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Abstract We introduce a model to compute the annual performance of a helio-
stat field. We take into account topography, tracking errors, and the position and
intensity of the sun. An approach is introduced, which improves on the otherwise
expensive pairwise comparison to calculate shading and blocking. Because the com-
putational time is reduced significantly, the presented implementation is sufficiently
fast to allow for heliostat field layout optimization within a couple of hours. The
optimization is executed via a genetic algorithm, which optimizes the heliostat po-
sitioning parameters as well as other design parameters, e.g. receiver tilt angle. A
novel approach is used to reduce the search domain. Because the search domain
delivers several local optima with comparable values of the objective function, the
objective function is augmented. We use smoothing functionals to disperse the local
optima. A field layout is optimized on a hilly ground in South Africa, with additional
constraints on the heliostat positions.

1 Introduction

Solar tower plants generate electric power from sunlight by focusing concentrated
solar radiation on a tower-mounted receiver, see Fig. 1. The collector system uses
hundreds or thousands of sun-tracking mirrors called heliostats, to reflect the inci-
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dent sunlight onto the receiver where a fluid is being heated up. Today’s receiver
types use water/steam, air or molten salt to transport the heat. Usually, the heat of
the fluid is exchanged into steam which powers a turbine to generate electricity.

Fig. 1 Solar tower plant PS10, 11 MW in Andalusia, Spain. [Source: flickr]

Solar tower plants are not yet cost-competitive [6]. Therefore, concentrating so-
lar thermal power plant markets and projects today only evolve where a political
framework ensures financial incentives. For commercial solar tower project devel-
opments, a conceptual plant design has to be determined in an early planning stage.
Designing commercial power plants aims always at finding the most economic plant
design under a given set of constraints.

In this paper a model and optimisation algorithm for heliostat field layout is in-
troduced. The underlying solar tower model is presented in section 2. Because the
model is used in an optimisation process, a computationally efficient calculation of
insolation with enough accuracy is needed.

2 Ray-tracing model

A solar field is given by N heliostats Hi, each with an area Ai. For the time-dependent
solar angles θsolar and γsolar, and the direct normal irradiation IDNI, the ray-tracing
model computes the received optical radiation over a year, while taking cosine ef-
fects ηcos, shading and blocking ηsb, heliostat reflectivity ηref, atmospheric attenua-
tion ηaa and spillage losses ηspl into account. For each heliostat Hi the time depen-
dent received optical radiation is defined by

Pi(t,d) = Ai · IDNI(t,d) ·ηcos,i(t,d) ·ηsb,i(t,d) ·ηref,i(t,d) ·ηaa,i(t,d) ·ηspl,i(t,d),
(1)

at time t of the day d. At the end of this section the annual received radiation of the
full plant is computed, which depends on the sunrise and sunset of every day in the
year. We essentially use the same model as [7], the main difference being that we
use a hierarchical ray-tracing method, and speed-up the computation of shading and
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blocking effects.

Hierarchical ray-tracing method
The rays have their origin in the sun, hit the surface of a heliostat and are reflected
in direction of the receiver. We are interested in the reflected power of a heliostat,
which is hitting the receiver. To detect the optical flux over the heliostat’s surface
we are using a hierarchical approach of ray-tracing methods [1, 7], where the com-
plete flux is computed by numerical integration with the use of Gauss-Legendre
quadrature rule. Thus, the surface is partitioned in a number of regions, each with
a representative ray. The influence on the reflection by shading, blocking and ray
interception at the receiver is determined just for this single ray as representative
for the whole region. Each area is weighted by the irradiance of its representative
ray. Finally all values are summed to get the power of the heliostat. The number
of representative rays per heliostat is given by the selected order of the Gaussian
quadrature rule.

Shading and blocking
For each representative ray of a heliostat, shading and blocking effects by neigh-
bouring heliostats or the tower must be detected. This is the most expensive part
of a simulation. The brute-force approach of a pairwise comparison of each ray
with all heliostats is computationally expensive. The computational complexity can
be reduced by only considering a subset of heliostats that can potentially shade or
block a heliostat [1]. To determine this subset, a data structure is needed which is
fast in nearest-neighbour search and in range-search.

Therefore, for better performance, a two-dimensional bitboard index structure is
used. The idea is to cover the two-dimensional x-y space with an equidistant grid
such that the space is sub-divided in distinct quadratic cells. Inside those cells the
information is stored if nearby is a heliostat.

For a nearest-neighbour search, just the surrounding cells around a cell have to
be checked, instead of all heliostats. The same holds for a range-search, where e.g.
all heliostats in one direction are wanted. Just the containing cells of the range have
to be checked. In some test cases we could accelerate the simulation by factor 100.

Annual received optical radiation
The annual received optical radiation of the whole power plant is given by the sum
of the annual received optical radiation of all heliostats Hi,

Eyear =
N

∑
i=1

E i
year =

N

∑
i=1

365

∑
d=1

(∫ sunset

sunrise
Pi(t,d) dt

)
, (2)

with power Pi given in equation (1). The sunrise and the sunset depend on the day
d. The value of the received optical radiation over a year Eyear, is the basis for
each objective function in the optimisation process, see section 3. For each different
configuration of the solar field, this value has to be computed by a simulation.

The time integral from sunrise to sunset in (2) is solved numerically. In com-
mon practice, an iteration with constant time step [3, 5, 10] is used. Noone et al. [7]
propose an iteration with constant solar angle step, which allows the same accuracy
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but needs fewer iterations. Both approaches approximate the time integral with mid-
point rule. For higher accuracy other numerical quadrature rules are recommended.
The herein proposed Gauss-Legendre quadrature rule uses non-constant time (or
solar angle) steps:∫ b:=sunset

a:=sunrise
Pi(t,d) dt ≈ b−a

2

n

∑
i=1

wi · f
(b−a

2
ti +

a+b
2

)
, (3)

with n Gaussian time-abscissas ti and Gaussian weights wi. Additionally the sum
of the days can be approximated by using a sort of trapezoidal rule with just m ∈
{1,2, . . . ,365} days.

3 Optimisation

Various effects – cosine effects, shading and blocking of heliostats (presented in
section 2) – reduce the efficiency of the solar tower. An objective of an optimisation
is to discover an optimal positioning of the heliostats in the field. In the literature,
the general structure of the heliostat arrangement is predefined by assumptions, e.g.
radial staggered, circles or spirals [7–10]. In these cases, an optimisation means to
find an assignment of about two to four parameters which define the structure, e.g.
radius or angle of a spiral. However, the assumption of the structure leads to many
comparable local optima [9]. In addition, these optimisations generate a regular or
symmetric structure which could be suitable for nearly flat areas but not for a hilly
topology.

In this work, we introduce an approach where the heliostats’ alignment does not
depend on any structure. Namely, the heliostats obtain the highest amount of free-
dom in order to find their optimal position. For that purpose, we use a genetic algo-
rithm [2, 4] with a novel genotype-representation which reduces the search domain
of the algorithm. The only restriction of the approach is that neighbouring heliostats
must be separated by a minimum distance in order to prevent a collision.

Genetic algorithm
The functionality of a genetic algorithm is inspired by the biological evolution. A
population of candidate solutions, called individuals, evolves in order to provide
better solutions for an optimisation problem. Each individual has a set of proper-
ties, called genotypes or genomes. Usually, a genotype is represented as an array
of several genes such that a unique assignment of gene and property exists. Two or
more individuals are combined by mixing the genotypes gene by gene in order to
generate a new population. Using this approach for the position of heliostats, the
sets of heliostats from different heliostats are “ordered” by an artificial identifier.
This identifier is defined by the position of the corresponding gene in the array. To
generate a new population of individuals from a set of evaluated individuals, four
main operations are used by the genetic algorithm: First, two or more individuals
are randomly selected by roulette-wheel method from the old population according
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to their fitness values. The properties of the selected individuals are combined ac-
cording to the fitness value of their heliostats. Therefore the heliostats of all parent
individuals are sorted in descending order according to this value. Successively the
best heliostats are picked for the new individual. If any selected heliostat causes a
conflict, it is neglected and the next best heliostat is picked. In case that there are
no more heliostats, the remaining heliostats are generated by random. Afterwards,
the heliostats are mutated by locally change their position. The whole population is
simulated to get the fitness values for the new individuals. The algorithm terminates
if a stop criterion is satisfied, e.g. maximum simulation time or maximum number
of generations.

Objective functions
The purpose of our optimisation is to find an individual which has a high efficiency.
But additionally we aim to reward a solution which looks “nice”, which means, that
the distribution of the heliostat positions are somehow smooth. We scalarise our
objective function, i.e. we look for a solution

max
I∈P

F(I ) = max
I∈P

 n

∑
j=1

w j ·
f j(I )− min

I∈P
f j(I )

max
I∈P

f j(I )− min
I∈P

f j(I )

 , (4)

All objective functions f j are normalised by the minimum and maximum value of
the whole population P , so that the normalised value lies in the range between 0
and 1. The weights of the objectives w j > 0, with ∑

n
j=1 w j = 1, are the parameters

of the scalarisation. Every objective function f j has to be maximised. If there is an
objective function f̂ j that should be minimised, we set the corresponding objective
function as f j :=− f̂ j which is maximised.

The model described in section 2 delivers in equation (2) the annual received
optical radiation, which is used as objective funtion

f1(I ) := Eyear(I ). (5)

To reward solutions, which are looking “nice”, additional smoothing functionals are
created. The variance of the k-nearest-neighbour distance is given by,

f2(I ) =−
∫∫
|∇KNN|2 dxdy≈− ∑

T∈T
AT ·

(
∂KNN(T )

∂x
+

∂KNN(T )
∂y

)2

, (6)

T denotes the triangulation of the heliostats Hi in the x-y plane. AT is the area of a
triangle T ∈T . For each heliostat Hi the k-nearest-neighbour distance is given by

KNNi = ∑
H`∈Nk(Hi)

|pi− p`| (7)

where Nk(Hi) is the set of the k nearest neighbours of Hi and pi and p` are the
positions of the heliostats. By linear interpolation the k-nearest-neighbour distance
is piecewise defined for each triangle T ∈T which is denoted by KNN(T ).
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Another smoothing functional is the density distribution, which is given by

f3(I ) =−
∫∫
|∇ρ|2 dxdy≈− ∑

T∈T
AT ·

(
∂ρr(T )

∂x
+

∂ρr(T )
∂y

)2

. (8)

For each heliostat Hi the density is given by

ρ
r
i =

∣∣{H` ∈I | |pi− p`| ≤ r}
∣∣ (9)

where ρr
i is the number of Hi–neighbouring heliostats inside a defined radius r.

Again by linear interpolation the density is piecewise defined for each triangle
T ∈T which is denoted by ρr(T ).
The variance of the kNN distance and the density distribution functionals aim to cre-
ate a field of equally distributed or dense heliostats. The importance of the smooth-
ing functionals can be adjusted by using the weights described in equation (4).

Testing the genetic algorithm
By combining the three functionals of energy, kNN and density, different results
are reached, see Fig. 2. The produced energy is high for all combinations. By taking
kNN and density into account, the optimisations yields a field in which the heliostats
stand closer together and are evenly distributed. The single outliers that occur due
to mutation could be eliminated during a post-processing step.

energy: 76.67 GWh energy: 76.64 GWh energy: 74.98 GWh
wenergy = 1 wenergy = 0.8 wenergy = 0.6
wknn = 0 wknn = 0.1 wknn = 0.2

wdensity = 0 wdensity = 0.1 wdensity = 0.2

Fig. 2 Comparison of the best power plant configurations after optimisation with different weights
for the density and knn functional. The color gradient from green to red shows the annual received
optical radiation for each heliostat.

Using the smoothing functionals, it is possible to create “nicer looking” solu-
tions that result in comparable energy production. For further fine-tuning one could
also try to gradually adjust the weight of the functional during the course of the
optimisation.
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4 Application

With the above introduced optimisation algorithm a solar power plant can be opti-
mized. To optimize the heliostats alignment of a planned pilot plant in South Africa
we had to extend the model in such a way, that the heliostats can be grouped by a
joint pod system, where they are positioned on an arbitrary truss construction. So,
instead of positioning single heliostats, groups of heliostats with fixed relative posi-
tions are placed on the field. The pod systems are not allowed to touch each other,
this includes all heliostats and the truss construction. Fig. 3 shows the distribution
of the heliostats before and after the optimisation.

Initial configuration After 100 optimization steps

Fig. 3 Optimisation of a solar power plant with pod systems.
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