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a b s t r a c t

A central receiver system is a power plant that consists of a receiver mounted atop of a central tower and
a field of adjustable mirrors called heliostats. The heliostats concentrate solar radiation onto the receiver
where a fluid is heated to produce electricity in a conventional thermodynamic cycle.

Aiming strategies are used to assign each heliostat to an individual aim point on the receiver such that
a given flux distribution on the receiver surface is reached. As uncertainties in the tracking of the he-
liostats exist, aiming strategies are applied that use large safety margins to avoid dangerously high flux
concentrations on the receiver. This approach leads to an inefficient use of the power plant and thus
economical losses. In this paper, we consider advanced methods to include these uncertainties into the
design of efficient aiming strategies. To this end, we present a mixed-integer linear programming (MILP)
formulation for the optimization of aiming strategies based on G-robustness.

In a case study, we show that the G-robust optimization approach yields solutions with strong
objective values and thus economical benefits while maintaining a high degree of safety. Compared to
non-robust solutions, the G-robust solutions achieve better objective values while guaranteeing the same
safety.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In central receiver systems, large movable mirrors, called he-
liostats, are used to concentrate rays of sunlight onto a receiver
which is mounted on top of a tower. At the receiver, a fluid is heated
up. This fluid, typically air, thermal oil or molten salt, transports the
heat to a heat exchanger. At the heat exchanger, steam is produced
which powers a turbine to generate electricity (see Fig. 1).

Concentration ratios of over 2000 suns are possible at the solar
receiver. With this high amount of thermal power being inter-
cepted by the receiver, caremust be taken that the receiver does not
get damaged in the course of operation. A trade-off between
maximizing the receiver intercept and minimizing the peak flux on
the receiver must be made. In practice, the operator of the power
plant pre-computes a desired flux distribution (DFD) across the
receiver surface. For a fixed position of the sun, the task of the
aiming strategy is to reach this distribution by directing the
. Kuhnke).
heliostats to aim points on the receiver surface while capturing as
much radiation as possible. Here, large safety margins are applied
to avoid severe damage of the receiver due to high fluxes caused by
tracking errors. A tracking error is an uncertainty that may cause
the image of a heliostat at the receiver to be offset from the targeted
aim point. Reasons for these offsets are the limited accuracy of the
motor in the heliostats and inaccuracies in the whole tracking
mechanism. While the safety margins ensure a safe operation, an
inefficient use of the entire power plant is accepted.

In this work, we show that a robust aiming strategy which
directly considers the uncertainty of the tracking error is able to
improve the efficiency while maintaining a high degree of safety.
This aiming strategy is found by solving a robust optimization
problem formulated as a mixed-integer linear program (MILP).
1.1. State of the art

In order to place the current work in context, we present a short
description of prior work in which aiming strategies were devel-
oped. Previous research on aiming strategies includes the use of
specialized heuristics [2e6], the search for optimized aiming
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Fig. 1. Conceptual drawing of a central receiver system: Large mirrors in the heliostat
field concentrate the sun light onto a receiver which is mounted on top of a tower [1].

Table 1
Summary of previous aim point studies. This work utilizes a robust optimization
formulation for the first time in the reviewed literature.

Receiver Type Method Robustness

[2] Cylindrical/flat plate 6 heuristics No
[3] Flat plate Operating heuristic No
[4] Cylindrical Heuristic No
[5] Cylindrical 6 heuristics No
[6] Cylindrical Heuristic No
[7] Flat plate Ant-colony heuristic No
[8] Flat plate Genetic algorithm No
[9] Flat plate MILP formulation No
This work arbitrary MILP formulation Yes
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strategies using metaheuristics [7,8], and the optimization of aim-
ing strategies by solving an MILP formulation [9]. A summary of
previous aim point studies is given in Table 1.

Aim point optimization studies go at least as far back as the
work included in the DELSOL optics simulation software [2]. There,
a set of fixed aiming strategies is proposed in which the aim points
of the heliostats are distributed in specific patterns. Six different
path dependent heuristics for solving the problem are contained in
the DELSOL 2 software release. Here, heuristics for iteratively
placing the flux distributions from each heliostat are available for
user selection. These include a smart heuristic that fills the receiver
surface with the flux profiles until they impinge on the edge of the
receiver. The aiming strategies also allow the user to prioritize
either the cold end or the hot end of the receiver.1

The complexity of the aim point problem for large heliostat
fields is often overcomewith the use of simple operating heuristics.
For example, García-Martín et al. [3] developed a closed-loop
control system using thermo-couples for the circular flat-plate
receiver of the PSA CESA-1 plant. The control system balances
temperatures by moving heliostats from one aim point of high
temperature to one of lower temperature. This is performed iter-
atively until temperature uniformity is achieved.

A basic heuristic is used for the Gemasolar power plant by Kelly
et al. [4] where five possible vertical aim points are allowed and a
predefined flux distribution is sought as an objective. This flux
distribution is constant in the inner region (about three quarter of
the area), and then drops towards the receiver border. The flux
distribution in the vertical direction is only considered when
choosing aim points for each of the heliostats.

In contrast, Astolfi et al. [5] separate the solar field into
azimuthal segments and the flux distribution from each segment is
optimized. Despite there being freedom to define the aim point in
1 This represents an interesting trade-off between high receiver surface tem-
peratures when they are pointed at the hot end and higher overall thermal losses
when they are pointed at the cold end.
only the vertical direction, this work accounts for the influence of
the lateral distribution on the ideal vertical aim point distribution
in adjacent segments. The best method presented in this paper
purports to reduce peak flux up to 15%. Collado et al. [6] extended
this single-parameter aiming approach (the vertical position) to a
two-parameter aiming strategy to flatten the flux profile.

Belhomme et al. [7] propose a solution based on the ant colony
optimization meta-heuristic. This method is able to find solutions
in up to 15 minutes. Different types of receiver constraints such as
maximum heat fluxes or maximum heat flux gradients are
considered.

The study by Besarati et al. [8] uses a genetic algorithmwith the
objective of minimizing the standard deviation of the flux distri-
bution values at each measurement point on the surface. They
considered the PSA CESA-1 heliostat field, modified by selecting a
subset of heliostats such that the peak flux remains within safety
limits when all heliostats are pointed at the center of the receiver.

Ashley et al. [9] formulate the aim point optimization as anMILP
and apply this formulation to the PS10 heliostat field. The objective
in this case is tomaximize the incident energy on the receiver while
reaching a uniform flux distribution. Optimal flux distributions are
found for a range of different operating conditions. The effect of
cloud cover is also simulated.

1.2. Our contribution

In this work, we extend the approach from [9] to first develop a
non-robust MILP formulation for the optimization of aiming stra-
tegies. This formulation additionally allows to approximate a given
DFD to further benefit the energy production. Then, we extend the
non-robust formulation to get a robust MILP formulation for the
optimization of aiming strategies based on G-robustness [10]. In
this robust formulation, uncertainties caused by tracking errors are
incorporated. The design parameter G represents the degree of risk
aversion against tracking errors by the operator of the power plant.

In a case study applied to the PS10 solar tower power plant, we
show that the resulting robust aiming strategies are superior to the
non-robust aiming strategies. The robust solutions increase both
the efficiency and safety of the plant. To reduce the running times of
the robust approach, we present a heuristic to compute robust
aiming strategies in practical running times of less than 60 seconds.
Moreover, we conduct a simulation of uncertain tracking errors to
show the practicability of the robust solutions. Our approach is
applicable to arbitrary receiver types.

We published a preliminary approach for the optimization of
aiming strategies in [11]. Here, we extend this preliminary
approach by an improved model where the approximation of a
given DFD is possible, by an extensive case study as well as by an
evaluation of the results via simulations of tracking errors.

1.3. Outline

First, we describe in Section 2 the underlying problem by
defining the operational variables and design parameters of a
central receiver system that influence the optical performance. In
Section 3, an MILP formulation for the non-robust optimization of
aiming strategies is given. This formulation is extended in Section 4
to a G-robust MILP formulation which considers uncertainties
caused by tracking errors. In Section 5, we apply the aiming stra-
tegies to the solar tower power plant PS10 in Spain. The solutions of
the non-robust and the robust model are compared and the influ-
ence of the robustness parameter G on the intercepted solar irra-
diation is investigated. Furthermore, we present a heuristic which
yields robust solutions in significantly shorter running times.
Finally, we draw in Section 6 a conclusion regarding the presented
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aiming strategies and give an outlook with possibilities to extend
this work.
2. Problem description

This section describes the functionality of a central receiver
system along with the optical components which are needed to
understand the purpose and effects of aiming strategies.
2.1. Optical components

A central receiver system consists of a receiverwhich is mounted
on top of a tower and a large field of heliostats. We denote the set of
heliostats by H. The heliostats collect the direct normal irradiation
of the sun on the Earth’s surface, denoted by IDNI, and reflect it to
the receiver. To adapt for the changing position of the sun, the
heliostats are driven by a motor to concentrate the solar irradiation
onto the receiver. In our model, the position of the sun is given in
terms of the solar zenith and azimuth angle [12]. For the receiver,
there exist three different designs:

� Flat plate receivers have a rectangular front shape.
� Cavity receivers are curved towards the inside of the tower to
minimize heat losses as they are sheltered from wind.

� External receivers have a cylindrical shape and are attached at
the outside of the tower.

The receiver consists of a discrete number of panels in a row and
the fluid flows along small tubes which are inside these panels. The
flow direction is alternating upwards and downwards along the
panels. Due to the high power concentration, the material of the
receiver has to withstand high temperatures, temperature gradi-
ents in time, and must efficiently transfer the concentrated heat to
the flowing medium.
2.2. Aim and measurement points at the receiver

The task of an aiming strategy is to decide for each heliostat at
which spot on the receiver surface it should aim. To reduce the
difficulty of this task, the aim points on the receiver surface are
typically discretized. This means that the heliostats are only
allowed to aim at a predefined discrete set of points on the receiver.
Here, we use a regular grid as proposed by Ashley et al. [9]. The
receiver surface is discretized by the set A containing all possible
aim points, i.e.,

A ¼
n
ai;j
��� i ¼ 1;…;nhoriza ; j ¼ 1;…;nverta

o
where nhoriza and nverta are the number of horizontal and vertical aim
points. To evaluate an aiming strategy, we measure the heat flux at
certain points on the receiver surface. Thesemeasurement pointsM
are arranged in a regular grid similar to the grid of the aim points. It
is given by

M ¼
n
mi;j

��� i ¼ 1;…;nhorizm ; j ¼ 1;…;nvertm

o
where nhorizm and nvertm are the number of horizontal and vertical
measurement points. The left hand side of Fig. 2 shows a visuali-
zation of these discretizations.

The set of aim points A is not necessarily the same as the set of
measurement pointsM. In practice, the choice of the number of aim
points depends on the relevant flux size of the heliostats. These
discretizations can be applied to any receiver shape.
2.3. Desired flux distribution

Before the optimization of the aiming strategy is conducted, a
desired flux distribution (DFD) on the receiver surface is defined
which is later used as target of the optimization process. In gen-
eral, these DFD maps are defined by the operator of the central
receiver system. They base on CFD simulations conducted by the
receiver manufacturer that depend on the receiver material
properties and on the possible incident heat flux [13]. The desired
flux qmDFD at the receiver surface is defined point-wise for each
measurement point m2M. The right hand side of Fig. 2 illustrates
a heat flux distribution on the receiver surface which could be
used as a DFD map.
2.4. Heliostat flux distribution

The flux distribution on the receiver surface due to reflection
from a particular heliostat targeting a given aim point can be
calculated. Starting in the 1970s, several different methods were
developed ranging from straight-forward ray tracing methods to
mathematical simulation techniques such as cone optics [14],
Hermite polynomial expansion, or convolution methods [1]. Alto-
gether, there exist several ray-tracing methods which compute the
reflected flux distribution of a heliostat surface onto the receiver
surface. The projection on the receiver surface depends on the
mirror area, the curvature of the heliostat, the ray’s angle of inci-
dence with the heliostat surface (also called cosine efficiency), and
on the mirror reflectivity [15].

We now consider a fixed position of the sun. If heliostat h2H
aims at aim point a2A, the reflected flux on the receiver surface at
measurement point m2M is given by qmha. Since we have a discrete
set of aim points, it is possible to pre-compute all possible flux
distributions on the receiver for each heliostat h2H and each aim
point a2A. Hence, we determine one image per heliostat for every
aim point beforehand to save time when performing the optimi-
zation. The required memory space for the images depends on the
number of heliostats, the number of aim points and the number of
measurement points.

We use the HFLCAL method [14] to calculate the reflected heat
fluxes qmha at measurement point m2M on the receiver surface for
each heliostat h2H aiming at a2A:

qmha ¼
Pha

2 p ~seffectiveha

, exp

 
�
�
xma
�2 þ �yma �2

2 ~seffectiveha

!
,Am

where

� Pha is the beam power, i.e., the amount of heat reflected from the
heliostat which depends on the heliostat, the targeted aim
point, and the position of the sun.

� ~seffectiveha is the effective error that defines the distribution size.
� xma and yma are the distances from measurement point m to aim
point a in horizontal and vertical direction, respectively.

� Am is the receiver area around measurement point m.

To represent a tracking error, we shift the aim point coordinates on
the receiver surface which yields different distances xma and yma to
the respective measurement points.

For a certain allocation of heliostats to aim points, we can now
determine the corresponding heat flux distribution on the receiver
surface by linearly superposing the reflected fluxes of each
heliostat.



Fig. 2. Discretization of aim and measurement points (left) and heat flux distribution on the receiver surface (right).
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2.5. Allowable flux distribution

Due to the nonlinear relationship between radiative thermal
losses and heat flux distribution, the relationship between heat flux
and receiver surface temperature is modeled prior to optimization.
When the maximum allowable receiver surface temperature is
known, a corresponding maximum allowable flux is calculated and
then imposed as linear constraint during the optimization for the
best aiming strategy. The maximum heat flux gradient can also be
determined prior to optimization in order to save simulation time.
This allows us to formulate the optimization problem using linear
constraints, avoiding the increased complexity required to solve
problems with nonlinear constraints.

The allowable flux distribution (AFD) defines the maximum
solar flux allowable at any given point on the receiver surface
during operation. It is dependent on the current operating con-
ditions of the receiver. For a receiver that is operating in thermal
equilibrium, there will be an allowable heat flux distribution that
corresponds to the differential temperature along the flow di-
rection in the receiver pipes. The AFD is the maximum solar flux
that is allowable under the given operating conditions such that
the temperature of the receiver surface remains within the ma-
terial limits. Its values are given by qmAFD for each measurement
point m2M.

The AFD is time dependent, and a rapidly increasing flux corre-
sponds to a lower AFD than a slowly increasing flux. This is because
the receiver pipe wall must heat up before the increased flux is
conveyed to the fluid in the pipes. Thus, for a conservative AFD,
calculations of the surface temperature resulting from an increase
in solar flux shall be performed assuming any extra heat transfer to
the fluid in the receiver be zero.

In the next section, we present a linear formulation of the
optimization problem for finding an optimal aiming strategy based
on the here presented model.
3. Non-robust aim point optimization model

We now present a mixed-integer linear program (MILP) for the
optimization of aiming strategies in central receiver systems. The
purpose is to maximize the energy production of the whole power
plant while preventing damage to receiver components. In this
formulation, we do not consider any uncertainty of the tracking
error. This model is based on the formulation of Ashley et al. [9]
with the addition that a given desired flux distribution (DFD) is
approximated to benefit the energy production.

First, we introduce the decision variables used in the
optimization formulation. For each heliostat h2H and aim point
a2A, we introduce binary variables xha which determine if h aims
at a. This means xha is equal to one if h aims at a and zero otherwise.

Now, we consider the constraints of the optimization model.
The first set of constraints ensures that each heliostat aims at most
at one aim point, i.e.,

X
a2A

xha �1 c h2H: (1)

Here, the left hand side may be zero which represents the situation
that a heliostat aims past the receiver in order to avoid damage due
to high heat fluxes. The next constraints ensure that the allowable
flux distribution (AFD) is satisfied at each measurement point:

X
h2H

X
a2A

qmha xha � qmAFD cm2M: (2)

In these constraints, the parameters qmha are the heat fluxes at
measurement point m caused by heliostat h when it aims at aim
point a. The parameters qmAFD are the maximum allowable heat
fluxes that must not be exceeded at each m. For the next set of
constraints, we consider the desired flux distribution (DFD) which
is given by absolute values qmDFD at each measurement point m.
These DFD values depend on the total heat flux currently reaching
the receiver. For simplification, we assume that each qmDFD is equal to
a linear expression qmDFD ¼ qmrel,dwhere qmrel2½0;1� is a given relative
DFD value proportional to qmDFD and d is a non-negative continuous
variable. The variable d physically depends on the solar irradiation
IDNI and the solar position. Its purpose is to scale the relative values
qmrel. Since the absolute DFD values qmrel,d can typically not be met
exactly, we allow a relative deviation of ε>0 in both directions from
the DFD at each m:

ð1� εÞ qmrel d�
X
h2H

X
a2A

qmha xha �ð1þ εÞ qmrel d c m2M: (3)

While accepting a relative deviation of ε, these constraints ensure
that the resulting heat flux distribution on the receiver surface is
close to the DFD.

The objective is to maximize the total heat fluxes at all mea-
surement points m2M on the receiver caused by the current
aiming strategy. Therefore, we optimize the following objective
function:
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max
X
m2M

X
h2H

X
a2A

qmha xha: (4)

The MILP presented here for the optimization of aiming stra-
tegies has jHj,jAj þ 1 variables and jHj þ 3 jMj constraints. How-
ever, as the simulation in Section 5.2 suggests, solutions to this
optimization model are very vulnerable against uncertainties
caused by tracking errors. Even small deviations of a heliostat from
its targeted aim point caused by tracking errors could violate AFD
Constraints (2). This poses a high risk of permanent receiver
damage. Therefore, we extend this non-robust model by inte-
grating these uncertainties and computing a robust aiming
strategy.
m

4. Robust aim point optimization model

Now, we extend the non-robust optimization model to a robust
optimization model where we consider uncertainties of tracking
errors. A tracking error causes the image of a heliostat at the
receiver to be offset from the targeted aim point. These offsets can
result in higher heat fluxes than expected which may cause per-
manent damage to receiver components even though AFD Con-
straints (2) are satisfied. Therefore, we consider uncertain data and
ensure in our model that Constraints (2) are satisfied for all mea-
surement points m with a high probability:

Pr
�X
h2H

X
a2A

qmha xha � qmAFD
�
� h (5)

where qmha are now random variables and h2½0;1� is the degree of
certainty that Constraints (2) are actually fulfilled. However,
directly solving this stochastic optimization problem is very diffi-
cult [16]. Instead, we use a robust optimization approach to get
good feasible solutions for this problem.

Following the approach of G-robustness by Bertsimas and Sim
[10], we reformulate AFD Constraints (2) by considering default
heat fluxes qmha and their possible deviations bqmha caused by tracking
errors. Since Constraints (2) are upper bounds for the heat fluxes at
each measurement point m, it is sufficient to only consider the
worst case deviations towards m and ensure that even in case of
such a deviation they remain feasible.

To this end, let ~qmha be the heat flux atm if heliostat h targets aim
point a but deviates maximally towards m. Assuming h aims at a,
this is theworst case heat flux caused by h atmeasurement pointm.

Now, we define bqmha as the worst case deviation from the default

heat flux at m, i.e., bqmha :¼ ~qmha � qmha. It follows for each uncertain

heat flux qmha that it is part of the interval qmha2½qmha; qmha þ bqmha�.
However, using a robust approach with worst cases will lead to
overconservative solutions since it is highly unlikely that all he-
liostats assume their worst case deviations at the same time.
Therefore, we introduce a parameter G2f0;1;…; jHjg which rep-
resents the maximum number of heliostats that can deviate
simultaneously. For each constraint in (2), we want to ensure
feasibility if at most G heliostats deviate at the same time. In other
words, we want to be protected against deviations caused by all
possible subsets of heliostats with at most G elements. Therefore,
we reformulate AFD Constraints (2) as follows:X
h2H

X
a2A

qmha xha þdevmðxÞ� qmAFD cm2M (6)

where
devmðxÞ ¼ max
X
h2H

X
a2A

bqmha xha ymh
s:t:

X
h2H

ymh � G

ymh 2f0;1g c h2H:

The value devmðxÞ is the optimal objective value of another opti-
mization problem. It represents the maximum additional heat flux
at measurement point m caused by at most G deviations from a
given allocation of heliostats to aim points x. Here, the binary
variables ymh denote whether heliostat h deviates towardsm or not.

These reformulated constraints are not linear anymore due to
the nested optimization problems devmðxÞ. Therefore, we now
derive a linear reformulation for Constraints (6) following the
approach by Bertsimas and Sim [10]. Since the constraint matrix of
the inner optimization problem with optimal objective value
devmðxÞ is totally unimodular (consecutive-ones property is satis-
fied), the corresponding polyhedron is integral. Consequently,
relaxing the integrality of the variables ymh does not change the
optimal objective value. This allows us to dualize the inner opti-
mization problem and thus we obtain

devmðxÞ ¼ min G zm þ
X
h2H

pmh

s:t: zm þ pmh �
X
a2A

bqmha xha c h2H

zm � 0

pmh � 0 c h2H:

Here, the variables zm for m2M and pmh for h2H and m2M of the
dual problem are continuous. As Constraints (6) are upper bounds
and we are now minimizing the inner optimization problem, it is
equivalent to omit theminimization in the objective. This yields the
following linear AFD constraintsX
h2H

X
a2A

qmha xha þG zm þ
X
h2H

pmh � qmAFD c m2M (7)

which eventually replace Constraints (2) in the robust optimization
problem. Furthermore, the constraints of the dual optimization
problems for each measurement point m have to be added to
ensure correct evaluation of devmðxÞ. Thus, the G-robust optimi-
zation formulation is given as follows:

ax
X
m2M

X
h2H

X
a2A

qmha xha

s:t:
X
a2A

xha � 1 c h2HX
h2H

X
a2A

qmha xha þ G zm þ
X
h2H

pmh � qmAFD c m2M

zm þ pmh �
X
a2A

bqmha xha c h2H;m2M

ð1� εÞ qmrel d �
X
h2H

X
a2A

qmha xha � ð1þ εÞ qmrel d cm2M

xha2f0;1g c h2H; a2A

d � 0

zm � 0 c m2M

pmh � 0 c h2H;m2M:

Since the derived AFD Constraints (7) are now linear, the pre-
sented G-robust formulation is an MILP with ðjHj þ1ÞjMj additional
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variables and jHj,jMj additional constraints.

5. Case study

In this section, we present a case study which applies the two
formulations for the optimization of aiming strategies introduced
in Section 3 and 4 to the test field PS10. The results of the non-
robust model are compared to the results of the G-robust model
where different degrees of robustness according to the parameter G
are considered. Furthermore, a simulation of tracking errors moti-
vates the use of the robust optimization model by showing the
vulnerability of solutions of the non-robust model.

First, we state in Section 5.1 the setup of the experiments
including the central receiver system used in this study, the
selected parameters, and specifications about the implementation.
In Section 5.2, solutions of the non-robust model are investigated
according to simulated tracking errors. In Section 5.3, we present
computational results of the non-robust and robust optimization
problem along with detail analysis of the calculated solutions.
Finally, a discussion of the results can be found in Section 5.4.

5.1. Setup

In this case study, we use real data of the PS10 solar tower power
plant which is located near Seville, Spain. With a field of 624 he-
liostats, this plant is being operated commercially from 2007 [17].
Based on the real positions of the heliostats and the receiver [18],
we precalculate all expected heat fluxes qmha and worst case de-
viations bqmha via ray tracing as described in Section 2.4. We assume
that the tracking errors are normally distributed with mean m ¼ 0
and standard deviation s ¼ 1 milliradian (see [19], Section 6.3). For
the worst case deviations in the G-robust models, we assume a
maximum horizontal and vertical tracking error of 1.5 milliradian.
In the experiments, we apply a grid of 4 horizontal and 5 vertical
aim points along with the same grid of measurement points, i.e.,
nhoriza ¼ nhorizm ¼ 4 and nverta ¼ nvertm ¼ 5. The original maximum
allowable heat flux for the PS10 is at least 650 kW=m2 (see [18],
Section 3). However, since the number of heliostats in this plant is
relatively small, no robust approach would be necessary because
the original limit 650 kW=m2 is almost never reached. Therefore,
we scale down this original value and use a maximum allowable
heat flux qmAFD ¼ 200 kW=m2 at each measurement point m. Thus,
as in larger power plants with more heliostats, a robust approach is
necessary to avoid exceeding the AFD. Lastly, we use a maximum
deviation ε ¼ 10 % from a uniform DFD.

For the optimization, we use JavaOpenJDKRuntimeEnvironment
11.0.4 along with CPLEX 12.8.0.0 [20] with standard options as MILP
solver. All numerical results presented here are computed on a Linux
machinewith an Intel Core i7-3770 CPUwith 3.40GHz clock rate and
32 GB RAM. Calculations are stopped as soon as an optimality gap of
0.5% or the maximum time limit of 10800 seconds is reached. While
each non-robust problem terminated within the desired 0.5% gap
with a running time of less than 7 seconds, the robust problems
terminated after 3 hours of running time with an average gap of
5.86%. Hence, according to the running time, the non-robust model
outperforms the robust model by magnitudes. Therefore, we intro-
duce in Section 5.3 a simple heuristic that strongly reduces the
running times of the robust problem. It yields good solutions to the
robust problem in running times of around 60 seconds.

5.2. The need of robustness in the optimization model

First, we evaluate whether a robust approach is necessary to
protect the receiver from overheating due to tracking errors. To this
end, we test the obtained solutions from the non-robust model
introduced in Section 3 against simulated tracking errors.
We denote the non-robust optimization problem introduced in

Section 3 by DET. A simple approach to add robustness to this
problem is to add buffer values to the AFD Constraints (2). By
adding a buffer of l% with l2f0:5;1;1:5;…;17g to the right hand
sides of these constraints, we obtain a simple robust problem
denoted by DET-l. For each solution of these problems, we perform
a simulation by generating 1000 scenarios. Each of these scenarios
simulates the deviations caused by tracking errors according to
their normal distribution with mean m ¼ 0 and standard deviation
s ¼ 1 milliradian. This means that each scenario yields a different
actual heat flux distribution on the receiver surface where some of
the AFD Constraints (2) could be violated even though they are not
violated in the original solution. We say that a scenario is safe if
none of the AFD Constraints is violated in its resulting heat flux
distribution. For each solution, we denote the number of safe sce-
narios among the 1000 scenarios by jSj. The relative safety of a
solution is equal to jSj=1000.

The results of the simulation show that the solution to DET has a
safety of 0%, i.e., it is violated in all 1000 scenarios and therefore
highly unsafe. Adding buffers improves the safety significantly. The
solution to DET-5 achieves already a safety of 66%. However, the
risk of severely damaging the receiver is still high. The first solution
that achieves a safety of 100% is DET-11. Here, a high degree of
safety for the receiver is guaranteed.

These results show that the solution to DET-11 is much more
practical than the one to DET since it poses a much lower risk of
severely damaging the receiver. However, the objective value of the
more robust solution of DET-11 is 11.1% worse than the objective
value of DET. Now, the question arises whether this buffer of 11% is
suitable. While a high buffer results in poor objective values, a low
buffer poses a high risk of severe receiver damage. Furthermore,
suitable buffers for each measurement point individually may yield
solutions with even better objective values while maintaining a
high safety. This is addressed by the more advanced approach of
G-robust optimization. In G-robustness, the degree of robustness is
optimized for each measurement point individually as opposed to
using the same buffer for all measurement points.
5.3. Performance of G-robust solutions

In this part, we concentrate on the objective values and the
safety of the G-robust solutions from the model presented in Sec-
tion 4 in comparison to the non-robust solutions. Besides the non-
robust problem DET and the buffer problems DET-l, we now
consider the G-robust problems for G2f0;1;2;…;35g, denoted by
ROB-G. For the calculations of the G-robust solutions, we first solve
ROB-624 by considering it as a non-robust problemwith heat fluxes
qmha ¼ qmha þ bqmha in Constraints (2). Since its solution is also feasible
to ROB-35, we use this solution as MILP warm start. Then, we
successively use the solution of ROB-G as MILP warm start for ROB-
ðG�1Þ until we eventually reach ROB-1.

Since the robust problems ROB-G still have an average gap of
5.86% after 3 hours of running time, this approach is not very prac-
tical. Therefore,we additionally use a simpleheuristic to get solutions
for ROB-G in shorter running times. This heuristic first solves the LP
relaxation of ROB-Gwhere the integrality of all binary variables xha2
f0;1g is relaxed, i.e., we now have xha2½0;1�. Then, all variables that
satisfy xha <0:1 are fixed to zero in the original problem ROB-G. Now,
the robust problem ROB-G is easier to solve since it has far fewer
binary variables. We denote the solutions to this simplified robust
problem by ROB-H-G. To stay within running times of practical
relevance, we stop calculations after a maximum time limit of
60 seconds and do not use any MILP warm starts for this heuristic.



Fig. 3. Objective values of non-robust and robust solutions. The objective values
decrease as the buffers in the buffer problems and the G values in the G-robust
problems increase.

Fig. 5. Pareto front of objective values and relative safety. The buffer solutions DET-l
are stronger for a safety between 0% and 90% while the G-robust solutions become
competitive for a safety above 90%.
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Fig. 3 shows the objective values of the G-robust solutions as
well as the non-robust and two buffer solutions. As expected, the
original non-robust problem DET achieves the best objective value.
Adding buffers to the non-robust problem yields worse objective
values. DET-5 and DET-11 already lose about 5.1% and 11.1%,
respectively, compared to DET. The results of the G-robust prob-
lems for G2f0;1;2;…;35g show a similar behavior. Increasing G
and thus a higher robustness yields lower objective values. While
ROB-0 is equivalent to DET, the objective value of ROB-1 is already
slightly worse. For low G values, the loss compared to DET is rela-
tively small. ROB-10 loses only 4% and even ROB-20 results only in
an 8% loss. A loss of 12% is reached at G ¼ 35. The G-robust solu-
tions calculated by the heuristic are similar. However, their objec-
tive values for the same robust problems are slightly worse. While
ROB-H-10 and ROB-H-20 lose 5% and 10%, respectively, a loss of 14%
is reached for ROB-H-35.

In Fig. 4, the safety of the G-robust solutions in comparison to
the non-robust and two buffer solutions is depicted. For each so-
lution, we determined its relative safety by simulating 1000 sce-
narios. As mentioned in Section 5.2, the solution to DET does not
provide any safety while the first secure buffer solution is DET-11
with a safety of 100%. The G-robust solutions show that
increasing safety is basically achieved by increasing G. While ROB-G
Fig. 4. Relative safety in 1000 simulated scenarios. The safety values increase as the
buffers in the buffer problems and the G values in the G-robust problems increase.
for G2f0;1;…;5g are violated in all scenarios, ROB-6 is the first
solution that has a safe scenario. The safety increases rapidly where
ROB-18 already achieves a safety of 95%. The first secure solution
with 100% safety is reached at ROB-29. Again, the heuristicG-robust
solutions show a similar behavior. Here, their safety for the same
robust problems is slightly higher as they have slightly worse
objective values and thus exploit the limits at the measurement
points to a less extent. While ROB-H-15 has a safety of 91%, the first
solution with 100% safety is already reached at ROB-H-24.

The objective values and relative safety of the solutions are
connected in Fig. 5. A Pareto front of these two values is shown for
all G-robust and buffer solutions. It seems that the buffer solutions
are dominating the G-robust solutions. Considering the solutions
for a safety between 0% and 90%, the buffer solutions have better
objective values than the G-robust ones while providing a higher
degree of safety. However, these lower safety values are not
important in practice because we are only interested in solutions
with a very high safety close to 100%. Therefore, we show in Fig. 6
the same Pareto front zoomed to the significant relative safety
values. Here, we see that the G-robust solutions are very strong
whenwe consider a relative safety close to 100%. The best objective
values along with a safety between 99% and 100% are all achieved
by ROB-G. They are clearly dominating the buffer solutions where
Fig. 6. Pareto front zoomed to significant safety values. The G-robust solutions ROB-G
are dominating the buffer solutions DET-l within this safety range while the heuristic
G-robust solutions ROB-H-G only beat the buffer solutions for a safety of 100%.
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ROB-29 yields the best objective value for a safety of 100%. The
G-robust solutions calculated by the heuristic show weaker
objective values within this safety range. However, they still beat
the buffer solutions for a safety of 100% where ROB-H-24 achieves a
solution only slightly worse than the best one calculated by ROB-G.

Finally, we show the different characteristics of the G-robust
solutions and the buffer solutions by investigating the slacks of the
AFD Constraints (2). Here, the absolute slack Sm at measurement
pointm is defined as the amount of heat flux that we have to add at
m to reach the upper bound in Constraint (2), i.e.,

Sm¼ qmAFD �
X
h2H

X
a2A

qmha xha � 0:

The relative slack sm atm is given by sm ¼ Sm= qmAFD: Fig. 7 shows the
relative slacks sm at eachm for four selected solutions. The slacks of
the solution calculated by DET are shown in Fig. 7 (a). All relative
Fig. 7. Relative slacks sm in AFD Constraints (2). While the slacks in the buffer solutions are v
measurement points.
slacks of this solution are very small with values of less than 1%.
This shows that even small deviations caused by tracking errors
could exceed the allowable heat fluxes and cause permanent
damage to the receiver. The slacks of DET-11, depicted in Fig. 7 (b),
all lie between 11% and 11.6%. It is noticeable that the slacks of DET
as well as of DET-11 are very homogeneous. On the other hand, the
slacks of the G-robust solutions show different characteristics. They
are not homogeneous anymore. Fig. 7 (c) shows the slacks of ROB-
29. They lie between 5.8% and 16% while the measurement points
with greater slacks are located in the center of the receiver and the
measurement points with smaller slacks are located at the edge. A
similar pattern but with slacks between 6.3% and 15% is given by
the heuristic G-robust solution ROB-H-24, depicted in Fig. 7 (d).
This specific distribution of slacks in the G-robust solutions occurs
because more heliostats can deviate towards the center than to-
wards the edges which exposes the central points to a higher risk of
violation. Consequently, this distribution of slacks allows the
ery homogeneous, the slacks in the G-robust solutions tend to be greater at the central
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G-robust solutions to achieve better objective values than the
buffer solutions while providing the same degree of safety.

Detailed results on all computations including their running
times, objective values, and safety can be found in the Appendix in
Table 2.

5.4. Discussion of the results

This computational study shows the benefits of a robust
approach for the optimization of aiming strategies in central
receiver systems. We specify the vulnerability of non-robust solu-
tions as well as the effectiveness of G-robust solutions.

First, we consider a simple robust approach by adding buffer
values to the safety constraints. Then, we compare these buffer
solutions to the G-robust solutions calculated by our G-robust
optimization model. To evaluate the safety of the solutions, we
perform a simulation of the uncertain tracking errors. It turns out
that the G-robust solutions are superior to the buffer solutions if we
consider the safety values relevant in practice. Finally, we consider
the slacks in the G-robust solutions which suggest why these so-
lutions are able to provide better objective values than the buffer
solutions while having the same degree of safety.

The G-robust solutions calculated by ROB-G yield very strong
results in terms of objective value and safety. Additionally, this
approachhas evenmore potential because its best solutions still have
an optimality gap of more than 9%. The greatest drawback of the
G-robust optimization is the running time. Each solution takes a
running time of 10800 seconds compared to at most 7 seconds of
running time for the buffer solutions. Therefore, we show with the
simple heuristic ROB-H-G that it is possible to compute competitive
G-robust solutions within a running time of 60 seconds. This first
approach can be improved by more sophisticated ones to compute
betterG-robust solutionswithin running times of practical relevance.

6. Conclusion

This paper presents a robust approach for the optimization of
aiming strategies in central receiver systems. The goal of this robust
approach is to increase the efficiency and lifespan of such power
plants. To this end, we first present an MILP formulation for the
optimization of aiming strategies in the non-robust case. Then, we
extend this MILP to a G-robust optimization formulation which
deals with the uncertainty of tracking errors.

We conduct a case study featuring the PS10 solar tower power
plant from Seville, Spain. By performing a simulation of uncertain
tracking errors, we show that a robust approach for the
Table 2
Detailed computational results.

DET-l ROB-

l Time (s) Obj. (MW) Safety G Time (s) O

0 6 52.68 0.000 1 10800
0.5 5 52.28 0.000 2 10800
1 5 52.03 0.001 3 10800

1.5 3 51.77 0.006 4 10800
2 5 51.47 0.020 5 10800

2.5 5 51.24 0.058 6 10800
3 6 51.04 0.128 7 10800

3.5 4 50.76 0.234 8 10802
4 3 50.44 0.410 9 10801

4.5 6 50.19 0.511 10 10800
5 6 50.01 0.656 11 10802

5.5 5 49.68 0.761 12 10801
6 5 49.40 0.858 13 10800

6.5 5 49.13 0.902 14 10800
optimization of aiming strategies results in economical benefits.
The G-robust solutions yield strong objective values while
providing a high degree of safety for the receiver components.
Furthermore, we show that the G-robust approach is superior to a
simple robust optimization approach which uses buffers at the
safety constraints. Finally, we investigate the G-robust solutions to
explain their strength in terms of objective value and safety.

Future research in this area should focus on improving the so-
lutions of the G-robust optimization model. More sophisticated
solution approaches should be developed to reduce the running
times as well as tighten the optimality gaps. Moreover, the G-robust
approach should be extended to be able to compute robust solutions
for large plants with up to 15000 heliostats such as the Stellio solar
field Hami in China [21]. Finally, this robust optimization should be
incorporated into a dynamic model with regular update steps to be
able to cope with dynamic changes like cloud movement.
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Appendix

Table 2 shows detailed information on all performed calcula-
tions. The running times in seconds, the objective values inMWand
the relative safety of all buffer solutions DET-l and G-robust solu-
tions are stated.
G ROB-H-G

bj. (MW) Safety G Time (s) Obj. (MW) Safety

52.44 0.000 1 11 52.21 0.001
52.19 0.000 2 60 51.94 0.002
51.88 0.000 3 58 51.75 0.008
51.71 0.000 4 60 51.48 0.024
51.57 0.000 5 60 51.16 0.069
51.28 0.005 6 60 50.89 0.184
51.07 0.008 7 60 50.57 0.255
50.87 0.044 8 60 50.38 0.280
50.70 0.145 9 60 50.23 0.441
50.50 0.168 10 60 50.01 0.495
50.28 0.274 11 60 49.73 0.601
50.17 0.375 12 60 49.38 0.805
49.96 0.464 13 60 49.22 0.785
49.70 0.569 14 60 48.94 0.825



Table 2 (continued )

DET-l ROB-G ROB-H-G

l Time (s) Obj. (MW) Safety G Time (s) Obj. (MW) Safety G Time (s) Obj. (MW) Safety

7 4 48.90 0.935 15 10800 49.44 0.717 15 60 48.78 0.915
7.5 4 48.64 0.939 16 10800 49.23 0.856 16 60 48.45 0.987
8 5 48.42 0.968 17 10800 49.09 0.898 17 60 48.37 0.966

8.5 3 48.13 0.981 18 10800 48.92 0.952 18 60 48.09 0.979
9 5 47.91 0.991 19 10800 48.78 0.968 19 60 47.83 0.986

9.5 3 47.57 0.997 20 10800 48.60 0.989 20 60 47.66 0.985
10 6 47.41 0.999 21 10800 48.52 0.993 21 60 47.50 0.992

10.5 4 47.06 0.998 22 10800 47.99 0.995 22 60 47.35 0.995
11 5 46.85 1.000 23 10800 47.92 0.994 23 60 47.12 0.997

11.5 5 46.49 1.000 24 10800 47.78 0.998 24 60 46.97 1.000
12 4 46.27 1.000 25 10800 47.64 0.997 25 60 46.85 1.000

12.5 5 46.00 1.000 26 10800 47.49 0.999 26 60 46.69 0.999
13 3 45.75 1.000 27 10800 47.33 0.999 27 60 46.45 0.999

13.5 4 45.44 1.000 28 10800 47.20 0.999 28 60 46.33 1.000
14 3 45.19 1.000 29 10800 47.04 1.000 29 60 46.16 1.000

14.5 5 44.94 1.000 30 10800 47.00 0.999 30 60 46.01 1.000
15 3 44.64 1.000 31 10800 46.83 1.000 31 60 45.96 1.000

15.5 7 44.50 1.000 32 10800 46.76 0.999 32 60 45.79 1.000
16 4 44.16 1.000 33 10800 46.62 1.000 33 60 45.75 1.000

16.5 3 43.91 1.000 34 10800 46.57 0.999 34 60 45.54 1.000
17 4 43.59 1.000 35 10800 46.36 1.000 35 60 45.42 1.000
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