancy in the eddy viscosity, which was
lower than the calculated value for downstream distances of five rotor diameters or
closer. To compensate this flaw, Ainslie [1] introduced a filter function F(x) as follows:

F (x) =

{
0.65 +

(
x/D−4.5

23.32

)1/3

x ≤ 5.5D

1 x > 5.5D
(20)

The proposed filter function has an infinite slope at x = 4.5D (see figure 6). This jump
also leads to a jump in the velocity distribution as it can be seen in figure 6. This
potentially unphysical effect can be avoided by choosing a different filter function with
a smoother transition from near to far-field as shown by Heiming [4].

8



2.4. Annual energy production

Finally, to optimize the wind park layout means to maximize the AEP. To be able to
do this, the expected power value needs to be calculated. Therefore the wind speeds
u get categorized by wind directions ϕi similar to figure 3 and the expectation of the
power value is expressed by:

Eϕi := Eϕi [P (ϕi, u)]

=

∞∫
0

P (ϕi, u) · Fϕi(u) du

=

ucutout∫
ucutin

P (ϕi, u) · Fϕi(u) du

≈
Nspeeds∑
j=1

wj · P (ϕi, uj) · Fϕi(uj) (21)

Fϕi(u) describes the probability density function (PDF) of the wind speed distribution
and wj is the weight for speed class j. Further

P (ϕ, u) =

Nturbines∑
k=1

P (uinc,ϕ,k) (22)

denotes the total power output of the wind farm at wind speed u and direction ϕ. The
incident velocity at turbine k in wind direction ϕ can be determined by computing the
wake velocity deficit by using the wake models derived in the previous section.
The expected power output for all directions then computes as follows:

E :=

2π∫
0

Eϕdϕ

≈
Ndirections∑

i=1

wϕi · Eϕi , (23)

where wϕi is the weight for direction ϕi.
As E describes the mean power for a given wind distribution in MW, this must be

projected to the length of one year to get the AEP measured in MWh:

AEP = (8760 h + 6 h) · E

≈ (8760 h + 6 h) ·
Ndirections∑

i=1

wϕi ·
Nspeeds∑
j=1

wj ·Wϕi(uj) ·
NTurbines∑

k=1

P (uinc,ϕi,j,k) (24)

’8760 + 6’ corresponds to the total number of hours in a single year of 365.25 days,
thereby also accounting for leap years.
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3. State of the art

As previously introduced, the process of turbine induced wake generation is potentially
depending on a large set of parameters. Most of these parameters have a high level
of uncertainty due to e.g. the shear inability of performing ideal measurements or
factoring in situational performance decreases of the wind farm.
As described by Lackner et al. [8] in 2007 the most important uncertainties can be
clustered in three groups, with the most crucial uncertainty being the wind resource.
Wind speed and direction are in the case of the Horns Rev 1 wind farm measured by
the FINO3 weather station and can therefore not fully represent data for each turbine.
The second set of uncertainties is the turbine power production. Here the most signifi-
cant role can be linked to the turbine power curve. When the power curve is determined
by the manufacturer the curve is fitted to wind speed, but it is uncertain how the map-
ping is performed as turbulence and shear stress will have a significant impact on the
curve. An additional uncertainty of this group is of the air’s density as it will vary
under different influences like wind velocity and humidity.
Finally the last set of uncertainties are the energy loss factors. Here, availability losses
and losses due to fouling and icing play a role and can only be predicting to a limited
extend, thus being highly uncertain.
Lackner et al. [8] modeled these uncertainties as Weibull distributed for the wind re-
sources, while the other uncertainties are supposed to be normally distributed. Despite
omitting any details on the used wake model, it is stated that a Monte-Carlo simula-
tion has been performed and a method has been derived to calculate the statistics of
the AEP.
In a newer approach by Murcia et al. [9] from 2015 the focus was laid on creating a
framework for the validation of stationary wake models with the goal to quantify the
AEPs uncertainty. Murcia et al. [9] also used the same Horns Rev 1 offshore wind
power plant as a test case. The setup will therefore be the same as listed in section 2.
In the paper a smaller set of uncertainties is considered, including wind velocity and
direction. The turbines power curve is set to the official curve provided by the manu-
facturer. Again the simulation was performed by a Monte-Carlo simulation, this time
based on LHS sampling. The wake model is a modified NOJ model by [7], a simple
model, which is yet broadly used in the industry. [9] could show through the calcu-
lations that the uncertainties in the model inputs are too large to draw a conclusion
on possible model inadequacies. Meaning uncertainties in the measurements outweigh
uncertainties induced by the model. It is lastly adviced to also consider uncertainties
in the power curve.
It is worth noting that the derived results only calculate uncertainties in the AEP for
a single wind turbine. A comparable work for computing a full wind power plant AEP
uncertainty prediction could not be found at the point in time of creating this work.
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4. Uncertainty Modeling

In this section the basic principles of uncertainty quantification will be explained and
methods will be introduced to evaluate uncertainties for a specific quantity of interest.

4.1. Basic concepts of probability

In order to describe uncertainties, it is first of all necessary to define basic concepts of
stochastics and distributions.

4.1.1. Random variables

To begin with, a random variable (RV) X has a cumulative distribution function (CDF)
FX(x) and a PDF fX(x). The cumulative distribution function is defined as:

FX(x) = P (X ≤ x) = P (ω : X(ω) ≤ x), (25)

where by definition of probability P : 0 ≤ FX ≤ 1. The probability density function is
linked to the cumulative distribution function through the relation:

Fx(a) =

∫ a

−∞
fX(x)dx and fX(x) =

d

dx
FX(x) (26)

The cumulative distribution function therefore describes the probability of X having
a value less or equal to x, where the probability density function describes the relative
likelihood of X to take value x.
An important example for a distribution is the Gaussian distribution which is also
known as normal distribution N (µ, σ2). The parameter µ is the mean and σ2 the
variance. The PDF of this distribution can be formulated as:

fX(x) =
1√

2πσ2
e−

x−µ
2σ2 , x ∈ R (27)

Another example for an important distribution is the so called uniform distribution.
For this distribution all outcomes within its support have the same probability, while
being zero outside of the support. The support is defined as a interval [a, b] on R with
a, b ∈ R. For the PDF this yields:

fX(x) =


1
b−a for x ∈ [a, b],

0 else
(28)
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4.1.2. multiple RVs

In case of multiple random variables the definition of a joint density function, as well
as the marginal density function, is required.
The joint density function in case of two continuous RVs is defined as function f(x,y)
which fulfills:

fX,Y (x, y) = fX|Y (x|y)fY (y) = fY |X(y|x)fX(x) (29)

As this also is a density function∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy = 1 (30)

has to hold as well. As stated, these are formulations for the two-dimensional case,
but can be extended to an n-dimensional case.
The undefined terms from equation 29 are the conditional distribution e.g. fX|Y (x|y)
and the marginal distribution e.g. fY (y).

4.1.3. Statistics

The most important statistics in dealing with uncertainty quantification are the ex-
pectation and the variance. The expectation of RV X with PDF fX can be computed
as:

µx = E[X] =

∫ ∞
−∞

xfX(x)dx (31)

The variance is defined as

σ2
x = V ar(X) = E[(X − µx)2], (32)

which is the squared standard deviation σx of X. As the expectation and the standard
deviation are only the first and second standardized moments of the distribution, one
could also compute higher moments, but these are not of interest in this problem
setting.

4.2. Generalized polynomial chaos

In this section the generalized polynomial chaos (gPC) is outlined. This method refers
to an expansion which can be used to describe stochastic processes u(x, t, ω). The
expansion is based on a sum of orthogonal polynomials, like the Hermite or Lagrange
polynomials, depending on the distribution of the RV. These orthogonal polynomials
form a basis for the random components in the solution. For the general case, the
described process is a function of the random vector Q(ω) = [Q1(ω), . . . , Qp(ω)] : Ω→
R, Ω being the finite sample space:

uN(t, x, ω) =
N∑
i=0

ui(t, x)ψi(Q) (33)
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Distribution GPC basis polynomial Support
Gaussian Hermite (−∞,∞)
Uniform Legendre [a, b]

Table 1: PDF and matching basis polynomials

where ui(x, t) are deterministic coefficients and ψi the referred orthogonal polynomials.
As previously mentioned the used polynomials have to be orthogonal to the PDF of the
specific random process. Table 1 shows matching pairs of distributions and polynomials
relevant within the context of this thesis.

4.3. Stochastic Spectral Methods

This section introduces commonly used methods in dealing with uncertainty quantifi-
cation. These methods enable dealing with the uncertain parameters of the problem
setting and propagating their stochastics through the used mathematical models. Ulti-
mately the uncertainties are modeled with the intend to have a measure of uncertainty
for a specific QoI. This measure is usually the mean and variance of the QoI. The
provided methods in this section will therefore give expressions for these statistics.

4.3.1. Monte Carlo Sampling

In order to compute a QoI such as:

E[u(x, t, Q(ω))] =

∫
u(x, t, q)ρ(q)dq (34)

the MC method uses point-wise integration in probability space to evaluate the integral
in equation 34. By computing M deterministic solutions (sampling), with each starting
from a different set of realizations of the uncertain parameters one obtains M solutions
of the type um(x, t) = u(x, t, Qm). If Qm, m = 1 . . .M is a independet and indentical
distributed (i.i.d.) RV, application of the central limit theorem yields:

1

M

M∑
m=1

u(x, t, Qm)
a.s.−−→ E[u(x, t, Q)] (35)

and for the convergence rate:

V ar[
1

M

M∑
m=1

u(x, t, Qm)− E[u(x, t, Q)] = O(
1√
M

) (36)

The rather slow convergence rate of O( 1√
M

) can be a disadvantage for all computa-
tionally expensive problems, as for every digit of accuracy the sample size has to be
increased by a factor of 100. This can be a deal-breaker for certain applications, but
it is worth mentioning that the so called ”Quasi Monte Carlo methods” offer similar
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properties with an increased efficiency. On the other hand the convergence rate of the
MC sampling is not dependent on the dimensions of the probability space. This is
a unique feature to the MC method, which in case of high dimensional probabilities
often makes it the only viable solution.

In case of multiple RV the MC sampling method stays the same. Random numbers
are drawn from the PDF of each RV and the function is evaluated at these points.
Therefore, formulations for the mean and variance also stay the same.

4.3.2. Stochastic Collocation

The idea behind the SC method is it to choose a set of M collocations points qM in
probability space and to enforce the solution at these points. In a more mathematical
formulation this means:

find I(Q) s.th. u(x, t, Qm) = I(Qm) (37)

Note that I is function valued, which makes the task non-trivial. As the problem
is deterministic for each sample m, the SC method involves solving the problem M
times. As the positions of the collocation points are unrestricted, it is advantageous
to choose them based of a quadrature rule and thus exploit the corresponding weights
to compute the statistics. The solution of the stochastic problem can be interpolated
from the collocation points by using Lagrange interpolation. This yields the following
expression for the solution:

uN(x, t, Q) =
M∑
i=1

ui(x, t, qi)Li(q), (38)

where Li are the Lagrange polynomials. The reason to choose Lagrange polynomials
is due to their ability to match the exact solution at all M collocation points, as:

Li(q
m) = δim (39)

The statistics of the interpolation can then be determined by using the solutions at
the collocation points. For the mean of the QoI this for example yields:

E[u] =
M∑
i=1

u(x, t, qi)

∫
Γ

Li(q)ρ(q)dq (40)

Where Γ is the probability space on which Q is defined and ρ(q) is the PDF of Q’s
distribution. By cleverly choosing the collocation points as described above and using
the Lagrange property in 39 equation 40 can be simplified to:

E[u] =
M∑
i=1

u(x, t, qi)ρ(qi)wi (41)
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wi are the quadrature weights of the quadrature rule which was chosen according to
the CDF of the uncertainty. The integral in equation 40 can be exactly evaluated by
quadrature due to the fact that since the used Lagrange polynomials are of order M
the quadrature is exact for polynomials of this order. Equation 40 could also be solved
by setting up a Vandermonde-like matrix and inverting it, which is a non-trivial task
and can sometimes even be impossible. A formulation for the variance can also be
found:

E[(u− E[u])2] =

∫
Γ

(u− E[u])2ρ(q)dq

=

∫
Γ

(
M∑
i=1

u(qi)Li(q)− E[u])2ρ(q)dq

=
M∑
j=1

(
M∑
i=1

u(qi)δki − E[u])2ρ(qj)wj

=
M∑
j=1

(u(qj)− E[u])2ρ(qj)wj (42)

The interpolation error for dimension p with M collocation points is:

||f − IMf || ∼ O(
1

M
−α
p

), (43)

where α is a constant that is based on the smoothness of the interpolated function f .

Compared to the MC method, the convergence rate of (M
−α
p )−1 is depending on the

dimension p and thus the convergence rate is low for higher dimensions. This is the
so called ”curse of dimensionality”, which restricts the usability of most non-MC type
methods to at most medium dimension size.

In the case of multiple RV the interpolation of the solution u to a multivariate partial
differential equation (PDE) can be formulated as:

u(Q) = I(u) = (Im1 ⊗ · · · ⊗ Imd)(u)

=

m1∑
j1

· · ·
md∑
jd

u(qj11 , . . . , q
jd
d )(L1(qj11 ) . . . Ld(q

jd
d )), (44)

with d as the dimension (number of RVs) and Li again as Lagrange polynomial in i-th
dimension. Using a multi-index i equation 44 can be rewritten as:

Im(u) =
∑
|i|<N

u(qi)Li(q) (45)

A quadrature rule Q(p)
l f based on 1D quadratures can also defined and statistics can

be computed similarly as in the one-dimensional case. For the derivation of an efficient
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quadrature rule see chapter 4.4 where sparse grids are discussed. Given the quadrature
rule, the mean and variance can be calculated by:

E[u] =
∑
|i|<N

u(Qi)Wi (46)

and
var[u] =

∑
|i|<N

(u(Qi)− E[u])2Wi, (47)

with Q as tensor product of the RV and Wi = {ρiw1
i , . . . , ρiw

d
i }.

It is worth noticing that the presented method, similar to the MC method, is also a
non-intrusive method. This means, assuming a suitable code structure, no adjustments
the solver itself have to be done. The MC and SC can work as wrapper function for
the original problem and evaluate statistics of the QoI after taking enough samples.
This is a big advantage compared to other available methods such as the stochastic
Galerkin (SG) method where the original code has to be altered extensively.

4.4. Smolyak Sparse grids

In the attempt to weaken the curse of dimensionality occurring in multivariate prob-
lems, sparse grids can be used to lower the computational effort required. These sparse
grids refer to a technique for integrating or interpolating a high dimensional function.
They were first introduced by Smolyak and are therefore also known as Smolyak sparse
grids.
In general the approximation of an multidimensional integral can be formulated as:

I(p)f =

∫
Γ

f(q)ρ(q)dq, (48)

with Γ as p-dimensional hypercube Γ = [0, 1]p. Assuming a quadrature rule Q(j)
li

for
the i-th integration direction, a tensor product rule can be defined by:

Q(p)
l f = (Q(1)

l1
⊗ · · · ⊗ Q(1)

lp
)

=

Rl1∑
r1=1

· · ·
Rlp∑
rp=1

f(qr11 , . . . , q
rp
p )wr1l1 . . . w

rp
lp

(49)

The overall quadrature therefore consists of several nested 1D quadratures Q(1)
l each

defined as:

Q(1)
l1

=

Rl1∑
r=1

f(qrl )w
r
l , (50)

with qrl and wrl as points and weights at level l and Rli as the corresponding number
of nodes.
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R
0 1
1 x y
2 x2 xy y2

3 x3 x2y xy2 y3

4 x4 x3y x2y2 xy3 y4

Table 2: Product of monomials up to R=4

On a full tensorized grid the number of points can be calculated as:

R =

p∏
i=1

Rli (51)

As it is required for the collocation to compute a sample for each quadrature node,
keeping the total node count as low as possible thus lowers the computational cost.
Smolyak came up with a sparse quadrature formula which lowers the total number
of nodes required. The underlying idea of his sparse grid construction can best be
explained by comparing it to the quantification of a quadrature rules accuracy. The
accuracy is usually calculated by considering products of monomials and checking,
which monomials of degree R can be integrated exactly. To specify monomials of e.g.
degree four a normal full tensor product will have 25 terms, whereas one would only
need to consider the five terms which can be seen in table 2. The full tensor product
includes terms of higher order than necessary such as e.g. x4y. Smolyak sparse grids
work similarly. Constructed grids and weights are supposed to yield the same accuracy
while using significantly less points.
To construct a sparse grid quadrature rule a difference relation is introduced as:

∆
(1)
l f = (Q(1)

l −Q
(1)
l−1)f, (52)

where Q(1)
l is a 1D quadrature rule (eq. 50). Note that Q(1)

0 ≡ 0.

∆
(1)
l f is also a quadrature formula which uses, due to the nested property of the nodes,

the same nodes as Q(1)
l . The weights of this quadrature are also simply the difference

of the weights on level l and l − 1. Since nodes are nested in a sense that nodes on
level l − 1 are a subset of the nodes on level l, negative weights are also possible.
The sparse quadrature formula at level l is then given as:

Q(p)
l f =

∑
|l′|≤l+p−1

(∆
(1)
l1
⊗ · · · ⊗∆

(1)
lp

)f, (53)

with l′ = (l1, . . . , lp) ∈ Np as multi-index where |l′| =
∑p

i=1 li.
The full tensor product on the other hand can be written as:

Q(p)
l f =

∑
max l′≤l

(∆
(1)
l1
⊗ · · · ⊗∆

(1)
lp

)f, (54)
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p Rl sparse grid nodes tensor grid nodes
2 5 13 25

9 29 81
5 5 61 3125

9 241 59049
10 5 221 9765625

9 1581 > 3× 109

50 5 5101 > 8× 1034

9 171901 > 5× 1047

100 5 20201 > 7× 1069

9 1353801 > 2× 1095

Table 3: Number of Clenshaw-Curtis nodes for the sparse and tensor grids

with max l′ = max {l1 . . . lp}. Even though differences seem small and depending the
choice of nodes the overall node count still has an exponential growth factor, it can be
seen in table 3, that the sparse grid offers a huge reduction in required nodes.

According to [12] the quadrature error satisfies:

||I(p)f −Q(p)
l f || = O(R−αlog(R)(p−1)(α+1)), (55)

with α as constant dependent on the smoothness of function f . For a very high di-
mension p the R−α term dominates and therefore the convergence rate can no longer
compete with the MC method, which has a convergence rate of R−1/2. To conclude,
the collocation method on sparse Smolyak grids is suitable low to medium dimension
p, but will suffer from the curse of dimensionality if the dimension is too high.

As mentioned earlier the node count is depending on the node type. In this work
the Clenshaw Curtis (CC) nodes are used for all sparse grids. These nodes are the
extrema of the Chebychev polynomials typically defined on the interval [−1, 1]. The
nodes can be computed by:

qrl = −cosπ(r − 1)

Rl − 1
, r = 1, . . . , Rl, (56)

with R1 = 1 and Rl = 2l−1 + 1 for l > 1.
A visualization of the sparse Smolyak grids with CC nodes can be seen in figure 7.

The different refinement levels l and dimensions p give an impression on the overall
structure of the nodes and also their nestedness. From the scatter plots it also becomes
obvious that more points are added at the central axes and the boundaries of the
domain. This leads to an exponential increase in nodes on higher levels. Alterations
of the CC nodes exist which provide a lower growth factor. See Burkardt and Webster
[2] for further reading.
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Figure 7: Visualization of different Smolyak sparse grids with nested Clenshaw Curtis
nodes
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5. Verification

In order to verify the implementations of the methods outlined in the previous modeling
section 4, the Burgers equations will be tested for each of the methods. The Burgers
equation is well suited to test the derived methods of UQ on. The obtained results are
highly dependent on the boundary condition (BC) and are sensitive even to very small
changes.
The one-dimensional Burgers equation reads:

∂u
∂t

+ u∂u
∂x

= 0, x ∈ [−1, 1]
u(−1, t) = 1
u(1, t) = −1
u(x, 0) = u0

, (57)

with velocity u and viscosity ν. The Burgers equation (57) is of the hyperbolic and
non-linear PDE type and has spatial as well as temporal derivatives. The deterministic
solutions of the equation is plotted in figure 8 for t = 0 with two different BCs at the
left boundary.
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Figure 8: Solutions of the Burgers equation (red) with small differences in the IC (blue)
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viscosity ν time step size ∆t convergence parameter ε spatial steps domain
0.05 5E-04 1E-06 46 [0, 1]

Table 4: Parameters used in the computation

Distribution Samples (MC) Collocation points SC
q ∼ U(0, 0.1) 100 10

Table 5: Stochastic parameters

In general, the solution is almost constant at each boundary, mirroring the BC, but
has shock right at the center. Position of the shock is highly sensitive to the BCs, as it
can be seen in figure 8. A small distortion in the left BC of ±1% leads to a significant
change of the shocks location. This makes the Burgers equation especially suitable to
test different UQ methods.
To test the derived methods, the original Burgers equation needs to be modified. An
uncertainty parameter δ(q) is added to the left boundary condition and the equation
now reads: 

∂u
∂t

+ u∂u
∂x

= 0, x ∈ [−1, 1]
u(−1, t) = 1 + δ(q)
u(1, t) = −1
u(x, 0) = u0

, (58)

where δ(q) is a random perturbation based on a PDF.
Despite the introduced MC and SC methods are non-intrusive and basically can handle
the deterministic equations as a black-box problem, it is worth mentioning that a 3rd
order Runge-Kutta (RK) method was used to solve the equation 58 in an iterative
manner until reaching equilibrium. All used computational parameters are listed in
table 4 and 5. The uncertainty is assumed to be uniformly distributed and within the
interval [0, 0.1] s.th. q ∼ U(0, 0.1).

The obtained results for the MC and the SC can be seen in figure 10 and 11. As
mentioned, each solution was iterated until equilibrium was reached, i.e. the difference
between two time steps was smaller than ε. For the MC method a sample size of nMC =
100 were needed in order to be comparable to results of the SC method which made
use of nSC = 10 collocation points (samples) to determine the results. Both obtained
solutions show comparable characteristics, where the variance is high in regions where
the shocks are occurring. Due to the high sensitivity w.r.t to the BC this behavior
is exactly as expected. For the MC method the variance is larger for x ∈ (0, 0.5).
This effect comes from a drawn random number close to zero for which the shock
is almost located at x = 0. Due to the deterministic Legendre nodes used in the
SC method, these point are not considered by this method. The MC sampling can
therefore show its advantage of being able to integrate arbitrary functions with e.g.
high input sensitivities like the Burgers equation.
A delta plot between the SC method with increasing sample size for the MC method
can be seen in figure 9. The sample sizes are nMC = [5, 10, 25, 50, 100], where the color
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Figure 9: ∆ between both methods with increasing nMC

intensity in the plots increases with nMC . The plots show that for the expectation as
well as the variance MC method slowly converges towards the SC methods solution
with increasing sample size.
Because runtimes vary greatly due to the sensitive dependence of the solution on the IC
/ BC, a speed comparison is not reasonable for this problem. Nevertheless, as expected
the SC method is faster in practice when achieving comparable accuracy (SC10: 525.9s
to MC100: 4190.2s).
The obtained results for the SC are identical as found in Kærgaard [6]. For the MC
sampling no such verification could be found, but the results are close to the ones
computed by the SC method and the deviations can easily be explained.
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Figure 10: Results for the MC method
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Figure 11: Results for the SC method
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6. Results

In this final section, the methods introduced in chapter 4 will be used for the problem
setting in chapter 2. The uncertainties for the wind speed, power curve and the thrust
curve will be modeled and their impact upon the AEP, the QoI, will be measured.
Runtimes for the various methods will then be compared afterwards.

6.1. Evaluation

Sadly the evaluation could only be performed for the PARK model. The eddy viscos-
ity model caused the simulations to crash and thus made it impossible to obtain any
results. Because the deterministic simulation was part of a previous work, this made it
more difficult to revise the method and ultimately the time to do it was not sufficient.
Additionally only univariate uncertainties are examined. The derived Smolyak sparse
grids therefore won’t be used in this section. Nevertheless, the sparse grid is imple-
mented and has been verified to work by integrating over the hypercube Ω = [−1, 1]d.

6.1.1. Wind speed

The uncertainty in the wind speed is supposed to be modeled as a Weibull distribution,
as this kind of asymmetric PDF is usually well suited to mimic natural wind resources.
The probability density function for this kind of distribution reads:

fA,k(x) = (
k

A
)(
x

A
)k−1exp(−(

x

A
)k), (59)

with scaling parameter A and a shape parameter k.
Data provided by large power company claims, that the standard deviation σ is between
2.2% and 8.6%. As it is unclear how these estimates were derived or measured, the
mean value of 5.4% will be considered in this work. In other publications, such as
Murcia et al. [9], lower values in the magnitude of the lower bound have been accounted.
In order to determine both parameters A and k, the value of the each measurement
point would be the mean value of the Weibull distribution. To recreate the mean and
standard deviation, an iterative solver would then be needed in order to approximate
the parameter. Based on the equations for the mean:

E(X) = AΓ(1 +
1

k
) (60)

and the variance:

var(X) = A2[Γ(1 +
2

k
)− (Γ(1 +

1

k
))2], (61)

the goal would be to minimize the error through a root-mean-squared error (RMSE)
method.
However this did not work out well as the resulting distribution mostly had a strong
asymptotic behavior at zero and also the measurement points, if proceeded like this,
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Figure 12: Wind speed: statistics for different sample sizes/orders; MC(red), SC(blue)

would open a huge multidimensional probability space. To work around this problem,
the premise of a Weibull distributed RV was dropped and a normal distribution was
assumed with N (0, 0.054). In the MC case this distribution is then uniformly applied
to the complete velocity vector, simply shifting all velocities. The obtained results for
mean and variance can be seen in figure 12. Mean and variance both converge to the
same value, even tough the SC methods needs fewer points to achieve this.

6.1.2. Power curve

The second uncertain parameter to examine is the power curve (see figure 2a). For the
power curve it is assumed, that the uncertainties are normally distributed and that
the provided data is 99% accurate, thus N (0, 0.01). The data was also given by the
industry, but is confirmed by Murcia et al. [9].
For the Park model the results can be seen in figure 13. The mean values are almost
equal, but the variance differ by a complete order of magnitude. It is unclear why, but
increasing the SC order did not improve the solution. The same Hermite polynomials
have been used as for any other normally distributed uncertainty in this section.

6.1.3. Thrust curve

The last uncertain parameter is the thrust curve. Little to no data was found to
model this uncertainty, but as the thrust curve is directly linked to the velocity deficit
(equation 7), it was modeled likewise. Again by the provided data from the industry
and the assumption of a normal distribution, it is N (0, 0.06). The plots for mean and
variance can be seen in figure 14. Here mean and variance are in the same order of
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Figure 13: Power curve: statistics for different sample sizes/orders; MC(red), SC(blue)

samples tMC [s] µSC [GWh] order tSC [s] µSC [GWh]
10 0.558 713498 2 0.198 712992
100 4.32 713051 4 0.350 712975
1000 40.947 713072 8 0.373 712960
10000 408.97 713042 16 0.715 712874

Table 6: Runtime comparison between MC and SC

magnitude and both seem to converge towards the same value.

6.2. Runtime analysis

Lastly the runtimes of both presented methods will be compared. All calculations were
executed on the same machine, featuring an x86-architecture processor with 4x4.0 GHz
and 8 available threads. Both methods scale well with the processors core count, as
evaluations of each deterministic solve can be handled separately. Table 6 lists all run-
times for different numbers of sampling points/orders for the wind speed evaluation on
the PARK model. It can clearly be determined, that for a single probability dimension,
the convergence rate of the SC method is far superior for low dimensions.

26



10 100 1000 10000 2 4 8 16

7

7.05

7.1

7.15

7.2

7.25

×10
5

(a) Expectation

10 100 1000 10000 2 4 8 16

0.85

0.9

0.95

1

1.05

1.1

1.15

×10
9

(b) Variance

Figure 14: Ct curve: statistics for different sample sizes/orders; MC(red), SC(blue)
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7. Conclusion

7.1. Summary

To sum up the thesis, two methods for quantifying uncertainties have been introduced.
Both methods have then been applied to the univariate Burgers equations and each
advantages and disadvantages have been highlighted for this suitable test case.
The Monte-Carlo method was shown to be able to capture more properties of a given
problem, but compared to the stochastic collocation having a slow convergence for small
dimensions. Vice versa, the collocation method is computationally much cheaper, but
ultimately suffers from the curse of dimensionality.
In order to also be suitable for medium to high dimensions, Smolyak sparse grid were
introduced. These sparse grids were also implemented and verified to be working
correctly, but due to problems later on, they were not tested on the WFLOP problem,
where they would have been needed.
In the end, problems with the deterministic solver and also with the implementation of
the multivariate problem, left the work unfinished and lead to a foundation for future
work.

7.2. Outlook

In a future project, fixing the eddy-viscosity wake simulation and implementing the
multivariate cases of the WFLOP problem would be the next step. Additionally,
other uncertainties, such as the surface roughness, air density and the hub height are
interesting candidates to investigate. Especially the hub height is of great interest as
it is modeled as constant, like it is only viable for onshore wind farms.
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A. Simulation code input parameters

In the following table the input parameters that are required for the simulation code
are listed.

Section Parameter Default value Description
SITE surface_roughness 0.0002

SITE turbulence_intensity 0.1

WINDDATA winddata_file winddata.csv

TURBINE turbine_parameter_source 0 0 for ini and 1 for xml

TURBINE diameter 80 if source is json

TURBINE hub_height 80 if source is json

TURBINE cut_in_speed 3 if source is json

TURBINE cut_out_speed 25 if source is json

TURBINE ct_curve 0.5 if source is json. List
with speed and Ct
values

TURBINE power_curve 0.5 if source is json. List
with speed and power
values (in MW)

TURBINE rpm_curve 0.5 if source is json. List
with speed and RPM
values

TURBINE openwind_xml_file turbine.owtg if source is xml

SIMULATION objective_function 0 0 for AEP, 1 for effi-
ciency, 2 for LCOE

SIMULATION wake_model 2 0 for no wake model,
1 for PARK, 2 for
modified PARK, 3
for eddy viscosity

PARK calculate_wake_decay false if PARK or modified
PARK

PARK wake_decay_constant 0.07 if PARK or modified
PARK and not calcu-
late wake decay

PARK openwind_intersection true if PARK or modi-
fied PARK. Intersec-
tion of wakes is calcu-
lated with the max-
imum instead of the
sum of squares, see
eq. (??)

EDDY_VISCOSITY discretization_scheme 1 if eddy viscosity. 0
for backward Euler, 1
for Crank-Nicolson

· · ·
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· · ·
Section Parameter Default value Description
EDDY_VISCOSITY solution_algorithm 1 if eddy viscosity. 0

for Gaussian elimina-
tion, 1 for Thomas al-
gorithm (tridiagonal
solver)

EDDY_VISCOSITY near_wake_filter 1 if eddy viscosity. 0
for no filter, 1 for
original filter, 2 for
linear, 3 for exponen-
tial

EDDY_VISCOSITY max_wake_length 50 if eddy viscosity. In
turbine diameters

EDDY_VISCOSITY ignore_deficit_below 0.0002 if eddy viscosity

EDDY_VISCOSITY x_stepsize 0.1 if eddy viscosity. ∆x
in D

EDDY_VISCOSITY r_stepsize 0.1 if eddy viscosity. ∆r
in D

EDDY_VISCOSITY calculate_wake_turbulence

_increase

true if eddy viscosity

EDDY_VISCOSITY rotor_quadrature_points_d 6 if eddy viscosity.
Number of quadra-
ture points Nr; must
be even

EDDY_VISCOSITY rotor_quadrature

_points_phi

6 if eddy viscosity.
Number of quadra-
ture points Nϕ

Table 7: Input parameters for the simulation code
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