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A B S T R A C T   

For the optimization of the energy consumption in buildings, a calibrated model is of paramount importance. To 
calibrate the model, initial value ranges for unknown parameters must be defined which is often done through 
manual tuning and engineering methods. These values are often inaccurate or not available, thus set arbitrarily. 
Therefore, in this paper, we examine the possibility of defining thermodynamic value ranges by clustering 
geometrical building patterns. Two issues are analyzed by the method, building pattern clustering via machine 
learning and the predictive ability of geometrical clusters. The method involves testing multiple clustering al-
gorithms on features extracted from calibrated commercial buildings. The algorithms are either executed on an 
untransformed or Box-Cox transformed feature space and then evaluated by their geometrical patterns and U- 
value ranges. For the assesment of U-value ranges, two new evaluation indices are introduced. The shared nearest 
neighbor algorithm turns out to be the most promising one for clustering geometrical data, reducing initial U- 
value ranges by 50% on average. In some applications, it might be undesirable to use the shared nearest neighbor 
algorithm, as data points are assigned as noise. For these cases a Box-Cox transformation of the data is necessary. 
Without a transformation, other algorithms were not able to determine any geometrical patterns. The method 
shows the possibility of determining unique U-value ranges by using geometrical data only. The application of 
such machine learning approaches enables saving time in determining initial value ranges and further the 
possibility of accelerating calibrations, as smaller value ranges are used.   

1. Introduction 

Approximately 40% of the European Union’s energy consumption is 
needed by commercial and residential buildings [1]. Globally, buildings 
contribute for over 30% of the CO2 emissions due to fossil driven energy 
production. A large proportion of this energy is provided for HVAC 
systems, which are used for heating, ventilation and air conditioning 
[2]. 

In order to reduce this amount, several methods gained popularity 
over the last years. One of them is the smart controlling of HVAC sys-
tems, which enables changes in real-time according to the demand. This 
is often used in conjunction with measuring devices, which record 
important data like the temperature or humidity consistently. That 
conjunction offers a huge potential in terms of energy reduction. One of 
the main challenges is, that in order to use such devices effectively, 
accurate impact predictions of changes in the HVAC system have to be 
performed before applying them to real buildings: 

The data-driven and machine learning black box approach uses only 
the measured data of the building, while in contrast to this, the white box 
approach uses only the physical data of the building. The grey box 
approach is a combination of both. For the grey and white box approach, 
a virtual model of the building has to be defined, which is then used for 
control predictions. More accurate virtual models result in better pre-
dictions and therefore a minimization in energy loss. The accuracy of the 
model can be optimized via the calibration of several uncertain pa-
rameters, which describe thermodynamic properties of the building. In 
general, these parameters are inaccurate or at worst not known. To 
accelerate the calibration process and therefore also the accuracy of 
these models, the determination of relevant value ranges for these un-
certain parameters is needed [3]. 

1.1. Related work 

Altogether, we regard two related problems: the clustering of 
buildings and the value range definition which especially focuses on 
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ranges for the initialization of the calibration. 

1.1.1. Building clustering 
So far building clustering was performed in a huge variety with 

different purposes. Gangolells et al. [4] presented a method to identify a 
set of representative buildings of an entire stock by clustering. They 
applied the k-Means algorithm to an energy performance certificate 
database. Seven representative office blocks in industrial buildings and 
nine representative offices in residential buildings have been identified. 
Nikolaou et al. [5] propose a method for clustering heating and cooling 
energy demand and the PMV index based on modelled buildings. They 
use hierarchical clustering, k-Means, Gaussian mixtures, Fuzzy C-Means 
and Neural SOM clustering as clustering algorithms. The validation is 
performed with the Silhouette, Davies-Bouldin, and Dunn index. An 
analysis was performed to determine properties that define a cluster of 
buildings. Filogamo et al. [6] propose a method to identify representa-
tive buildings of large building stocks in terms of energy consumption. 
They use static parameters like geometrical, thermal-physical charac-
teristics based on the construction period, heating/cooling system type 
and the climate zone of the building in order to identify the sample 
buildings. They identified samples as ‘virtual’ buildings, which means, 
they don’t exist in the real world but are just the averages of each class. 
Satre-Meloy et al. [7] used a cluster method to capture temporal vari-
ation patterns in electricity consumption. After that, they used classifi-
cation models to predict the cluster membership. They used random 
forests and logistic regression for the classification. The results show, 
that one of the most influences on system-wide peaks are people that 
have earlier cooking and meal times. Hecht et al. [8] classified building 
footprints based on their building type. They pre-processed the data 
using a PCA reduction to highly correlated features and classified the 
data afterwards. 16 different machine learning classifiers were used, 
achieving accuracies of 76–95%, depending on the database type of the 
building footprints. Tardioli et al. [9] proposed a method for predictive 
classification. They classified buildings based on a variety of properties, 
such as geo-references, urban infrastructure, territory information, 

building topology, and geometric information. After an initial classifi-
cation, the data was normalized by several different methods as scaling, 
centring, z-score, PCA, and Box-Cox. Then, a clustering based on 
k-Means, Agglomerative, Partitioning around metroids, and Divisive 
clustering was performed. Lastly, the results were evaluated on a 
normalized index composed of seven clustering validation indices. 

1.1.2. Value range definition 
In the literature multiple ways were proposed to obtain ranges for the 

initialization of the calibration. Zuhaib et al. [10] collected data of an 
education building from building audits, construction specifications, 
technical surveys, and local weather stations. The minimum and 
maximum values of the composed data set were then used to define the 
initial value range for the energy building model. Similarly, Chong et al. 
[11] defined the initial parameter ranges based on the minimum and 
maximum of measured data, as-built drawings, and specifications. For 
the cases where just little prior knowledge on the buildings in scope was 
available, the ranges had to be defined in other ways. Kristensen et al. 
[12] and Chong and Menberg [13] defined expected values for uncertain 
parameters based on prior beliefs. These guesses were then used as the 
mean of a data distribution which defined the ranges. Other studies [3, 
14,15] use reference buildings, building norms or previous research 
articles to define the uncertain value ranges. 

1.2. Our contribution 

There exists a research gap for clustering of buildings. So far, it was 
rarely performed on large, high resolution data sets of real buildings. 
Accordingly, clustering performances and distributions were rarely, if at 
all, compared on a high scale of real building data, especially already 
calibrated one. The possibility of automatically predicting value ranges 
based historical data and machine learning on large data sets also lack 
analysis. The objective of this paper is a case study on a large data set of 
existing real world buildings to determine and learn patterns in the 
geometrical properties of clusters. Moreover, the possibility of predict-
ing initial value ranges for calibration is analyzed using the geometrical 
building clusters. Although semi-supervised learning sounds like a 
powerful approach, we had the task to identify a strategy that aims to 
produce accurate result without referring to the thermodynamic know- 
how or engineering experience. Our goal was to investigate the unsu-
pervised solution to avoid the partial selection of labels in the semi su-
pervised learning approach. 

1.3. Outline 

A structural overview of the proceeding work is given in the 
following. First, in Section 2, the theoretical background for the pro-
posed method is given. Therefore, the pre-processing methods, AI and 
clustering algorithms, and validation indices are explained. In Section 3, 
the data and the different input features are presented. The method is 
explained that was used to cluster the building data and analyze the 
possibility of thermodynamical value range prediction. Afterwards, in 
Section 4, the results are presented. The impact of different pre- 
processing methods and input data are compared and an evaluation of 
the validation indices is performed. Moreover, the different cluster 
outcomes are compared by their thermodynamical value ranges and the 
most promising cluster is examined further. Finally, in Section 5 a 
conclusion is presented and approaches for future work are given. 

2. Theoretical background 

In this section, the theoretical foundation required for the applied 
method is built. Preprocessing methods, clustering algorithms, and 
validation indices used are described. 

Let 

List of acronyms and abbreviations 

Algorithms 
PCA Principle component analysis 
DBSCAN Density based spatial clustering of applications with 

noise 
SNN Shared nearest neighbor algorithm 
GMS Mean shift algorithm with gaussian kernel 
FMS Mean shift algorithm with flat kernel 

Parameter ratios 
FTZV Floor area to zone volume ratio 
WWR Window to wall ratio 
RTFR Roof to floor ratio 
VRTFR Virtual roof to floor ratio 
GRTFR Glass roof to floor ratio 
IWTFR Inner wall to floor ratio 
SF Shape factor 

Approach based metrics 
DB Davies-Bouldin measure 
CH Calinski-Harabasz measure 
SSC Silhouette measure 

Application based metrics 
MRCS Mean range cluster score 
RPS Range percentage score 
MSSE Mean sum of squared error  
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X = {xi | i∈ [0, k − 1]} (1)  

be the set of data points to be clustered, let 

C = {c0, c1,…, cn− 1} (2)  

be the set of clusters and cj be the centroid of cluster cj. 

2.1. U-value definition 

In practice when a new building should be optimized, only the 
geometrical data are available. In order to make predictions and work 
with the building, the thermodynamical properties are needed. This can 
be, for example, the U-Value of a window, which describes the thermal 
transmittance, i.e. how much heat is transferred through the window. 
The U-Value is a property of a material, its units are (W/m2 K). This 
implies, if a divider material had a U-Value of 1 W/m2 K, for each level of 
temperature distinction between within and outside surface, 1 Watt of 
warmth vitality would course through each meter squared of its surface. 

2.2. Preprocessing methods 

The Box-Cox transformation and Principle component analysis are 
presented in the following. They not only scale the data but also change 
relationships between data points. 

2.2.1. Box-Cox transformation 
The Box-Cox transformation is a function, that is applied to the data, 

and is defined by a power parameter α. The aim is to transform the given 
data as close as possible to a normal distribution. It is defined as: 

y(λ)t =
yλ

t − 1
λ

, λ ∕= 0,

y(λ)t = ln(yt), λ = 0.

(3) 

Due to the strict positivity of input values, in this work, a constant 
with amount one is added to all data points before the transformation. 
The power parameter α is estimated using a maximum log likelihood 
estimation [16,17]. 

2.2.2. Principle component analysis (PCA) 
PCA is a form of dimensionality reduction. It is used to reduce a high 

dimensional feature space into a lower dimension. In PCA, data from a 
high dimension n is projected onto a hyperplane which can be repre-
sented in n − 1 dimensions. This hyperplane is chosen in a way that it 
retains the most variance along the input space. An example shown in 

Fig. 1 describes the idea for a 2-dimensional example projection on a 1- 
dimensional hyperplane. 

X1 shows the original data and Z1 the preserved variance on the 1 
d hyperplane, with hyperplane c1 preserving the most variance. This 
works similar in higher dimensions and can be used to reduce the 
dimensionality arbitrarily. For further details please refer to Wold et al. 
[19]. 

2.3. Clustering algorithms 

In the following section the clustering algorithms used in order to 
cluster the geometrical data are presented. To have a variety of differ-
ently working algorithms is important as they define the way a cluster is 
defined.  

● The k-Means algorithm works with centroids. In the beginning of the 
algorithm, the cluster centroids are randomly assigned. Thereby the 
number of centroids k has to be assigned manually. After initializing 
the centroids, all points get assigned to the nearest cluster centroid. 
After that the centroid gets updated. This process is repeated, until 
the position of the centroids doesn’t change anymore [18].  

● The agglomerative clustering algorithm is formed hierarchically. 
Initially, each point starts in its own cluster. In every step, two 
clusters are merged according to a metric [20].  

● The DBSCAN algorithm is a density based clustering algorithm. The 
number of clusters has not to be chosen beforehand. The algorithm 
works as follows: A point is defined as a core point, if more than a 
certain number of points min_samples are within a certain range 
epsilon = eps of distance to that core point; The distance can hereby 
be any metric. If a point is within a neighborhood of a core point, it 
belongs to the same cluster, that also holds for other core points. In 
that way, high dense regions are located. An instance that is not a 
core point or is within the range of a core point is considered noise 
[18].  

● The Shared nearest neighbor (SNN) algorithm is an extension of the 
DBSCAN algorithm and tries to improve the inability of DBSCAN to 
assign cluster to regions of different density. First, a similarity graph 
of the data is constructed. For each data point a vertex is created in 
this graph. Two vertices in the graph get connected only if the two 
vertices are contained in each others closest k neighbor list. After 
that, the strength of each edge is computed. It refers to the shared 
neighbors in the neighbor list. If the neighbors of a vertex are not 
contained in the comparing vertex neighbor list, the vertices are not 
equal. If they have many neighbors in common, they are more equal. 
If this strength falls below a certain threshold, the edge is removed. 

Fig. 1. Example for a dimensionality reduction with a Principle Component Analysis. Two dimensional data is reduced to one dimension, retaining as much variance 
as possible. In this example, the c1 hyperplane of X1 retains the most variance [18]. 
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The connected components in the so formed graph are the assigned 
clusters. Vertices that are not connected, are denoted noise [21,22].  

● Mean shift is a hill climbing algorithm that assigns clusters by shifting 
data points in each step towards high dense regions. Frequently used 
distance kernels are the Gaussian and Flat kernel. 

The Flat kernel is defined as 

F(v) =
{

1, if  ‖v‖ ≤ r
0, if  ‖v‖ > r (4)  

and the unit Gaussian kernel as 

G(v) = e
− ‖v‖2

2⋅r2 , (5)  

where v is the regarded distance vector. In the following, the Mean shift 
algorithm with a Gaussian kernel is called GMS and with a Flat kernel 
FMS. In each step of the algorithm, the data points are shifted based on a 
proportion of the weighed summed distance vectors. These steps are 
repeated until convergence of all data points. A cluster consists of all 
data points that converge to the same point [23]. 

2.4. Clustering validation indices 

The following indices represent a mathematical description of what a 
good clustering should look like. The calculations are taken from Van 
Craenendonck and Blockeel [24], which can also be referred to for 
further information.  

● The Davies-Bouldin (DB) measure defines compactness based on the 
distance of each data point to the centroid of its cluster and sepa-
ration on the distances of the cluster centroids: 

S(ck) =
1
|ck|

⋅
∑

xi∈ck

d(xi, ck), (6)  

DB(C) =
1
|C|

∑

ck∈C
max
cl∈C\ck

(
S(ck) + S(cl)

d(ck, cl)

)

. (7)   

● The Calinski-Harabasz (CH) defines compactness based on the dis-
tance of each data point to the centroid of its cluster and separation 
on the distances of the cluster centroids to the data centroid X, 

CH(C) =
(N − |C|)⋅

∑
ck∈C|ck|d

(
ck,X

)

(|C| − 1)⋅
∑

ck∈C
∑

xi∈ck
d(xi, ck)

. (8)    

● The Silhouette measure (SSC) defines compactness based on the 
pairwise distances of data points in the cluster and separation based 
on the distances between all points in the cluster to all points in the 
nearest cluster. 

s(xi) =
b(xi) − a

(
xi, cj

)

max
(
b(xi), a

(
xi, cj

)) (9)  

SI(C) =
1
N
∑N

i=1
s(xi) (10)  

a(xi, cj) is the average distance of xi to all other points in its cluster cj and 
b(xi) the minimum of average distances of xi to the nearest cluster which 
is not cj. 

3. Method 

Requirements for the applied method and the method itself are 
presented in this section. First, the data preprocessing steps are 
described, such as the different value calculations. Then, the metrics 
used for the evaluation are defined followed by an explanation of the 
applied method. 

3.1. Data description 

The dataset consists of 1027 sections from 75 commercial buildings. 
Sections are unique parts of a building, calibrated independently, and 
described by over 800 possible features. 

Only a selection of these features can be used to perform the actual 
value prediction as, considering the data set size, the noise would 
dominate possible relationships. Moreover, similarities could be lost due 
to how buildings are modelled in the dataset. Each parameter f can be 
described trough f = {f1, …, fn}, as some parameters have more than one 
instance, such as ’“Wall_1”, “Wall_2”, …, “Wall_n”. An instances is 
described by various values, for example the width, height, and U-value. 

3.1.1. Surface calculation 
The calculation of the surfaces and adjusted U-values is described 

through the following equations: 

fAacc =
∑

fi∈f
width(fi)⋅height(fi),

[
m2] (11)  

fUacc =
∑

fi∈f

U(fi)⋅width(fi)⋅height(fi)

fAacc

.

[
W

m2⋅K

]

(12) 

The surfaces of all geometrical components are computed to over-
come several problems. The modelling of the sections is not consistent 
trough the dataset. Moreover, calculating surfaces reduces dimension-
ality considerably, resulting in 25 surface values describing one section. 

As an example, let S1 and S2 be two sections with equal windows W1, 
W2, W3. The windows themselves are modelled through width, height, 
orientation and 12 other parameters. That already gives a feature space 
of 45 features, describing only the windows of the sections. Calculating 
and using only the surface reduces variance explained through the 
variables, also the dimensionality with only one remaining feature, the 
window surface. Despite that, the modelling differences are reduced 
through the calculation. Consider the modelling of windows of section 
S1 = {W1s1

: W1, W2s1
: W2, W3s1

: W3} and S2 = {W1s2
: W2, W2s2

: W1,

W3s2
: W3}. As instances of the same feature are compared, with such a 

modelling, the sections windows would not be equal. The overall surface 
is independent from such modelling differences, thus still equal. 

3.1.2. Ratio calculation 
All models in the dataset were modelled as having a rectangular 

prism form. In the following the calculation of the ratios, based on the 
surfaces of the geometrical components, is presented.  

● The floor area to zone volume ratio (FTZV) describes the relationship 
between the overall floor area and the volume of the zone, 

FTZV =
Base_Floor + Floor + Virtual_Floor + Projected_Floor

Zone_Volume
. (13) 

It is meant to differentiate between sections that have a different 
amount of stories. If a section has multiple stories, the FTZV will be 
higher than by a similar section with just one story. Similar hereby refers 
to the shape.  

● The window to wall ratio (WWR) is used to define the proportion of 
glazed surfaces compared to envelope surfaces, 
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WWR =
Window + Box_Window + Double_Facade

Base_Wall + Wall
. (14) 

Thereby only asymmetric values are considered important for the 
computation, because they have more influence on the calibration [25].  

● The roof to floor ratio (RTFR) describes the relationship between the 
roof and the floor area, 

RTFR =
Roof _Area
Floor_Area

. (15) 

Roof hereby means only asymmetric ceilings that are not made of 
glass. In this calculation, the floor area is the ground shape of the sec-
tion, not the overall floor area. This value is therefor calculated from the 
zone volume and the zone height, which is possible due to the prism like 
shape of the sections.  

● The virtual roof to floor ratio (VRTFR) is the proportion between the 
virtual roof and the floor area, 

VRTFR =
Virtual_Zone_Ceiling + Gallery

Floor_Area
. (16) 

Sections that have a virtual ceiling are located inside the building 
and normally have no roof. Sometimes the virtual ceiling is also 
described through a gallery, if an HVAC component is placed inside it, 
like a heater mat.  

● The glass roof to floor ratio (GRTFR) describes the ratio of Glass roof 
to the floor area, 

GRTFR =
Section_Glass_Roof

Floor_Area
. (17) 

It is important to differentiate between sections that have a glass roof 
and sections that don’t. Environmental impacts, like rain, sun and wind 
can have significantly more impact on a glass roof than on a normal roof.  

● The inner wall area to floor ratio (IWTFR) describes the ratio of all 
inner walls to the ground surface of the floor, 

IWTFR =
Partition_Wall + Inner_Wall

Floor_Area
. (18) 

This value is used to describe the inner thermal mass of a section. If a 
section has a high IWTFR it is able to maintain a given initial temper-
ature for a longer time compared to a section that has a low value.  

● The shape factor (SF) considers the shape of the building, 

SF =
Envelop_wall_surfaces + 2⋅Floor_Area

Zone_Volume

[
1
m

]

(19) 

Buildings with the same volume that differ in the shape, will have 
similar values. Fig. 2 shows an example; Buildings B and D have 
completely different shapes but the same shape factor. 

3.2. Value range evaluation 

The metrics used for the range evaluation are called application 
based metrics and are calculated based on the U-value feature space of 
the clustering outcome. In the following section, two methods for this 
evaluation are presented. The Mean range score focuses on differences in 
ranges between clusters whereas the Range percentage score evaluates 
the overall improvement of ranges. Data points that were assigned as 
noise by the clustering algorithm are not considered for evaluation of the 
metrics. 

3.2.1. Mean range cluster score (MRCS) 
This metric describes the intersection between ranges of U-values 

from different clusters and a good score means that there is little over-
lapping. The aim is to check whether different clusters have different 
ranges, which would indicate that clustering benefits range definition. 
The score consists of 2 parts, the first part s1 calculates the overlapping 
of the clusters and the second part s2 the cluster structure itself. 

The calculation for the joined score is: 

s = s1 + s2. (20) 

The calculation of s1 is the following: 

x =
∑

f∈FU

∑

(Ci ,Cj)∈C,i∕=j

intersect([Q0.05(f (Ci)); Q0.95(f (Ci))],

[
Q0.05

(
f
(
Cj
))
; Q0.95

(
f
(
Cj
))])

(21)  

Fig. 2. Motivation for the Shape factor, which is the thermal envelope divided by the volume of the section. Buildings B and D show very different shapes but have 
the same shape factor [26]. 
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s1 =
1

|FU |
⋅

1
⃒
⃒
{(

Ci,Cj
)
∈ C, i ∕= j

}⃒
⃒
⋅x (22)  

with Q0.05 as the 5% percentile, respectively for 0.95 the 95%; f(Ci) the 
value list of feature f for cluster Ci; FU the U-value features of all surfaces; 
and intersect the area of intersection in percent between two ranges, 
calculated as the percentage of the smaller range. 

The first part of the metric, s1, describes how unique the thermody-
namical value ranges are. Therefore, the average intersection between 
all cluster ranges is calculated. The intersection, in this context, is the 
percentage of the area of intersect regarding the smaller range. The 
percentiles of the ranges are considered to remove potential outliers. 

It is possible that a feature is not represented in a cluster, then the 
thermodynamical value range is [0,0]. In such cases, these intersections 
are excluded from the calculation of the score. 

The value of s1 is between 0 and 1; the score of a clustering with very 
similar U-value ranges will be close to 1. Fig. 3 shows a case in which U- 
value ranges of clusters overlap. 

In the example two ranges are presented: R1: [1,5] and R2: [4,6]. The 
overlapping is 1, which is 50% of the blue range R2 and 25% of the red 
range R1. The metric should describe the uniqueness of ranges, so the 
percentage of the smaller range R2 is used. 

The calculation of s2 from (20) is the following: 

min = 0, 02⋅|X|, (23)  

max = 0, 1⋅|X|, (24)  

s2 =
∑|S|− 1

i=0

|Ci|

|X|
⋅f (|Ci|)

2
, (25)  

f (|Ci|) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min − (|Ci| − 1)
min

if  |Ci| < min ,

|Ci| − max
|X| − max

if  |Ci| > max ,

0 else 

(26)  

s2 evaluates the distribution of data points within a clustering. The 
boundaries min and max describe the desired range in which the average 
amount of data points for a cluster should be. The function f(|Ci|) pe-
nalizes clusters that hurt these boundaries. The farer the assigned 
amount of data points is from the predefined range, the worse the score 
gets. Squaring f(|Ci|) results in soft penalization close to the boundaries. 
The value of s2 is between 0 and 1; 0 meaning all clusters are within the 
boundaries. 

Let C = {C1, C2, C3} be a clustering with |C1| = 1000, |C2| = 13 and | 
C3| = 14. s1 can be very low for that clustering, as C2 and C3 could 
describe unique parameters that do not occur in C1. However, such a 
clustering would not be desired for an initialization because new 
buildings are likely to get assigned to |C1|. Little benefit would then be 
obtained from clustering the data. 

3.2.2. Range percentage score (RPS) 
The range percentage score describes the improvement of the clus-

tered ranges compared to the initial ranges in percent. 

∑

cj∈C

⃒
⃒cj

⃒
⃒

|X|
⋅

1
|T|

⋅
∑

ti∈T

max
{

xti
k

⃒
⃒ xk ∈ cj

}
− min

{
xti

k | xk ∈ cj
}

max{xti
k | xk ∈ X} − min{xti

k | xk ∈ X}
(27) 

The metric uses the average improvement over all clusters and 
thermodynamical values. The probability for a new section to get 
assigned to a big cluster is much higher than to get assigned to a small 
cluster. Therefore, smaller clusters have less impact compared to bigger 
clusters, as they would account for fewer range changes considering new 
clustered sections. Data points assigned as noise are considered for the 
initial ranges, but do not account for a cluster in the computation. T is 
the set of thermodynamical features, and xti

i for tj ∈ T describes the 
feature value tj of xi. 

3.2.3. Mean sum of squared errors (MSSE) 
The MSSE describes the average distance between data points and 

the centroid of their assigned cluster. It is calculated as 

MSSE =
1
|X|

⋅
∑

ci∈C

∑

xi∈ci

(xi − ci)
2 (28)  

3.3. Cluster models 

Fig. 4 shows the structure of the applied method, In order to cluster 
the geometrical data and analyze the possibility of predictive clustering. 

The input data first undergoes a basic Data cleaning procedure. 
Erroneous sections, such as dummy sections, are removed and wrong 
values in the dataset replaced. Then, the surfaces and ratios are calcu-
lated and all other features removed. After that, three different ap-
proaches are evaluated. 

3.3.1. Approaches for clustering 
The approaches differ in the feature space used for clustering. 

Approach 1 uses the calculated surfaces, with 25 features, for the sub-
sequent procedure. For Approach 2 the ratios are considered, with 7 
features. Approach 3 is a combination of both ratios and surfaces, 
resulting in 32 features. Each approach then proceeds either without 
transforming the data, or applying a Box-Cox transformation. 

3.3.2. Box-Cox transformation 
The majority of data distributions in the clustering dataset is right 

skewed, as often in real world data. There are many small values and 
only a few very big ones. Fig. 5 shows an example for the distribution of 
the window to wall ratio. 

The issue occurring with such distributions, regarding clustering, is 
that distances vary over a broad range such that differences between 
sections with small values are neglected compared to big ones. The 
following figure illustrates the underlying problem for the window to 
wall ratio: 

The window to wall ratio of section S1 is 0, meaning it has no window 
surfaces. Compared to that, section S2 has an equal amount of windows 
and walls. On the same scale, section S3 and S4 are more different than S1 
and S2, but thats not an accurate representation of the reality. S3 and S4 
both have significantly more windows than walls, which to a certain 
extend makes little difference. Compared to the difference of S1 and S2 
their logical difference is almost negligible, but due to the skewness, 
they are less similar. The same holds not only for ratios but also surfaces 
with a similar explanation. Small sections have smaller surfaces, there-
fore differences between big sections are emphasized as the outweigh 
smaller differences. 

The Box-Cox transformation, as a power transformation, is applied to 
overcome this problem of skewness. The benefit to single 

Fig. 3. Comparison of the intersection of two value ranges, marked in blue and red. The intersection, whose area is yellow, is 50%. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Overview over the applied method.  

Fig. 5. Both plots show representative distributions of a parameter with the frequency on the y-axis and the corresponding value range on the x-axis. The window to 
wall ratio as well as the wall surfaces show a very right skewed distribution. 
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transformations, e.g. log-transforming, is, that it represents a broad 
range of possible transformers. The transformation is applied to each 
feature distinctly and the power parameter is estimated through a 
maximum likelihood estimation [17,27]. 

3.3.3. MinMax scaler 
All features within an approach have different ranges of values. The 

surfaces and ratios of Approach 3, for example, all differ in their mini-
mum and maximum value. In a clustering, especially with euclidean 
distance function, features are favored, whose ranges are smaller. The 
euclidean distance between two ratios, whose values normally are 
within [0, 6] is much smaller compared to the distance between two 
windows, ranging from 0 up to 1000. The data is, therefore, scaled to a 
(0, 1) range using a MinMax scaler to give every feature an equal weight 
for the clustering. 

3.3.4. Clustering algorithms 
The data is clustered using DBSCAN, Agglomerative, KMeans, Mean 

shift and shared nearest neighbor. The optimal amount of epsilon for 
DBSCAN is estimated trough a display of the knee plot [28,29]. The 
amount of clusters for KMeans is also determined trough a visual pro-
cedure, the elbow method, with the distortion score [30]. The same 
amount of cluster that is used for KMeans is also used for the 

agglomerative clustering. All other parameters are defined by testing. 

3.3.5. Evaluation 
There are two types of metrics to evaluate the clustering varying in 

the used evaluation feature space. The approach based metrics evaluate 
the geometrical similarity of a cluster by using the input data used for 
clustering. The application based metrics evaluate the clustering with 
the given aim of defining unique thermodynamical ranges. Therefore 
differences in the thermodynamical values of each cluster are evaluated. 
Finally, a comparison of all approaches and methods is performed. Re-
sults of transformation, geometrical clustering and thermodynamical 
range definition are evaluated. Moreover, a reference test is used, which 
traverses through the presented method using the U-values. It represents 
the optimum, concerning thermodynamical range definition. 

4. Case study 

In this section the results (see Table 1) of the case study for the 
applied method are presented. First, the impact of the Box-Cox trans-
formation is investigated followed by an evaluation of the clustering 
algorithms based on the approach based metrics. Then, the relationship 
between the geometrical clusters and U-value ranges are investigated by 
the application based metrics. 

Table 1 
Results of the executed method. The approach based metrics CH, DB, SSC can only be compared within an approach and transformation. The application based metrics 
MSSE, MRCS, RPS should be compared between all approaches. The average score AS explains an average ranking of the application based metrics. For SSC and CH 
higher scores are desired, lower scores otherwise.  

Approach Transformation Algorithm Approach based metrics Application based metrics AS 

CH DB SSC MSSE MRCS RPS 

Approach 1 BoxCoxTransforming SNN 157.56 1.56 0.2 4.6 0.91 0.61 0.73 
MeanShiftGauss 84.78 0.69 0.37 5.18 1.05 0.7 0.89 
Agglomerative 305.19 1.14 0.39 5.13 0.97 0.74 0.86 
MeanShiftFlat 76.55 0.79 0.37 5.2 1.13 0.71 0.93 
DBSCAN 143.21 1.6 0.3 2.94 0.96 0.75 0.71 
k-Means 334.59 1.16 0.34 5.21 0.92 0.65 0.8 

None SNN 40.69 1.85 0.02 3.02 0.89 0.45 0.54 
MeanShiftGauss 34.86 0.15 0.75 6.0 1.07 0.71 0.96 
Agglomerative 315.23 0.91 0.62 5.95 1.21 0.66 1.0 
MeanShiftFlat 158.35 0.53 0.57 5.7 1.0 0.64 0.87 
DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0 0.72 
k-Means 326.47 0.88 0.62 5.96 1.21 0.66 1.0 

Approach 2 BoxCoxTransforming SNN 77.5 1.66 0.07 3.58 0.87 0.52 0.6 
MeanShiftGauss 99.47 0.72 0.31 5.47 1.23 0.55 0.92 
Agglomerative 249.7 1.44 0.22 5.45 0.97 0.54 0.79 
MeanShiftFlat 88.9 0.78 0.28 5.42 1.19 0.55 0.9 
DBSCAN 45.77 2.85 0.15 4.85 1.2 0.75 0.96 
k-Means 290.73 1.28 0.26 5.44 0.92 0.49 0.74 

None SNN 56.38 1.66 0.06 3.99 0.93 0.49 0.64 
MeanShiftGauss 123.23 0.23 0.74 6.01 1.15 0.7 1.0 
Agglomerative 407.8 0.64 0.42 5.8 1.25 0.58 0.97 
MeanShiftFlat 253.19 0.41 0.5 5.74 1.15 0.62 0.94 
DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0 0.72 
k-Means 453.97 0.57 0.49 5.78 1.27 0.6 0.99 

Approach 3 BoxCoxTransforming SNN 92.69 1.68 0.17 4.43 0.9 0.62 0.72 
MeanShiftGauss 38.57 0.72 0.21 5.03 1.04 0.6 0.83 
Agglomerative 205.62 1.35 0.26 5.19 0.97 0.7 0.85 
MeanShiftFlat 48.57 1.01 0.17 5.09 1.12 0.69 0.91 
DBSCAN 88.05 1.63 0.12 1.97 0.83 0.65 0.53 
k-Means 220.4 1.3 0.31 5.07 0.94 0.69 0.82 

None SNN 52.32 2.05 − 0.09 3.74 0.91 0.46 0.6 
MeanShiftGauss 28.99 0.17 0.66 5.96 1.01 0.7 0.92 
Agglomerative 198.24 0.9 0.5 5.9 1.21 0.66 1.0 
MeanShiftFlat 89.66 0.55 0.44 5.66 1.02 0.62 0.87 
DBSCAN 1.0 1.0 1.0 1.0 1.0 1.0 0.72 
k-Means 212.44 0.93 0.37 5.88 1.22 0.62 0.98 

Reference None SNN 165.21 1.63 0.25 0.74 0.6 0.18 0.11 
MeanShiftGauss 102.89 0.38 0.38 0.65 0.8 0.19 0.2 
Agglomerative 387.66 1.21 0.36 2.06 0.68 0.33 0.31 
MeanShiftFlat 103.43 0.69 0.32 1.15 0.83 0.27 0.29 
DBSCAN 123.71 1.48 0.23 0.17 0.48 0.17 0.0 
k-Means 431.3 1.2 0.34 1.91 0.65 0.3 0.27  
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4.1. Comparison between different clustering and preprocessing methods 

The application of different transformation methods has a significant 
impact on the outcome of the clustering. The results without applying a 
transformation are analyzed first, followed by applying a Box-Cox 
transformation. 

4.1.1. No transformation 
Without the transformation, the sections are scattered unpropor-

tionally over a large range; one dense region with many very close data 
points and widely spread data points otherwise. Fig. 6 illustrates this 
exemplary for all non-transformed approaches. 

Two main reasons causing the distribution can be outlined:  

1. The inconstant occurrence of features for sections. Some features are 
more likely to occur in a section than others; all sections have walls 
but only a small percentage have a glass roof. The distances of sec-
tions that do not have a feature to sections that do have is, naturally, 
bigger compared to two sections that both have this feature.  

2. The most often right skewed parameter distribution over the dataset. 
The majority of the features, if they occur, have a small value. 
Considering that the distance is measured with the L2 norm, the 
distance between two small sections, despite real differences, is 
considerably smaller than the distance between two big sections. 

This distribution itself is just a representation of the data set. How-
ever, a problem can occur when using common clustering methods. 
When applying DBSCAN, MSG, or MSF, the result is, for all non- 
transformed approaches, one very dense cluster with the majority of 
data points and small clusters otherwise. These algorithms are designed 
to find dense regions in a feature space, presumed dense regions are 
defined similarly in the sense of the metric they use. All of the three 
algorithms have a constant parameter, the epsilon is constant in 
DBSCAN and the Mean shift algorithm has a constant bandwidth. These 
constant parameters make it impossible to cluster such skewed feature 
distributions. Varying the parameters has little impact on the outcome; 
decreasing it results in countless clusters of only one data point and an 
increase in only one cluster. 

k-Means and Agglomerative determine more evenly distributed 
clusters, but still one cluster containing the majority of the data points 
(70%). k-Means uses centroids for assigning data points to clusters, the 
average distance of data points to their centroid is minimized. In the 
recomputation of a centroid, sections with unique features or a consid-
erably big size have a significant impact. Such sections account for a 
greater distance to the assigned centroid, weighing more in the recom-
putation. Smaller, more similar sections account for less variance and 
weigh less in a recomputation of a centroid, leading to assigning more to 
only one cluster. This is similar for Agglomerative clustering, which uses 
pairwise distances to centroids. Small sections are more similar 
compared to big sections, thus more likely to get merged in the clus-
tering process. 

Only the shared nearest neighbor algorithm is designed to determine 
clusters of different densities, as it considers the number of joined 
nearest neighbors of a data point. It determines, different to the pre-
ceding algorithms, clusters of a more similar size. However, SNN assigns 
similar distributed, but also many clusters. The clusters contain between 
5 and 10% of the data points, with 20–25 clusters. 

4.1.2. Box-Cox transformation 
Applying the Box-Cox transformation has a considerable impact on 

the distribution of the feature spaces. All algorithms, despite from SNN, 
benefit from the transformation in means of a more even clustering 
distribution. But also, as discussed later, in the application based met-
rics. The initially very skewed distribution is unskewed by the trans-
formation to a more comparable scale. Fig. 7 shows the impact of the 
transformation on an example distribution. 

As discussed in the preceding chapter, the right skewed distribution 
leads to an skewed distributed feature space and uneven cluster distri-
butions. The transformation leads to a more similar scale, which benefits 
the algorithms. Table 2 shows an example result of the Box-Cox trans-
formation applied to wall surfaces. Before the transformation, the dis-
tances between S1 and S2, D(f1(S1), f1(S2)) = 10.61, were only 10% 
compared to the distance between S3 and S4, D(f1(S3), f1(S4)) = 101.79. 
After the transformation, the distances are on an equal scale and com-
parable. The high distance between sections S1, S2 and S3, S4 remains. 

Fig. 6. Feature space distribution of Approach 3, without a transformation. The colors of the data points refer to the assigned cluster by the DBSCAN algorithm. The 
feature spaces’ dimensionality is reduced using a PCA reduction, the remaining variances are [38.2%, 16.9%, 10.1%]. Data points with the label − 1 are considered as 
noise by the algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4.2. Evaluation of geometrical clusters using clustering validation indices 

A comparison between the approach based metrics can only be 
performed within one feature space. For example, the results of 
Approach 1 with a Box-Cox transformation can not be compared to the 
results of Approach 1 without a transformation. This is due to the 
computation of the metrics, for further information on the computation 
please refer to Van Craenendonck and Blockeel [24]. Therefore, in this 
chapter, the average performance of an algorithm in the different 
feature spaces is evaluated. 

4.2.1. Differences in algorithms 
DBSCAN and SNN account for the worst scores in all approaches and 

approach based metrics. This is the reason for the approach based 
metrics being hardly able to evaluate distributions other than spherical 
[24]. 

The Mean Shift algorithm, with both kernels, is among the worst 
Calinski-Harabasz scores in all feature spaces. In the three non- 
transformed approaches, the algorithm assigns, due to the constant 
bandwidth, one cluster with 98% of the data points and single point 
clusters otherwise. As the centroid of the main cluster is almost equal to 
the data centroid, the Calinski-Harabasz score is low. 

The behavior of the algorithm does not change in the Box-Cox 
transformed versions of the approaches, a small number of very big 
cluster and smaller clusters otherwise are determined. However, this 
behavior benefits the Davies Bouldin score. Mean shift assigns close 
dense regions into one cluster, which reduces scaterdness between 
nearest clusters; scattered near clusters are merged into one. Thus, the 
Davies-Bouldin score improves. The Silhouette score also benefits from 

the reduced scaterdness, but mostly in the non-transformed approaches; 
more single point clusters get assigned and one big dense cluster, 
defining a clear cluster belonging. 

Compared to that, k-Means and Agglomerative achieve the overall 
best Calinski-Harabasz scores but low Davies-Bouldin and Silhoutte 
scores in the non-transformed feature spaces. This can be explained by 
how these algorithms define clusters, which is very similar. 

k-Means initializes centroids with a probability distribution over the 
feature space and the centroids are shifted based on the assigned data 
points. Agglomerative merges clusters, whose centroids have the 
smallest distance, hierarchically into one cluster. For non-transformed 
approaches, this results in splitting the dense region into multiple 
clusters, as the number of data points in the dense region outweigh the 
distance to data points in sparse regions. Fig. 8 illustrates that splitting 
for the Agglomerative algorithm in Approach 1. 

Splitting the dense region results in a bad Silhouette and Davies 
Bouldin score for the non-transformed approaches. One dense region is 
divided into two, so the clusters are not clearly defined, near, and data 
points between the clusters have no definite cluster belonging. However, 
a better Calinski-Harabasz score is achieved because, through the 
splitting, the data centroid is less equal to the clusters centroids. 

k-Means and Agglomerative perform almost as good in the Silhouette 
score after the transformation because dense regions are more scattered 
among the feature space, making it less likely for a dense region to be 
divided. The Davies Bouldin score remains bad compared to the Mean 
shift approaches, as they are designed to assign scattered regions into 
one cluster work differently compared to the preceding algorithms, as 
they are density based. Their procedure does not involve a distance 
measure to a centroid, which is the result of having a bad score in all 
Approach based metrics. 

4.2.2. Algorithms and geometrical clusters 
The Mean shift algorithm, independent of the kernel, assigns near, 

scattered regions into one cluster and often unique sections into one 
single cluster. 

For assigning different building patterns, this is not beneficial. 
Having few clusters with the majority of the data points and one point 
cluster otherwise does not contain information regarding patterns of 
different sections. Especially, considering that other algorithms are able 
to determine some patterns. 

Fig. 7. Feature space distribution of Approach 3, with applied Box-Cox transformation. The colors of the data points refer to the assigned cluster by the DBSCAN 
algorithm. The feature spaces’ dimensionality is reduced using a PCA reduction, the remaining variances are [28.4%, 20.8%, 10.2%]. Data points with the label − 1 
are considered as noise by the algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Result of applying the Box-Cox transformation with α = 0.1075 on different wall 
surfaces of the data set. A constant of 1 is added preceding the Box-Cox calcu-
lation, as the data has to be strictly positive.   

Non-transformed Transformed 

f1(S1) 100.64 5.99 
f1(S2) 111.25 6.15 
f1(S3) 1000.71 10.25 
f1(S4) 1102.50 10.45  
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k-Means and Agglomerative assign the clusters based on the 
Euclidean distance. DBSCAN computes the distance for epsilon on the l2 
norm, too. This seem to not be representative in the non-transformed 
approach, as real world differences hardly can be represented. Two 
sections with small values can be more different compared to two sec-
tions with big values, but as differences are measured Euclidean the 
differences between big sections will always have a greater distance, as 
the example in Table 2. In the transformed approaches, however, these 
algorithms seem to define clusters better. Table 3 shows the evaluation 
of clusters of a clustering of k-Means for Approach 3 with a Box-Cox 
transformed feature space. 

The differences in sizes are reduced through the Box-Cox trans-
formation. Now, the algorithms assigns the clusters based on unique 
parameters, as it seems distances between combinations of occurring 
parameter outweigh potential smaller size differences. Agglomerative 
and even DBSCAN assigned very similar clusters as the example of k- 
Means, varying mostly in the belonging of single points. Mean shift with 
a Gaussian kernel merges cluster 1, 3, and 5 into one cluster. Mean shift 
with a flat kernel, compared to that, merged cluster 1,3 and 2,5. 
Considering the differences defining the clusters of the k-Means 
example, the Mean shift algorithm, independent from kernel, seems to 
not be appropriate for assigning geometrical clusters. 

SNN further divides the clusters, shown in Table 3 into sub clusters, 

having an overall clustering amount of 14. SNN is the only algorithm 
that gives interpretable results for a non-transformed approach. It as-
signs the clusters based on the size of a section and the occurrence of 
unique parameters. This results in defining more clusters compared to 
the other approaches. By analyzing the defined clusters it turned out that 
SNN often assigns sections of the same building into the same cluster, 
which is, as they are geometrically very similar, a desired behavior. 
However, by assigning so many clusters SNN generalizes not well. 

4.3. Relationship between geometrical clusters and U-value ranges 

The application based metrics measure the relationship between the 
geometrical clusters and the U-value ranges. The data is clustered on the 
geometrical data but evaluated on the thermodynamical. The applica-
tion based metrics can be, compared to the approach based metrics, 
compared between clustering feature spaces. 

The overall best average score of 0.53 is achieved by DBSCAN of 
Approach 3 with a Box-Cox transformed feature space. This is closely 
followed by the SNN algorithm applied to the non-transformed ap-
proaches, with SNN of Approach 1 having an average score of 0.54. 
Both, DBSCAN and SNN assign data points as noise. DBSCAN, compared 
to SNN, assigns almost twice as much data points as noise. 374 Data 
points in DBSCAN approach and 189 in SNN. SNN in Approach 3 
without a transformation is the third best performing approach, scoring 
0.6, with only 74 assigned data points as noise. Considering that 
DBSCAN assigns much more noise than SNN, the score is only slightly 
better. 

DBSCAN has a better MSSE and MRCS, whereas SNN account for a 
better RPS. This could seem contradictive, reckoning that the MSSE 
measures the distance to the centroid and the RPS measures the overall 
range. Having a small RPS should normally correlate with a good MSSE. 
However, as both scores do not take the noise into account, the MSSE 
can be low because the assigned cluster account for overall smaller 
ranges, resulting in a small MSSE. The RSP is computed as the 
improvement of an assigned clustering value range compared to not 
clustering the data; therefore, data points considered as noise are not 
taken into account for the initial comparing value ranges but only the 
overall cluster ranges themselves. Having a better MSSE but worse RPS 
indicates, that the ranges of DBSCAN are smaller on average, but the 
improvement obtained to not clustering the data is bigger for SNN. That 

Fig. 8. Feature space distribution of Approach 1, without a transformation. The colors of the data points refer to the assigned cluster by the Agglomerative algorithm. 
The feature spaces’ dimensionality is reduced using a PCA reduction, the remaining variances are [35.0%, 21.3%, 17.1%]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Description of geometrical clusters defined by the k-Means algorithm, Approach 
3, Box-Cox transformation. The main factor of assigning a cluster is whether a 
parameter occurs in a cluster or not.  

i Ci Unique parameters of the 
cluster 

Function of the cluster 

0 104 Low WWR, no roof Sections in the center of a building 
1 244 Roof, high floor and wall 

surfaces 
Sections on top of a building 

2 172 Base floor and roof Sections that have no other section below 
or on top of them 

3 302 no roofs, high WWR Sections in the middle of a building with 
big windows 

4 74 Sections with a high 
IWTFR 

Sections with many walls inside 

5 106 No roof, base floor Sections on the bottom of buildings 
6 25 Glass roof Atriums, entry halls  
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leads to the assumption that the assigned noise has a big impact on the 
result of DBSCAN, as the clustering itself does not benefit as much. 

The MRCS is better in DBSCAN, meaning the ranges intersect less. 
This leads to the conclusion that the noise assigning of DBSCAN assigns 
Data points, which account for bigger ranges in SNN as noise, so that 
SNN can have a better improvement on ranges by computing on a bigger 
range, but smaller value ranges for DBSCAN. 

The best performing algorithms of the approach based metrics are 
comparably bad. The best score for k-Means is 0.74; Agglomerative, 
0.79; and MSG, 0.83. Possible reasons for these differences are analyzed 
in the following chapter. The first difference is that the best algorithms 
both assign noise, so trying to assign noise for the corresponding algo-
rithms is a first analysis approach. Further, for k-Means and Agglomer-
ative the number of clusters is predefined, for DBSCAN and SNN not. 
Assigning a higher number of cluster is therefore also analyzed. 

In the following it is first determined how significant the results of 
the best performing approaches DBSCAN and SNN are. After that, 
possible reasons for the better performance of DBSCAN and SNN are 
analyzed. They obtained the best average scores for the application 
based metrics, even though the obtained the worst in the approach based 
metrics. 

4.3.1. Significance test 
To first have an impression of the significance of the test results, a 

significance test was performed for the two best performing approaches, 
SNN of Approach 1 without a transformation and DBSCAN of Approach 
3 with a Box-Cox transformation. 

The question to answer is whether the result of the metrics are a 
result of randomly distributed ranges across the cluster. The null hy-
pothesis tested is “The scores of the metrics are the result of randomly 
distributed thermodynamical ranges”. To test the hypothesis, the labels 
were reassigned randomly, the metrics calculated again, and counted 
how often the score is better than the initial one. The reassigning was 
performed 300 times for both approaches. Table 4 shows the results. The 
p-value is in all cases close to zero, which leads to a rejection of the null 
hypothesis. This makes it likely that the scores are not the result of 
randomly distributed ranges. 

4.3.2. Noise assigning 
SNN and DBSCAN both assign noise, compared to k-Means, 

Agglomerative or Mean shift, which do not. To analyze the impact of the 
noise assigning, the method is executed again for these algorithms. This 
time, before executing the clustering, the data points considered as noise 
for SNN and DBSCAN were removed for the other algorithms within 
their approach. This can only be done within one feature space, as the 
feature space effects the noise assigning. 

DBSCAN still shows a better result in most cases, though not all. 
Table 5 shows the results. The MSSE of DBSCAN is much better 
compared to the other algorithms, but MSG and SNN have a better MRCS 
and SNN a better RPS, too. That indicates, that the noise assigning has a 
considerable impact on the result of DBSCAN. 

This is different for SNN, shown by Table 6. SNN still outperforms all 
other algorithms by far. This underlines the assumption that SNN by 
itself performs better when clustering building data, given the aim of 

obtaining thermodynamical value ranges. 

4.3.3. Number of clusters 
For the SNN algorithm, the number of clusters could be relevant for 

achieving the best scores. It assigns disproportionately many, in the best 
performing approach 23. k-Means and Agglomerative are the only al-
gorithms with a predefined number of clusters. To analyze the impact of 
assigning a high number of clusters, the algorithms were executed again 
with the same amount of clusters as SNN defines. That means, for 
example, k-Means of Approach 1 without a transformation was executed 
again with the number of clusters defined by SNN, which in this case, 
was 23. The results are shown in Table 7. The Box-Cox transformed 
versions of k-Means and Agglomerative improved, but are still worse 
than SNN. The Agglomerative of Box-Cox transformed Approach 2 
improved considerably and even outperforms the SNN in the MRCS. 

The number of clusters has a strong impact on the score outcomes, 
but can not be singled out as the only reason SNN outperforms the other 
algorithms. 

4.3.4. Reference test 
The reference test was included to have comparable values of an 

achievable optimum. All average scores of the reference test are better 
than the best score of the approaches. The best score of the approaches 
was 0.53, this is less than half as good as the best score of the reference 
test. In all three scores the reference outperforms the approaches, even 
the worst performing algorithm on the reference test has a better score. 
However, considering that the data was clustered on geometrical data 
the scores of the approaches are comparably good. The geometrical data 
in itself has no influence on the thermodynamical characteristics of a 
feature. Considering this, some of the approaches are very good in 
obtaining thermodynamical value ranges from geometrical data. 

4.4. Discussion of the results 

The results of the executed method were evaluated from two per-
spectives. The possibility of defining geometrical patterns and the pre-
dictive ability of such patterns, whether it is possible to obtain unique U- 
value ranges. 

Table 4 
Results of testing the Null-hypothesis “The scores of the metrics are the result of 
randomly distributed thermodynamical ranges” for DBSCAN of Approach 3 with a 
Box-Cox transformation and SNN of Approach 1 without applying a trans-
formation. How often the randomly assigned labels account for a better result in 
the metrics are displayed below the algorithm names.  

Metric Reassignments DBSCAN SNN 

MSSE 300 0 0 
MRCS 300 0 0 
RPS 300 4 0  

Table 5 
Results of the re executed method for Approach 3, Box-Cox transformation. Data 
points assigned as noise by DBSCAN were removed from the evaluation space 
and the metric results computed again for the other algorithms of the approach.  

Approach Transformation Algorithm Application based 
metrics 

MSSE MRCS RPS 

Approach 3 BoxCoxTransforming DBSCAN 1.97 0.83 0.65 
SNN 2.59 0.82 0.52 
MeanShiftGauss 3.29 0.79 0.53 
Agglomerative 3.27 0.8 0.65 
MeanShiftFlat 4.64 1.13 0.66 
k-Means 3.13 0.83 0.66  

Table 6 
Results of the re executed method for Approach 1, without a transformation. 
Data points assigned as noise by SNN were removed from the evaluation space 
and the metric results computed again for the other algorithms of the approach.  

Approach Transformation Algorithm Application based metrics 

MSSE MRCS RPS 

Approach 1 None SNN 3.02 0.89 0.45 
MeanShiftGauss 6.21 1.24 0.74 
Agglomerative 6.15 1.22 0.67 
MeanShiftFlat 6.03 1.08 0.66 
DBSCAN 1.0 1.0 1.0 
k-Means 6.15 1.21 0.67  
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The MSG, k-Means and Agglomerative had on average the best re-
sults in the approach based metrics, which were meant to measure 
geometrical belonging. These metrics, however, showed to not be able to 
evaluate geometrical clusters given the defined feature spaces. Uneven 
cluster distributions achieved better scores, even though they assigned 
completely different geometrical patterns into one cluster. 

The Euclidean distance was used throughout as a distance measure. 
Without applying a transformation, this turned out to not represent real 
differences accurately. Only the SNN algorithm was able to use the 
Euclidean distance in a non-transformed approach with good results. It 
was able to determine geometrical patterns and assign similar sections 
into clusters. Sections of the same building often ended up in the same 
cluster, accounting for the majority of data points. This definitely is 
clustering by geometrical patterns; however, it also leads to a lack of 
generalization, which can be a problem by using the resulting U-value 
ranges. 

Applying a transformation leads to significantly better results 
regarding geometrical belonging, as Table 3 illustrated. The feature 
spaces are distributed into multiple dense regions instead of only one. 
Contradicting the initial guess, the dense regions are mainly determined 
by the occurrence of a feature in a section and not by the size of the 
section. The dense regions, and clusters, are defined mostly by unique 
parameter combinations and not sizes of sections. 

Having a good approach based metric score was no indication for 
also achieving a good application based metric score. SNN and DBSCAN 
had the best application based metrics scores but the worst approach 
based. There are two possible explanations for this, either the approach 
based metrics are not good for evaluating geometrical patterns, or SNN 
and DBSCAN do not cluster geometrically similar sections. Considering 
that, at least, SNN was able to assign clusters based on building 
belonging, the ability of determining geometrical patterns seem to be 
given. The approach based metrics seem to not be able to evaluate a 
geometrical belonging, also in the transformed approaches. 

Further test showed that DBSCAN only performed better than the 
other algorithms because it assigned a major part of the input data as 
noise. Compared to that, SNN worked better than the other algorithms in 
defining unique thermodynamical value ranges, even though it defines 
many clusters and noise. In the following tests, the other algorithms 
were first executed with the noise removed and then with the same 
amount of clusters determined by SNN. They still performed worse than 
the SNN algorithm. 

Compared to the reference, the scores of the approaches were low. 
The worst performing algorithm of the reference approach was still 

significantly better than the best performing approach. However, 
considering that the ranges were determined by using the geometrical 
data only, the scores are surprisingly high. Compared to not using 
clustering, the SNN algorithm was able to reduce the value ranges on 
average by 50%. 

5. Conclusion and future work 

The metrics, Calinski-Harabasz, Davies-Bouldin, and Silhouette 
score, used for evaluating the geometrical clustering were not able to 
determine geometrical pattern belonging. Algorithms assigning sections 
independent of their geometrical properties accounted for the best 
scores. 

The mean shift algorithm was, independent of the kernel used, not 
able to bring satisfying results. Neither was it able to determine building 
patterns, nor to define distinct U-value ranges, having a best average 
score of only 0.83. 

Applying the Box-Cox transformation lead to overall better results 
compared to not applying the transformation. After applying the 
transformation, the sizes of sections were more similar, whereas then the 
occurrences of parameters accounted for the most variance. 

k-Means, Agglomerative and DBSCAN were not able to determine 
anything other than huge size differences in the non-transformed feature 
space, having a best average score of 0.97. Only after the transformation 
other patterns were determined, improving the best average score to 
0.53. 

DBSCAN with Box-Cox transformed surfaces and ratios accounted for 
the best thermodynamical range scores. However, an analysis showed 
that this was mainly the reason of assigning over 1/3 of the data points 
as noise. 

The overall best approach is SNN, as it determines geometrical pat-
terns best and accounts for the most unique thermodynamical value 
ranges with a best average score of 0.54. It also assigns noise, but much 
less. Also, this showed to not be the reason for SNN performing better. 
The U-value ranges were on average 50% of the initial value ranges, if 
the whole available feature ranges were used. If no noise should be 
assigned, the k-Means algorithm showed the best results with applying a 
Box-Cox transformation on the ratio values. 

The first thing that should be investigated in the future is the us-
ability of the U-value predictions. The ranges should be tested with real 
world buildings; a set of test buildings is initialized with predicted U- 
value ranges, then it should be compared how the calibration works with 
and without using the range prediction. 

Table 7 
Results of the re executed method for all approaches, whereas for each feature space, the number of Clusters for k-Means and Agglomerative got assigned as the number 
of clusters determined by SNN. The AS is comparable within the table as the average result.  

Approach Transformation Algorithm Application based metrics AS 

MSSE MRCS RPS 

Approach 1 BoxCoxTransforming SNN 4.6 0.91 0.61 0.57 
Agglomerative 4.51 0.93 0.6 0.56 
k-Means 4.69 0.93 0.62 0.62 

None SNN 3.02 0.89 0.45 0.0 
Agglomerative 5.71 1.1 0.58 0.86 
k-Means 5.7 1.1 0.57 0.83 

Approach 2 BoxCoxTransforming SNN 3.58 0.87 0.52 0.19 
Agglomerative 4.02 0.88 0.47 0.17 
k-Means 4.64 0.94 0.49 0.36 

None SNN 3.99 0.93 0.49 0.27 
Agglomerative 5.8 1.2 0.59 1.0 
k-Means 5.78 1.19 0.58 0.97 

Approach 3 BoxCoxTransforming SNN 4.43 0.9 0.62 0.56 
Agglomerative 4.54 0.95 0.62 0.63 
k-Means 4.79 0.95 0.6 0.63 

None SNN 3.74 0.91 0.46 0.13 
Agglomerative 5.81 1.17 0.61 1.0 
k-Means 5.79 1.18 0.6 0.99  
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It should further be tested whether the inputs could be defined in a 
way, that produces better results. Something else than the geometrical 
surfaces could be calculated or other ratios. In addition to this, some 
other parameters could be made available, like the last buildings reno-
vation year, which could also give an indication of the thermodynamical 
building parameters. 

Other clustering algorithms in combination with different metrics 
should be used in order to check whether they produce better results. 
Metrics could be the cosine metric, which measures the angle between 
two data points therefore if these point in the same direction. 

Other methods worth investigating are supervised and semi- 
supervised approaches, because for existing buildings the U-values are 
already available. The challenging part is, that these are multi dimen-
sional continuous outputs, so maybe a neuronal network could be used. 
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