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Abstract. New approaches for the computation of the sampling points for an annual simulation of a solar tower power 
plant are presented. The annual sun-path in azimuth and elevation and in ecliptic longitude and the hour angle are 
considered. Real measured weather data is considered in the computation of these sampling points. 

INTRODUCTION 

The simulation of solar tower power plants becomes increasingly important. It allows to assess the expected annual 
energy yield and to optimize the planned power plant configuration before construction. With this gain of information, 
the produced energy can be increased, and the costs can be reduced. For a heliostat field layout optimization, the 
underlying simulation model should be accurate and fast. As optical simulation model, the convolution method, as in 
e.g. UHC, Delsol and HFLCAL, or recently more and more the Monte-Carlo ray-tracing method, as in e.g. SolTrace, 
Tonatiuh and STRAL [1,2] are used. The main influences on runtime are the spatial (number of integration points or 
–rays, respectively) and temporal (number of time points) discretization. A higher discretization leads to a higher 
accuracy, but also to a higher runtime. 

For the annual simulation, usually weather data from clear sky models is used, e.g. the clear atmosphere model 
from Hottel [3] or the meteorological radiation model (MRM) [4]. This data shows a symmetric behavior: a day is 
symmetric before and after noon and a year is symmetric before and after June 21st. This information is used to strongly 
reduce the number of temporal sample points [5]. 
 

FIGURE 1. Plot for the DNI distribution over a whole year with the MRM model (a) and the measured weather data (b) for 
Mumbai from EnergyPlus. 

But for industrial performance computations, real measured weather data (e.g. from a TMY file) should be used. 
For this case, the symmetric approach fails, compare with Fig. 1. To consider non-symmetric weather data for an 
annual simulation the brute-force method would be to simulate all 8760 hours of a year (weather data is usually 
provided in hourly data). But of course, this method is computationally too costly.  

(a) (b)
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With a smart choice of the sampling points, the number of simulations can strongly be reduced, while maintaining 
accuracy. In this paper, different temporal integration approaches are presented and discussed. In the following, two 
main concepts are presented: the temporal and the angular integration. 

TEMPORAL INTEGRATION  

The annual energy production ܧyear of the solar tower power plant can be computed with the sum over all days ݀ 
and the integral of the daily power production, 

 

yearܧ	 ൌቆන ܲሺݐ, ݀ሻ	dݐ
ୱ୳୬ୱୣ୲

ୱ୳୬୰୧ୱୣ
ቇ

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ୀ:	ாሺୈ୍ሺௗሻሻ

ଷହ

ௗୀଵ

, 

 

EQUATION. 1 

Where ܧሺDNIሺ݀ሻሻ describes the direct normal irradiation at day ݀. The computation of the annual energy production 
can be accelerated by dividing the underlying problem into two sub-problems: 

- Reducing the number of samples per day by quadrature rules. 
- Reducing the number of days by clustering.  

In the following both approaches are discussed. 

Quadrature Methods for Intraday Sampling 

The intraday energy ܧሺDNIሺ݀ሻሻ for the above chosen days has to be computed, which is defined as the integral of 

the power production from sunrise to sunset,  ܲሺݐ, ݀ሻ	dݐ
ୱ୳୬ୱୣ୲
ୱ୳୬୰୧ୱୣ . Quadrature methods can be used to approximate the 

integral by using specific sampling points and their according temporal weight. Because hourly data is provided by 
the weather file, so far just quadrature methods with a constant time step of one hour are used, e.g. the summed 
midpoint and summed trapezoidal rule. But to reduce the number of needed sampling points per day, or to apply 
quadrature rules with higher order (e.g. Gauss-Legendre quadrature rule) a higher temporal resolution than just hourly 
constant data is helpful and would further increase the accuracy. 

It is possible to achieve a higher resolution from the hourly averaged measured data by using data reconstruction. 
The main idea of reconstruction is to replace the hourly constant DNI values by a linear curve, see Fig. 2. Thus, every 
instant of time will be reconstructed by replacing the piecewise constant values by piecewise linear curves through 
the midpoint of each interval. The DNI value at day ݀ around the time ݐ changes as follows: 

 

DNIሺݐ, ݀ሻ ൌ 	DNIሺݐ, ݀ሻ  ሻݐሺߪ	 ⋅ ሺݐ െ ,ሻݐ ݐ ∈ ቂݐ െ
௱௧
ଶ
, ݐ	 

௱௧
ଶ
ቃ, 

 

EQUATION. 2 

 
With instant of time ݐ, its originally measured value DNIሺݐ, ݀ሻ, and reconstructed slope ߪሺݐሻ. For each curve, it 

must hold that it is conservative, which means, that its integral is equal to the integral of the constant curve. 
Furthermore, the linear curves should not deliver overshoots, such that unphysical values are reached. Therefore, we 
just use limiters with the TVD (total variation diminishing) property [6]. 

For the different reconstruction approaches the error is computed. A clear sky scenario, as used in the MRM model, 
as well as a cloudy sky scenario was investigated. The validation shows that the superbee limiter can reduce the error 
from the hourly averaged values by 85% for a clear sky scenario and by 31% for the cloudy sky scenario, see Fig. 2. 
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FIGURE 2. Reconstruction with the superbee limiter (red) of the hourly averaged measurements (blue) for a clear sky scenario 
(a) and a cloudy sky scenario (b). 

 
With this data reconstruction, the following quadrature methods can be applied to approximate the power production 

from sunrise to sunset,  ܲሺݐ, ݀ሻ	dݐ
ୱ୳୬ୱୣ୲
ୱ୳୬୰୧ୱୣ : 

1. Midpoint rule, 
2. Trapezoidal rule, 
3. Gauss-Legendre quadrature rule, 
4. Constant azimuthal quadrature rule. 

The last method was proposed by Noone et al. [7] who recommend using equidistant azimuthal steps (which does 
not behave linearly with the time). 

Clustering of Days 

The clustering of days is used to reduce the number of computations. While the Selection method simply selects a 
subset of days, the Aggregation method considers all days. A reduction of the number of days is simply achieved by 
aggregating several days into one representative day. In the following, both methods are presented. 
 

1. The Selection method choses a subset of ݉ ≪ 365 days of the whole year, with	1 ൌ ݀ଵ ൏ ⋯ ൏ ݀ ൏ ⋯ ൏
݀ ൌ 365. Each selected day is representing the whole period between two selected days, see Fig. 3. The 
summed trapezoidal rule is used to approximate the annual energy production, 
 

yearܧ ൌܧሺDNIሺ݀ሻሻ
ଷହ

ௗୀଵ

ൎ 	 
݀ାଵ െ ݀

2
	൫ܧሺDNIሺ݀ାଵሻሻ  ሺDNIሺ݀ሻሻ൯ܧ

ିଵ

ୀଵ

. 
 

EQUATION. 3 

 
 Thus, with this method, the non-selected days are just ignored. 

 
2. The Aggregation method picks up the drawback of the Selection method, by considering each day of the year. 

Thus, once again a subset of ݉ ≪ 365 days with 1 ൌ ݀ଵ ൏ ⋯ ൏ ݀ ൏ ⋯ ൏ ݀ ൌ 365 is chosen. But instead 
of using the original DNI of the day ݀, now the averaged DNI of the neighboring days is used. Thus, the 
aggregated DNI is given by 

(b) (a) 
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DNI෪ ሺ݀ሻ 	ൌ 	 
2

݀ାଵ െ ݀ିଵ
	DNIሺ݀ሻ

ௗೖାௗೖశభ
ଶ

	ୀ	
ௗೖషభାௗೖ

ଶ

, 

 

EQUATION. 4 

 
see Fig. 4. Finally, the annual energy production is given by the summed trapezoidal rule, 
 

yearܧ ൌܧሺDNIሺ݀ሻሻ
ଷହ

ௗୀଵ

ൎ 	 
݀ାଵ െ ݀

2
	ቀܧ൫DNI෪ ሺ݀ାଵሻ൯  ൫DNI෪ܧ ሺ݀ሻ൯ቁ

ିଵ

ୀଵ

. 
 

EQUATION. 5 

 

FIGURE 3. Clustering of days using the Selection method. Every third day is chosen as representative day. 

 
 
 

FIGURE 4. Clustering of days using the Aggregation method. Here, the three days	݀ିଵ, ݀, and ݀ାଵ are aggregated to one day.  
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ANGULAR INTEGRATION 

A second, completely different approach for computing the annular energy production ܧyear considers the sun path 
in the domain of the solar angles instead of the time domain. Therefore, the DNI needs to be transformed from the 
time domain into the angular domain. Then, two-dimensional quadrature rules can be used to compute the annual 
energy, e.g. 

1. Midpoint rule, 
2. Trapezoidal rule, 
3. Gauss-Legendre quadrature rule. 

The underlying quadrature method defines a region in the angular-solar domain. All DNI values of this region are 
aggregated to one average DNI value, while the number of data points resemble the temporal weight of this region. 
For the solar domain, the following two coordinate systems are proposed: 

1. Azimuth and elevation, 
2. Hour angle and ecliptic longitude. 

While Schöttl et al. [8] use the azimuth and elevation domain, Grigoriev et al. [9] propose the transformation to the 
hour angle and the ecliptic longitude which gives further enhancements, such as the almost rectangular shape of the 
integration domain, see Fig. 5. 

 

 

 

 

FIGURE 5. Integration domain for the transformation to azimuth and altitude with a midpoint grid (a) and to ecliptic longitude 
hour angle with a Gauss-Legendre grid (b).  

RESULTS 

Altogether, we have two (day clustering) times four (intraday sampling) different methods for the temporal 
integration and two (solar domain) times three (quadrature rules) different methods for the angular integration. Thus, 
we have 14 different methods which need to be compared. In the following all the different methods will be compared 
and the most suitable method will be investigated. 

 
For the temporal integration, the resulting plots of the intraday sampling show in Fig. 6 that with the Gauss-

Legendre quadrature the least number of samples per day are needed. As number of samples about four or five per 
day seem to be sufficient, obviously independent from the degree of symmetry of the DNI distribution. 
 
  

(a) (b) 
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FIGURE 6. Computation with four different quadrature methods for the intraday sampling on the 21st of June in the time domain 
with measured weather data from Almería (a) and Daggett (b). As reference solution, the midpoint rule with 1000 sample points 

was used. 

Using these 5 sample points per day the annual energy using the Selection method and the Aggregated method was 
computed for the DNI data from the measurements. 

 Fig. 7 shows clearly that with the Aggregated method significantly less points are needed for an accurate value of 
the annual energy. 

 

 
 

 
 

FIGURE 7. Computation of the annual energy with the constant Selection method and the Aggregated method for the DNI data 
from the measurements for Almería (a) and Daggett (b). As reference solution, 365 days are considered. 

For the integration in the solar domain spanned by the azimuth and elevation angle the number of sample points 
can be reduced further, see Fig. 8. For both location, Almería and Daggett the Gauss-Legendre and the Trapezoidal 
rule result in similar normalized deviation values. 
 

(a) (b) 

(a) 

(b) 
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FIGURE 8. Computation of the annual energy with the Azimuth-Elevation method for the DNI data from the measurements for 
Almería (a) and Daggett (b) with the three different quadrature methods. 

 

 
 

FIGURE 9. Computation of the annual energy with the Ecliptic Longitude – Hour Angle method for the DNI data from the 
measurements for Almería (a) and Daggett (b) with the three different quadrature methods. 

(a) 

(b) 

(a) 

(b) 
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As expected the deviation of the computation of the annual energy with the Ecliptic Longitude – Hour Angle 
method is the smallest, see Fig 9. This is due to the almost rectangular shape of the integration domain. Here the 
midpoint quadrature rule performs the best. 
 

Comparing all the different methods and summarizing the individual results for the temporal integration the total 
number of simulation points for the computation of the annual energy depends on many factors. For using measured 
DNI data in the simulation, different methods than the Selection method have to be chosen to get a reasonable result 
of the annual intercept energy with the smallest number of sample points. The new integration methods allow to reduce 
this high number of simulated days.  

CONCLUSION 

For industrial performance computations, real measured weather data should be used. For that case, smarter 
integration methods can be used, such that the simulation time is strongly reduced. With smart choices of the sample 
points the number of total simulation points for the computation of the annual energy can be reduced.  
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