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Abstract— To ensure economic and safe operation of
parabolic trough collectors a precise control of the output
temperature of the troughs is necessary. Here, promising
control algorithms as the recently proposed bilinear Lyapunov
controller have been formulated. Drawbacks of this controller
design are a row of simplifying assumptions along with a rough
system description, which results in strict limits of the controller
gain, as the control loop tends to high frequent oscillation
otherwise. Those problems are treated in this work by use
of model reduction involving proper orthogonal decomposition
and alternative formulations of the control problem, which relax
some of the assumptions. In consequence, an improved version
of the bilinear Lyapunov control - with robust performance and
zero tracking error proven - and potentially higher controller
gains is proposed. Realistic simulations confirm the theoretical
results while showing shorter rise times without the risk of high
frequent oscillations.

I. INTRODUCTION

The public debate about energy comsumption and
climate change is dominated by the need to find clean yet
effective methods of creating electrical power. Parabolic
trough solar collector systems are part of a strategy for
global regenerative power generation. The global trends in
renewable investments report 2018 [1] shows a high interest
in investment into sources of renewable energy, making the
solar trough technology more and more attractive.

A parabolic trough solar collector system is composed of
parallel loops of parabolic troughs. Each trough consists of
a parabolic mirror which focuses incoming sunlight onto
a pipe containing thermal oil, which is pumped through
the pipe and used for generation of electric energy. A
simplified representation of one parallel loop is displayed
in Fig. 1. In order to achieve high efficiencies in electrical
power generation, a high oil temperature at the outlet is
desirable. However, as the oil decomposes when above a
critical temperature, it cannot be heated to arbitrarily high
temperatures [2]. Here, sudden changes in cloud coverage
influence the solar intensity and thus create an influential
disturbance onto the output temperature with high volatility.
Accordingly, the incorporation of feedback control becomes
necessary.
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Fig. 1. Single parabolic trough taken from a solar collector system with
parallel loops

An extended overview of control approaches for parabolic
trough collectors can be found in [3]. The range of applied
control schemes ranges from PID controllers in [4] to more
advanced methods such as model predictive approaches
based on linearized plant models (see, e.g., [5]) or on
nonlinear models, e. g., [6]. Also approaches with explicit
consideration of system nonlinearities [7] or robust control
[8] can be found. Furthermore, a very promising approach
based on bilinear Lyapunov control has been presented in
[9] and [10] with the benefits of proving robust stability and
zero tracking error. Unfortunately, the bilinear Lyapunov
control only allows very small controller gains, as the
description of the plant relies on several assumptions and
the use of rough approximate models. Hence, despite the
beneficial theoretical foundation, the bilinear Lyapunov
control from [10] needs to be improved.

In this work, three improvements of the bilinear
Lyapunov control are presented. First, the approximate
models are improved by use of the proper orthogonal
decomposition (POD) as model reduction technique.
Second, the formulation of the controller in [9] and [10] is
generalized such that some assumptions can be dropped.
And third, a dynamic approach to parameter selection is
applied. The improvements achieve possible selection of
higher controller gains.

The structure of this paper is as follows: Beginning with a
brief description of the plant model in Section II, the recently
proposed bilinear Lyapunov control is presented in Section
III. Thereafter, an improving model reduction procedure is
presented in Section IV. In Section V the extensions of the
bilinear Lyapunov control are presented. Simulation results
for the designed controller in Section VI and the summary
in VII conclude the paper.
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II. PLANT MODEL

In order to create an efficient controller for the parabolic
trough solar collector, analytic modeling of the plant is nec-
essary. The system dynamics can be split into two separate
parts: The dynamic of the fluid inside the pipe and the
temperature distribution of the pipe wall itself.

A. Temperature dynamic of the fluid

For the temperature distribution along the pipe, the first
law of thermodynamics is applied to an infinitesimally sized
fluid particle. Convection of heat along the direction of fluid
transport can be neglected due to high Peclet-numbers of
the process. No temperature gradient in radial direction is
considered due to the thinness of the pipe walls. Also, the
fluid is assumed to be incompressible, which is a reasonable
assumption for oils. The resulting equation for the tempera-
ture distribution of the oil reads

dT

dt
(x, t) + u(t)

dT

dx
(x, t) = s(x, t) , (1)

where t ∈ [0, tend] is the time, x ∈ [0, L] the spatial
coordinate, T (x, t) the fluid temperature distribution along
the pipe and s(x, t) = q̇

(ρcpA)fluid
the disturbance due to the

energy flow q̇ transferred from the pipe wall to the oil. The
biggest errors in this equation as opposed to reality are in
the heat capacity cp and the density of the fluid ρ being
considered constant with respect to temperature. Research
suggests an error of below 5 %. Also, the pipe diameter
A is assumed to be constant. The temperature of the fluid
entering at x = 0 is incorporated as a left boundary condition
T (0, t) = Tl(t). Together with initial values the partial
differential equation (PDE) (1) for the axial temperature
reads 

dT

dt
+ u

dT

dx
= s(x, t)

T (0, t) = Tl(t), T (x, 0) = T0(x) .
(2)

B. Temperature dynamic of the wall

Applying the first law of thermodynamics equivalently to
an infinitesimally sized part of the pipe wall, assuming again
no axial conduction of heat and no temperature gradients in
radial direction, the axial temperature distribution of the pipe
wall reads as

dϑ

dt
+ λ̂
(
ϑ(x, t)− T (x, t)

)
= p(x, t)

ϑ(x, 0) = ϑ0(x) ,
(3)

where ϑ(x, t) is the wall temperature, λ̂ = λ
(ρcpA)pipe

describes
the heat transfer between pipe wall and fluid with a heat
transfer coefficient λ assumed to be constant. The term
p(x, t) is calculated from the solar irradiance I(x, t) with the
efficiency ν of the used mirrors and the size of the optical
aperture G

p(x, t) =
νG

(ρcpA)pipe
I(x, t) . (4)

C. Full system dynamic
The dynamic of the full system including pipe wall and

fluid temperatures is then given in (5)
dT

dt
= −udT

dx
+ λ
(
ϑ(x, t)− T (x, t)

)
dϑ

dt
= λ̂

(
T (x, t)− ϑ(x, t)

)
+ p(x, t)

T (0, t) = Tl(t), T (x, 0) = T0(x), ϑ(x, 0) = ϑ0(x).

(5)

The PDE (2) is coupled with an ordinary differential equation
(3) to represent the heat transfer between wall and fluid.
Losses have been neglected in this analysis, as modern
coating technologies reduce the amount of radiative heat loss,
while convective heat loss can be minimized by modern glass
encasings [11]. This modeling approach is not new, but has
so far not been used in the context of bilinear Lyapunov
control.

III. STATE OF THE ART
In [9] and [10], Elmetennani et al. introduced an approx-

imate model method based on radial Gaussian functions for
the system (2) and a bilinear Lyapunov controller using this
model reduction. To properly understand the changes and
extensions proposed in the present paper, the original method
by Elmetennani et al. is explained. This entire section is a
summary of the works of Elmetennani et al. in [9] and [10].
For further detail, refer to [9] and [10]

A. Approximate model
The approximate model uses the separation principle

T (x, t) =

∞∑
j=1

γj(x)ξj(t) (6)

with spatial basis functions γj(x) and temporal weight
functions ξj(t). The basis functions γj(x) are fixed as radial
Gaussian functions

µj(x) = exp

(
−1

2

(
x−mj

σj

)2
)
, (7)

which are distributed along the length of the pipe with their
mean value md. To remove bias from the basis functions
µj(x), they are scaled such that

∑d
j=1 γj(x) = 1 holds:

γj(x) =
µj(x)∑d
j=1 µj(x)

. (8)

Equation (8) already includes the reduction of dimension.
The infinite sum from (6) has been reduced to d summands,
thereby reducing the system order to d. This reduction leads
to the approximate temperature distribution

T (x, t) ≈ T̂ (x, t) =

d∑
j=1

γj(x)ξj(t) . (9)

Uniform spatial discretization with Nx knots with a distance
∆x and replacing T̂ (x, t) with a spatially discrete T̂ (t) =[
T̂ (0, t), . . . , T̂ (Nx∆x, t)

]
in (2) results in

Γξ̇(t) + uΓxξ(t) = S(t) , (10)
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with Γ ∈ RNx×d being a column matrix of the values of
each γj at the mentioned grid points and Γx for dγj

dx . S(t) ∈
RNx is the column matrix containing the spatially discretized
values of s(x, t). Introducing A = −(ΓTΓ)−1ΓTΓx, B =
(ΓTΓ)−1ΓTS(t) and C = [γ1(L), . . . , γd(L)] the system can
be brought into nonlinear state space form

ξ̇(t) = Aξ(t)u+B(t)

y(t) = T̂ (L, t) = Cξ(t)

ξ(0) = (ΓTΓ)−1ΓT T̂ (0) .

(11)

B. Control structure

The controller is designed using the Lyapunov stability
criterion. Thereby, the tracking problem is split into two
parts:

1) Define a nominal plant with constant disturbance S
and create a controller with nominal input u such that

lim
t→∞

e(t) = lim
t→∞

(y(t)− yref(t)) = 0 . (12)

2) Create a controller for the real system that guarantees

lim
t→∞

e(t) = lim
t→∞

(y(t)− y(t)) = 0 . (13)

where yref is the desired outlet temperature trajectory. The
inner loop Lyapunov controller stabilizes the nominal track-
ing error, while the outer loop error stabilizer ensures conver-
gence of the real system towards the nominal system. Combi-
nation of both systems ensures asymptotic convergence of the
real system output towards the reference. As this convergence
is not bound to parameters of the real system, robustness in
presence of parametrical uncertainties is granted by design.

C. Inner loop Lyapunov controller

Based on (12), a Lyapunov candidate V = 1
2e
T e can be

defined. With ė = C
[
Aξ +B

]
− ẏref, it follows that

V̇ = ė e =
[
C
[
Aξ +B

]
− ẏref

]
e . (14)

Introducing K ∈ R+ allows to guarantee stability using the
following equation forcing the derivative to be negative

V̇ = ėe =
[
C
[
Aξ u+B

]
− ẏref

]
e = −KeT e < 0 . (15)

Solving for u leads to a control law for the nominal plant
model

u(t) =
−K e(t)− CB + ẏref

CAξ(t)
, (16)

which guarantees asymptotic convergence of the nominal
system output towards the reference.

D. Outer loop Lyapunov controller

Applying the same method to the error e = y(t) − y(t)
leads to the equation

ẏ(t)− ẏ(t) +K [y(t)− y(t)] = 0 . (17)

In order to introduce the system input u to the equation,
a phenomenological consideration of the system output is
used. The relative degree of the system being one allows

to represent the derivative of the system output as in the
following equation:

ẏ(t) = F (t) + αu(t) , (18)

with F (t) continuously updated according to

F (t) = ˙̂y(t)− αu(t− τw) . (19)

with ˙̂y obtained using any derivative estimation method for
noisy data and τw being the measurement window used for
the estimation. Using K = K = K for simplicity, this
representation leads to the control law

u(t) =
1

α

(
− F (t) + ẏref +K(yref − y)

)
, (20)

with the constant α = CAξ|ξ0 calculated for a reference state
ξ0. In defining α for a reference, the need for an observer
for the states ξ is eliminated, which can be interesting for
practical use. In this work, the advantages of choosing α
dynamically, replacing the model reduction to allow for
improved observer performance and expanding the model
onto the pipe walls are investigated. This takes the theoretical
approach [10] one step closer to a real world implementation,
even though more aspects will need to be considered.

IV. MODEL REDUCTION

The model reduction used in [9] and [10] is only used
for calculation of the factor α(t), which is assumed to be
constant in [10]. This work proposes a dynamic consideration
of the nonlinearity described by α. For this cause it is
important to minimize the error between the states of the
reduced order model and the true system states. The radial
basis functions used in [9] and [10] are independent of the
physical description of the solar plant. Hence, the use of
simulation data, which are easily available using for example
finite-differences or more elaborate methods, can improve the
choice of the basis functions. This is the case for the proper
orthogonal decomposition (POD) method, which can be used
to create physically motivated basis functions and has been
applied to thermal systems successfully as, e.g., in [12].

A. Proper Orthogonal Decomposition

The POD works as follows: Given a typical solution of
the PDE y(t, x) with t ∈ [0, tend] and y(·, x) ∈ H for a
suitable Hilbert space H with inner product 〈·, ·〉. The POD
determines the (orthogonal) basis functions γj(x) ∈ H by
maximizing the projection of y onto the γj(x), which yields

max
γ̃1,...,γ̃d

∫ tend

0

d∑
j=1

〈y(x, t), γ̃j〉2dt, s.t.〈γ̃i, γ̃j〉 = δi,j ,

with δi,j being the Kronecker Delta. The solution to this
optimization problem can be found in, e.g., [13]. For a set
of discrete simulation data consisting of spatially discrete
snapshots yi = y(ti, x) ∈ RNx representing the discrete
temperature distribution at time steps ti, i = 1 . . .Nt the
procedure can be applied as follows [13]:

1) Construct Y = [y1, . . . , yNt ] ∈ RNx×Nt .
2) Calculate correlation matrix R = Y Y T ∈ RNx×Nx .
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Fig. 2. Simulation input for creation of POD modes

3) Obtain Eigenvalues and eigenvectors from an Eigen-
value decomposition of R: [γ,Λ] = eig(R) .

4) POD basis functions {γ}di=1 = γ·,i ∈ RNx and
respective Eigenvalues λi = Λii, i = 1, . . . , d .

B. Application to the solar collector

The snapshot-data Y is obtained using simulation data
generated by a finite difference simulation of (2) with charac-
teristic input and disturbance trajectories. As Tl(t) is assumed
to undergo only slight changes during operation of the solar
plant, its value is fixed at 180 ◦C, while s and u follow the
trajectories given in Fig. 2 with spatially constant s(x, t).
Using the simulation data directly as snapshot data set Y
leads to bad results. This is caused by two effects: First, long
stationary periods will force the quadratic cost function in
(21) to solely focus onto the stationary behavior and not onto
the dynamics. Second, the POD method will only reconstruct
the boundary conditions accurately if they are homogeneous
[12]. The first point is addressed by carefully selecting non-
equidistant time steps ti with

t1 = 0,

ti = arg min |ti|, (21)
s.t.max

x
|y(ti−1, x)− y(ti, x)| ≥ 0.005 K and ti ≥ ti−1.

The second problem is solved by an adjustment which at
the same time removes the mean value from the snapshot
data known as centering trajectory approach. Therefore, the
modified data set Ỹ with ỹi defined by

ỹi =
1

yi(0)

yi − 1

Nt

Nt∑
j=1

y(tj , ·)

 . (22)

is used. Here, the term yi(0) scales the snapshots using the
left boundary value, whereas the time average is subtracted
in the sum-term. This procedure results in a dataset, which
contains homogeneous snapshots as Tl is kept constant. The
choice of u and s ensure, that the running in behavior of
the plant and reaction towards disturbances and setpoint
changes are included as well. Applying the algorithm above
to this dataset leads to the basis functions displayed in Fig.
3. For better comparison with the approximate model from
[9], the basis functions from [9] (radial Gaussian functions)
are depicted above. On can clearly observe, that the basis
functions generated via POD show typical shapes of physical
modes, which indicates a better physical representation of the
process within the reduced order model.

0 0.2 0.4 0.6 0.8 1
0

0.5

Fig. 3. Modes of the radial Gaussian approach (top) and the proper
orthogonal decomposition approach (bottom)

Fig. 4. Simulation results of model reduction methods with d = 8 modes

C. Verification of the model reduction

The reduced order model is now validated using two
different methods: First, results of a simulation of the plant
behavior using the POD modes is compared to a high
dimensional finite difference simulation of the plant and to
the approximate model from section III. Second, the system
behavior in the frequency domain is analysed concerning the
anti-resonance modes first presented in [14]. A comparison
of the exactness of the model reduction procedures con-
cerning highly resolved simulations is displayed in Fig. 4.
Thereby, the relative error

∆(x, t) =

∣∣∣∣∣∣ T̂ (x, t)− Treal(x, t)

mean
x,t

(Treal(x, t))

∣∣∣∣∣∣ . (23)

is depicted. Note that for both (radial basis functions and
POD) eight basis functions are used as in [9]. Further note
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Fig. 5. Gain response for model reductions and reference at u = 1ms−1

that the simulation data used to derive Fig. 4 significantly
differed from the snapshot data by choosing different
functions for u(t) and s(t).

The comparison of both sets of basis functions shows
low errors for stationary behavior of the plant for t > 250 s
for both of them. But especially for sequences of big
changes in input and disturbance terms the model reduction
using radial basis functions creates larger errors and
overall worse performance than the POD model. Even
though the performance level is good (∆ < 0.2 %), a
smaller error - as indicated from the POD - will allow
higher controller gains K and improved performance of
observers, as the difference y−yref will be met more exactly.

Another comparison of interest is the systems gain re-
sponse. Again, simulations using the POD method and radial
basis functions are compared to a high dimensional finite
difference simulation of the system. The gain response plots
shown in Fig. 5 are obtained applying harmonic oscillations
of the sun intensity to the system at constant fluid velocity.
For further detail on the procedure, refer to [14]. The
frequency of the expected anti-resonance modes is correct
for both model reductions. The model reduction using ra-
dial basis functions overestimates those modes, while the
POD model reduction properly catches the first three anti-
resonance modes. The comparison of the model reduction
procedures show that the POD model reduction yields better
results for relevant model properties and is thus used to
replace the Gaussian model reduction. This replacement
promises higher controller gains and also improved perfor-
mance in observers and calculation of process values.

V. EXTENSION OF THE CONTROLLER

The controller presented in section III is based on the
simplified model of the plant (2). As the model in (2) does
not contain the temperature of the surrounding metal pipe,
it has to be assumed, that T = ϑ holds when applying this
controller. This assumption will not be fulfilled in a physical
plant and thus limits the applicability of the controller. In
the following we will relax this assumption by extending the
controller scheme from (2) to (5) along with incorporating
the model reduction and a third improvement.

A. Application of the model reduction

Beginning with (5) the model reduction can
again be applied to the oil and wall temperatures,

i.e. T̂ = Γξ, ϑ̂ = Γζ, leading to

ξ̇(t) = u(t)Aξ(t) +A′
(
ξ(t)− ζ(t)

)
(24)

ζ̇(t) = A′′
(
ξ(t)− ζ(t)

)
+B′(t) (25)

y(t) = Cξ(t) (26)

with respective initial and boundary conditions as before.
A′ = −λId×1, A′′ = λ̂Id×1 and B′(t) =

(
ΓTΓ

)−1
ΓT p̂(t).

For a constant disturbance p̂(x, t) = p̂, a nominal system can
be defined analogously to Section III:

ξ̇(t) = u(t)Aξ(t) +A′
(
ξ(t)− ζ(t)

)
(27)

ζ̇(t) = A′′
(
ξ(t)− ζ(t)

)
+B

′
(t) (28)

with B
′
(t) =

(
ΓTΓ

)−1
ΓT p̂.

B. Inner loop Lyapunov control
Using the same procedure as in section III, a nominal error

e(t) = y(t)− yref(t) is defined and its derivative represented
by ė(t) = Cu(t)Aξ(t) +CA′

(
ξ(t)− ζ(t)

)
− yref(t). Again,

the Lyapunov function V = 1
2e
T e is set up, which yields

V̇ = ė e (29)

=
[
C
[
uAξ +A′

(
ξ − ζ

)]
− yref

]
e (30)

To achieve stability of the nominal tracking error, negative
definiteness of V̇ is enforced using K ∈ R+[

C
[
uAξ +A′

(
ξ − ζ

)]
− yref

]
e = −KeT e (31)

⇔ u(t) =
−K e+ CA′

(
ζ(t)− ξ(t)

)
+ ẏref

CAξ(t)
(32)

The primary difference to the nominal control law in (16) is
in the formerly unknown disturbance term, which has been
replaced by the difference between the oil and pipe wall
states. Thus, the extended controller uses more knowledge
about the process to control.

C. Outer loop error stabilizer
To reach tracking for the real model the same procedure

is applied to the difference between real system output
and nominal system output e(t) = y(t) − y(t). Using the
Lyapunov candidate V (t) = 1

2e
T e and forcing V̇ = −KeT e

with K = K = K, leads to the necessary condition for
stability of the tracking error:

ẏ(t)− ẏ(t) +K
[
y(t)− y(t)

]
= 0 (33)

As neither the nonlinear term nor the system output have
changed, the relative degree of the system is still one. This
allows to represent the derivative of the system output as

ẏ(t) = F (t) + α(t)u(t) + β(t) (34)

with α(t) = CAξ(t) and β(t) = CA′
(
ξ(t) − ζ(t)

)
. This

leads to the final control law

u(t) =
1

α(t)

(
−F (t)+ ẏref(t)+K

[
yref(t)−y(t)

])
, (35)
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Fig. 6. Simulation input data for validation: I is the solar irradiance profile,
Tl describes the left boundary condition, Tα,β is the improved controller,
Tlit the literature controller and u the input trajectories respectively.

with F (t) continuously updated according to F (t) = ˙̂y(t)−
α(t)u(t − τ) − β(t). As opposed to the representation in
section III, the parameters α and β are not created for a
given setpoint and then set to a constant value but calculated
dynamically. This dynamic calculation requires knowledge of
the system states, which can e.g be gained using an observer.
Using the improved model reduction presented in section
IV greatly improves the accuracy of these observers, as the
overall model accuracy is increased. As the parameter α is
inverted during calculation of the control law, α is bounded
below −0.1 to prevent α = 0.

VI. CONTROLLER RESULTS

For validation of the proposed control law, several simu-
lations have been conducted using the simulation procedure
described in [2] without consideration of heat losses to the
environment. The test scenario in Fig. 6 is taken from sun
intensity measurements in [2]. In [10] results for K = 0.005
have been shown. For this very low controller gain the
difference between the former and the extended Lyapunov
controller are quite small as the system response is slow and
the improvements do not affect the result that much. For an
increased K = 0.05 (refer to Fig. 6), the reference controller
from the literature tends to create high frequent oscillations

in the system input and also shows oscillations in the system
output T . Using the enhanced controller, the oscillations in
T are cancelled out and a smooth first-order behavior can
be observed. Also in u an improvement can be seen: Even
though the amplitude of the changes in u is increased, the
frequency of u is much smaller. Hence, by introducing more
system knowledge, the available tuning range of parameters
has been improved significantly allowing for more aggressive
controller settings which reduce settling time.

VII. CONCLUSION
The bilinear Lyapunov controller from literature has been

improved in this paper in regard of three aspects: A novel
model reduction has been presented, which shows increased
precision. Further, the extension of the control structure with
the pipe temperature and the choice of variable α along
the improved model reduction allows for a drastically more
aggressive tuning of the controller without taking the risk of
oscillations. Ongoing work will deal with the design of the
necessary observers and a comparison of enhanced Lyapunov
controller with distributed control strategies.
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