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Abstract

The numerical computation of two-phase flows can be described with a Baer-Nunziato type PDE system. Within

this work closure laws for interfacial velocity and interfacial pressure are proposed such that the interfacial contact

discontinuity is associated with a linearly degenerate field. The resulting two-velocity two-pressure seven-equations

model is hyperbolic, consistent with the second law of thermodynamics, fulfills the non-resonance condition and is

symmetrizable. Because the system is in non-conservative form, appropriate numerical solvers have to be developed

which find the physically relevant solution where the jump conditions are consistent with the viscous profiles. In

this work an approximate path-conservative Godunov solver is presented, which uses a Suliciu-relaxation to get

a linearly degenerated characteristic field. A solution of the intermediate states of the Riemann problem can be

obtained with a careful weakening of the nonlinear Rankine-Hugoniot conditions at the contact discontinuity of

the volume fraction. By using the solution of the simplified Riemann invariants, it is ensured that at least six out

of eight original Rankine-Hugoniot conditions of the volume fraction are always fulfilled. Within a case study the

approximate Godunov-Suliciu solver is tested against several multiphase flow problems, and is compared with a

path-conservative entropy-preserving scheme.

Keywords: Two-phase flow, Hyperbolic system, Non-conservative terms, Finite volume method, Suliciu

relaxation, Godunov method

1. Introduction

To describe a two-phasic flow in general the conservation of mass, momentum and energy is supposed for both

phases. The homogeneous equilibrium model [1] is based on the assumption that the two-phase mixture behaves

as a single-phase fluid. It uses mean fluid properties that are weighted relatively to vapor and liquid content and

it is assumed, that both phases have equal velocities. This model is often used for the description of direct steam5

generation in a tube [2], [3], [4], [5].

The separated two-phase flow model [6] considers the phases to be artificially segregated into a liquid and a vapor

stream. Therefore the model bases on a system of six equations – three equations for each phase. These six-equations
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models are widely used in nuclear thermal-hydraulic codes (RELAP51, TRAC2, CATHARE3, SPACE4). In some

recent publications these models from nuclear thermal-hydraulic codes are used [7], [8]. As closure condition, equal10

pressure in both phases is assumed. Following Saurel and Abgrall [9], this choice yields ill-posed mathematical

models and results in numerical instabilities. As extension of the six-equations two-fluid model a Baer Nunziato

[10] type partial differential equation system is used. Drew and Passman [11] and Saurel and Abgrall [9] propose

the two-pressure two-phase model. An additional equation for volume fraction completes the system of equations.

This hyperbolic model allows simulations of liquid phase at negative pressure, while the pressure of the vapor phase15

remains positive, and vice versa. For the underlying problem appropriate numerical solvers have to be developed,

as the inhomogeneous model is in non-conservative form, has a low Mach number and stiff source terms [12].

This work is structured as follows. In Section 2 the two-pressure two-phase model with its thermodynamic and

mathematical properties are introduced. A standard concept for a finite volume scheme which solves the underlying

problem is described in Section 3, where the problem is solved using an entropy-preserving path-conservative20

scheme. In Section 4 an approximate Godunov-type method is developed by finding a Riemann solution of the

Suliciu-relaxated model. Both solvers are validated and compared against well-defined test cases in Section 5. In

Section 6 we draw a conclusion regarding the presented finite volume methods and give an outlook with possibilities

to extend this work.

2. Two-fluid two-pressure model25

The two-velocity two-pressure seven-equations model from Saurel and Abgrall [9] is generic for all materials or

fluids. The model can be written in the general non-conservative form [13],

∂tu + ∂xf(u) +B(u) ∂xu = s(u), (1)

1Reactor Excursion and Leak Analysis Program by Idaho National Laboratory

www.inl.gov/relap5.
2Transient Reactor Analysis Code by Los Alamos National Laboratory

nuclear.lanl.gov/nrc.shtml.
3Code for Analysis of Thermalhydraulics during an Accident of Reactor and safety Evaluation by Commisariat á l’Energie Atomique

www-cathare.cea.fr.
4Safety and Performance Analysis Code by Korea Atomic Energy Research Institute

www.kaeri.re.kr.
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with state vector u, flux vector f(u), non-conservative matrix B(u) ∈ R7×7, and source terms s(u):

u :=



α1

α1ρ1

α1ρ1v1

α1ρ1E1

(1− α1)ρ2

(1− α1)ρ2v2

(1− α1)ρ2E2



, f(u) =



0

α1ρ1v1

α1(ρ1v
2
1 + p1)

α1(ρ1E1 + p1)v1

(1− α1)ρ2v2

(1− α1)(ρ2v
2
2 + p2)

(1− α1)(ρ2E2 + p2)v2



, B(u) =



vi

0

−pi

−pivi 0

0

pi

pivi



. (2)

All solutions for the state vector u are in the set of admissible states,

Ω = {u ∈ R7 | α1 ∈ (0, 1), ρ1, ρ2, u1, u2, c1, c2 ∈ R+}. (3)

As parameters we have the density ρ, velocity v, pressure p, specific total energy E := u+ 1
2v

2, and specific internal

energy u. The subscripts 1 and 2 describe the two phases (e.g. liquid and gas). The subscript i describes the

interfacial property between both phases. So, vi and pi describe the velocity and pressure of the phase change

between phase 1 and phase 2. The volume fraction α1 describes the volumetric ratio of the phasic material. To

ensure that both phases are always everywhere present, it must hold α1 ∈ (0, 1). Furthermore, for short notation

we define α2 := (1− α1). The system (1) is associated with an initial state,

u(t0, x) = u0(x), u0(x) ∈ Ω , x ∈ R. (4)

For a transformation of the system (1) in a closed quasilinear form,

∂tu +A(u) ∂xu = s(u), (5)

we need to differentiate the flux vector f(u) with respect to our independent variables u, such that the system

matrix is given by

A(u) := ∂uf(u) +B(u)

=



vi 0 0 0 0 0 0

0 0 1 0 0 0 0

p1 − pi − ρ1 · (p1)ρ Amom,ρ1 Amom,ρ1v1 Amom,ρ1E1 0 0 0

p1v1 − pivi − ρ1v1 · (p1)ρ Aener,ρ1
Aener,ρ1v1

Aener,ρ1E1
0 0 0

0 0 0 0 0 1 0

−
(
p2 − pi − ρ2 · (p2)ρ

)
0 0 0 Amom,ρ2

Amom,ρ2v2
Amom,ρ2E2

−
(
p2v2 − pivi − ρ2v2 · (p2)ρ

)
0 0 0 Aener,ρ2

Aener,ρ2v2
Aener,ρ2E2


(6)

with phasic parameters k = 1, 2, and

Amom,ρk := −v2
k + (pk)ρ − (pk)u ·

Ek − v2
k

ρk
, Amom,ρkvk := 2vk +

−(pk)u · vk
ρk

, Amom,ρkEk
:=

(pk)u
ρk

Aener,ρk := vk

(
(pk)ρ − (pk)u ·

Ek − v2
k

ρk
− pk
ρk
− Ek

)
, Aener,ρkvk := Ek +

pk − (pk)u · v2
k

ρk
, Aener,ρkEk

:= vk +
vk · (pk)u
ρk

.
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2.1. Closures for the thermodynamic properties

To close the system the phasic density ρ and specific internal energy u are used as intensive properties to provide

each phase with thermal properties as equation of state. For a compressible fluid the following stiffened gas equation

of state was performed for pressure, temperature, speed of sound and specific Gibbs free energy [14]:

p(ρ, u) = (γ − 1)ρ(u− q)− γπ,

T (ρ, u) =
1

cv

(
u− q − π

ρ

)
,

c(ρ, u) =

√
γ
p+ π

ρ
,

g(ρ, u) = g(p, T ) = (γcv − q′)T − cvT log

(
T γ

(p+ π)γ−1

)
+ q. (7)

The five constants, as γ > 0, specific heat at constant volume cv ≥ 0, π ≥ 0, binding energy q ≥ 0, and q′ ≥ 0 are

given for each fluid particularly. For a calorically ideal gas the three parameters π, q, and q′ are set to zero.

To find closures for the interfacial velocity vi and interfacial pressure pi, we derive thermodynamic and mathematical

conditions from the model which should be fulfilled. In the following Subsection 2.2 the hyperbolicity of the model30

is examined, which delivers an additional constraint for the interfacial velocity vi. This parameter is then closed in

Section 2.3 by choosing it in such a way that the vi-contact discontinuity is associated with a linearly degenerate

field. Then in Subsection 2.4 the condition for the validity of the second law of thermodynamics is derived. The

entropy compatibility condition delivers a closure for the interfacial pressure pi. Finally, in Section 2.5 it is verified

that the system is symmetrizable.35

2.2. Hyperbolicity

Because the model only describes transport effects, it should be hyperbolic to ensure that all wave speeds are

finite and the system may be locally decoupled [15]. This is given as soon as the model provides real eigenvalues and

the corresponding eigenvectors are linearly independent. Therefore, Gallouët, Hérard and Seguin [16] transformed

the system in quasi-conservative form in terms of primitive quantities. The primitive system matrix admits the

seven eigenvalues vi, v1, v2, v1± c1, and v2± c2, which are all real but not necessarily distinct. All eigenvectors are

linearly independent as soon as the vi-corresponding eigenvector is defined. To avoid that its denominator would

become zero the non-resonance condition [17, 15] must hold,

vi 6= v1 ± c1 and vi 6= v2 ± c2. (8)

The interfacial velocity will be chosen below in (10) as convex combination of the phasic velocities, such that

vi ∈ [v1, v2]. For subsonic flows it holds v1 � c1 and v2 � c2, such that the non-resonance condition (8) is fulfilled5.

5The hyperbolicity of the system was also shown in [18], Part II, Section 2.5.2 for the primitive system vector ũ :=(
α1, ρ1, v1, p1, ρ2, v2, p2

)T
.
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2.3. Characteristic fields

The solution of the quasilinear system (5) is determined by seven characteristic fields, where each consists of40

a characteristic speed and a corresponding wave. T.-P. Liu classified the waves of characteristic fields into two

different waves: a contact discontinuitiy (linearly degenerated field), and a shock or rarefaction wave (genuinely

nonlinear field) [19]. As known from the Euler equations, just the field associated with the fluid velocity is linearly

degenerate, where the other fields are genuinely nonlinear.

The field associated with the eigenvalue vi depends on the choice of the interfacial velocity vi. This wave45

corresponds to the non-conservative term vi∂xα1 in the volume fraction equation, see first equation of the system

(1) with (2). Because the volume fraction α1 should be preserved through the vi-contact discontinuity, vi should be

chosen in such a way that this discontinuity is associated with a linearly degenerate field [20].

From a physical point of view it is reasonable to assume the interfacial velocity vi as a convex combination of

the phasic velocities v1 and v2 [9, 16], such that we define:

vi := βv1 + (1− β)v2 with β ∈ [0, 1]. (9)

If we now follow Saleh [20] and set β as mass fraction,

β :=
ξα1ρ1

ξα1ρ1 + (1− ξ)α2ρ2
with ξ ∈ [0, 1], (10)

the derivative of the eigenvalue vi with respect to the primitive variables is orthogonal to its corresponding eigen-

vector, such that the field of the vi-wave is linearly degenerate6. So, altogether the interfacial velocity is given

as

vi :=
(1− ξ)α1ρ1v1 + ξα2ρ2v2

(1− ξ)α1ρ1 + ξα2ρ2
with ξ ∈ [0, 1]. (11)

This formulation is well defined, as all parameters are positive. In literature, mostly the three interfacial velocities,

vi = v1, vi = v2, and vi =
α1ρ1v1 + α2ρ2v2

α1ρ1 + α2ρ2
, (12)

are used [21], which correspond to the above defined interfacial velocity with ξ = 0, ξ = 1, and ξ = 1
2 .

2.4. Second law of thermodynamics50

From a physical perspective, a model has to be consistent with the second law of thermodynamics. Therefore, to

select the physically relevant entropy solution [22], the entropy inequality is derived and used as additional condition

on the constitutive laws. Thus, for Lax’s entropy-entropy flux pair (η, ψ) with convex entropy function η(u) and

its corresponding entropy flux ψ(u) the additional conservation law,

∂tη(u) + ∂xψ(u) = 0, (13)

should hold for for smooth solutions, while for discontinuous solutions u the above conservation law becomes an

inequality,

∂tη(u) + ∂xψ(u) ≤ 0. (14)

6More details can be found in [18], Part II, Section 2.5.3.
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A weak solution is said to be an entropy solution, if it satisfies the above inequality in the distributional sense. The

entropy flux ψ(u) is chosen such that it satisfies the compatibility condition [23],

∂uψ(u)T
!
= ∂uη(u)TA(u). (15)

Then the validity of the entropy inequality (14) can directly be derived from the multiplication of the so-called

entropy variables v(u) := ∂uη(u) and the equation system (5).

Motivated by the thermodynamics of the system, a candidate for an entropy-entropy flux pair for our model is the

physical entropy of the mixture,

η(u) = −
(
α1ρ1s1 + α2ρ2s2

)
,

and ψ(u) = −
(
α1ρ1v1s1 + α2ρ2v2s2

)
, (16)

with specific entropy s, given by its physical law,

sT = u+
p

ρ
− g, (17)

where g is the specific Gibbs free energy.

In order to verify that η(u) is a convex function of u, we follow the proof of Coquel et al. [17]. The key idea is

to at first show that the phasic entropy functions (−ρ1s1) and (−ρ2s2) are strictly convex functions. Then, the

convexity of the entropy function can be shown by expressing the entropy function η(u) in terms of these stricly

convex phasic entropy functions and proving the semi-definiteness of its Hessian7.

For the chosen entropy-entropy flux pair it remains to show that the entropy function η(u) fulfills the compatibility

condition (15). With the entropy variables8,

v(u) := ∂uη(u) =



p2

T2
− p1

T1

p1

ρ1
+ u1 − 1

2v
2
1

T1
− s1

v1

T1

− 1
T1

p2

ρ2
+ u2 − 1

2v
2
2

T2
− s2

v2

T2

− 1
T2



(17)
=



p2

T2
− p1

T1

g1 − 1
2v

2
1

T1
v1

T1

− 1
T1

g2 − 1
2v

2
2

T2
v2

T2

− 1
T2



, (18)

the entropy compatibility condition (15) delivers in the first row9, a condition for the unknown interfacial pressure

(while the other six rows are equal):

(p1 − pi)(v1 − vi)

T1
− (p2 − pi)(v2 − vi)

T2

!
= 0. (19)

Substituting the expression for the interfacial velocity in (11), we get for pi a convex combination of p2 and p1,

pi =
(1− ξ)α1ρ1T1 p2 + ξα2ρ2T2 p1

(1− ξ)α1ρ1T1 + ξα2ρ2T2
, (20)

7The fully expanded proof for the convexity of the entropy function can be found in [18], Part II, Eq. (2.95)ff.
8The partial derivatives of the specific entropy can be found in [18], Part II, Eq. (2.89).
9The fully expanded equality of the entropy compatibility can be found in [18], Part II, Eq. (2.93).
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which depends on the mass fraction ratio parameter ξ of the interfacial velocity (11). This formulation is well

defined, as all parameters are positive.

2.5. Symmetrization of the hyperbolic system

A hyperbolic system should provide the property that locally in time there exists a smooth solution of the

corresponding Cauchy problem. Godlewski and Raviart [24] showed that for conservative problem this property55

comes with the existence of an entropy-entropy flux pair. But for non-conservative problems we additionally need

to show that the system is symmetrizable. For two-phase flow this was first proven in [17] and was extended for

multi-components fluids in [15]. In both publications a symmetric positive definite matrix was constructed for a

different set of primitive variables10. Note that the choice for the symmetric positive definite matrix is just realizable

if the non-resonance condition (8) holds.60

3. Entropy-preserving path-conservative scheme

As the two-phase flow problem (1) consist of a non-conservative part B(u) ∂xu we can’t use the standard

finite volume methods. Instead, we follow the idea of path-conservative schemes which uses the formulation in

closed quasilinear form (5). The one-dimensional spatial domain is partitioned in a regular mesh of grid cells

Ci :=
(
xi−1/2, xi+1/2

)
with the length ∆x, while ∆t = tn+1 − tn denotes the time step at time tn.65

To find an approximated solution un+1
i of the Cauchy problem for each cell Ci at time tn+1, we use the fractional-

step method, where the full problem is divided into two sub-problems, a convective sub-system,∂tu +A(u) ∂xu = 0 for x ∈ R, t ∈ (tn, tn+1)

u(x, tn) = uni for x ∈ Ci,
(21)

which computes the intermediate solution un+1,−
i of the convective part, and a relaxation sub-system considering

the source terms, ∂tu = s(u) for x ∈ R, t ∈ (tn, tn+1)

u(x, tn) = un+1,−
i for x ∈ Ci,

(22)

The Cauchy problem of the source terms (22) is an ordinary differential equation system that numerically can be

approximated with an Euler step of length ∆t,

un+1
i = un+1,−

i + ∆t · s
(
un+1,−
i

)
. (23)

For the discretization of the convective sub-system (21) the system is transformed in integral form by spatial

integration over cell Ci and temporal integration from tn to tn+1. The spatial integral over the state vector is

10The construction of a symmetric positive definite matrix to show the symmetrizable property of the system matrix was also shown

in [18], Part II, Section 2.5.2 for the primitive system vector ũ :=
(
α1, ρ2, v2, p2, ρ1, v1, p1

)T
.
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approximated by its cell value,

un+1,−
i = uni −

∆t

∆x

(
1

∆t

∫ tn+1

tn+1,−

∫
Ci

A(u) ∂xu dx dt

)
. (24)

Because the integrand of a non-conservative term is not defined for discontinuous functions u, the term is expected

to produce a Dirac measure [25]. To define weak solutions of this integral equation we need to approximate the

non-conservative term. The general idea is to decompose the total mass of this Dirac measure into two summands

D±i+1/2. Thus, with an explicit Euler step in time and an approximation of the time integral of the non-conservative

matrix, the update formulation of the finite volume method is given in fluctuation form [26, 27],

un+1,−
i = uni −

∆t

∆x

(
D−i+1/2 + D+

i−1/2

)
. (25)

To define weak solutions for the integral equation of the non-conservative system we follow Dal Maso, LeFloch and

Murat [28], who proposed the path-conservative method, where the non-conservative term is interpreted as Borel

measures over a Lipschitz continuous path Φ : [0, 1]× Ω× Ω→ Ω with

Φ(0; uL,uR) = uL, Φ(1; uL,uR) = uR, Φ(s; u,u) = u, ∀uL,uR,u ∈ Ω. (26)

The path connects two states uL and uR at its left and right limits across a discontinuity with s ∈ [0, 1]. Hence,

the non-conservative matrix A(u) is interpreted as A(Φ(s; uL,uR)). The chosen path of a weak solution influences

the speed of propagation σΦ of the discontinuity. Thus, with the condition of path consistency [26], the generalized

Rankine-Hugoniot condition [27, 29] holds,

σΦ · (uR − uL)
!
=

∫ uR

uL

A(u) du

= f(uR)− f(uL) +

∫ uR

uL

B(u) du

= f(uR)− f(uL) +

∫ 1

0

B
(
Φ(s; uL,uR)

)∂Φ(s; uL,uR)

∂s
ds. (27)

The weak solutions now depend on the arbitrary chosen path Φ, where different families of paths lead to different

jump conditions [27]. As already suggested in (25), the general idea is to decompose the total mass of this Dirac

measure (27),

D−(uL,uR) + D+(uL,uR)
!
= f(uR)− f(uL) +

∫ 1

0

B
(
Φ(s; uL,uR)

)∂Φ(s; uL,uR)

∂s
ds, (28)

where the two fluctuations are Lipschitz continuous functions D± : Ω× Ω→ Ω. If furthermore it holds, that

D±(u,u) = 0 ∀u ∈ Ω, (29)

the numerical scheme is said to be path-consistent [26]. By choosing a segment path, Φ(s; uL,uR) := uL+s·(uR−uL),

the generalized Rankine-Hugoniot condition (27) simplifies to

σΦ · (uR − uL)
!
= f(uR)− f(uL) +

∫ 1

0

B
(
Φ(s; uL,uR)

)
ds︸ ︷︷ ︸

=:BΦ(uL,uR)

(uR − uL). (30)
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The matrix BΦ(uL,uR) is a local linearization of the system matrix B(u) and is called Roe matrix, which can be

approximated simply by the trapezoidal rule or by high-order Gaussian quadrature rules [30]. The integral form

of a partial differential equation system forms the basis for the mathematical theory of weak solutions, including

the derivation of the Rankine-Hugoniot conditions that govern the form and speed of shock waves [31]. But as

non-conservative systems consist of parts which are based on differential equations, the Lax-Wendroff theorem for70

mass conservation is not guaranteed anymore [24].

Abgrall and Karni [29] and Castro et al. [27, 32] observed that the numerical solution of a path-conservative

scheme with a suitable consistent selected path along the viscous profile, will not necessarily converge to the correct

and physically relevant solution. This lack of convergence has its origin in the numerical viscosity of the scheme.

Thus, we follow Tadmor who proposes to use the concept of entropy-conservative schemes [23].75

For a given entropy pair (η, ψ) with entropy variables v(u) := ∂uη(u), a path-consistent scheme (27) is said to

be entropy-conservative [27] if the fluctuations are satisfying

vT
L D−EC(uL,uR) + vT

R D+
EC(uL,uR)

!
=

∫ 1

0

v
(
Φ(s)

)T
A
(
Φ(s)

)
Φ′(s) ds

= ψ(uR)− ψ(uL). (31)

For a given family of paths, Castro et al. [27] show the existence of infinitely many entropy-conservative path-

consistent schemes.[27]. With the artificial intermediate entropy variables vζ := vL + ζ · (vR−vL) for ζ ∈ [0, 1] the

fluctuations are given by

D±EC(uL,uR) =

∫ 1

0

V ±
(
Φ(s)

)T
A
(
Φ(s)

)
Φ′(s) ds, (32)

while the matrices V ± are chosen such that by construction it holds V − + V + = I and V −vL + V +vR = v(Φ),

V ±
(
Φ(s)

)T
=
(

1
2 ± (ζ − 1

2 )
)
I ± vR − vL

|vR − vL|2
(
v
(
Φ(s)

)
− vζ

)T
. (33)

The integral can be approximated simply by the trapezoidal rule or by high-order Gaussian quadrature rules.

Choosing ζ = 1
2 we get the entropy-conservative Rusanov scheme. With the above postulated condition of an

entropy identity, it is ensured that entropy is never dissipated (what we just expect for smooth solutions). But for

the case of shocks, we would assume that entropy is dissipated. Castro et al. [27] propose to consider the regularized

equation, where numerical diffusion is added on the right-hand side,

∂tu + ∂xf(u) +B(u) ∂xu = εR ∂x
(
R(u) ∂xu

)
. (34)

The viscosity matrix R(u) and its viscosity coefficient εR > 0 are responsible for the observed lack of convergence

to the physically relevant solutions in the ECPC scheme. This motivation turns into a new property for the scheme.

A path-consistent scheme with entropy-conservative fluctuations D±EC is said to be entropy-stable if its fluctuations

are satisfying the following condition:

D±(uL,uR) = D±EC(uL,uR)± εR

∆x
R̂(uL,uR) (vR − vL). (35)

For entropy stability, the numerical viscosity operator R̂(uL,uR) must be a positive definite matrix. Therefore, we

choose

R̂(uL,uR) = R(uL,uR) u′(v). (36)
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with R as the viscosity matrix of the regularized equation (34). To obtain convergence to a correct solution it

is essential to choose a suitable numerical diffusion operator that matches the underlying physical viscosity [33].

Uniform viscosity is given by R = I. The Navier-Stokes viscosity is not used, as it violates the minimum entropy

principle if the thermal diffusivity is nonzero11. By choosing the numerical viscosity coefficient as

εR =
|λmax|

2
∆x, (37)

the term εR vanishes in the CFL condition [33], such that ∆t
∆x · |λmax|

!
≤ 0.5.

4. Path-conservative approximate Godunov-Suliciu scheme

The entropy-preserving path-conservative finite volume methods have been developed to find the physically

relevant solution, where the jump conditions are consistent with the viscous profiles. Another option is to develop

a path-conservative version of the Godunov method, where the discrete cell averages are reconstructed by a simple

piece-wise constant function. We denote u0
r := ur(0; uL,uR) as the exact solution of the Riemann problem, which

is known to be constant in time along the interface between two states uL and uR. According to the definition of

path-consistent schemes (28), the fluctuations for the Godunov scheme are given by [25]

D−(uL,uR) = f
(
u0

r

)
− f
(
uL) +BΦ(uL,u

0
r )
(
u0

r − uL

)
,

D+(uL,uR) = f
(
uR)− f

(
u0

r

)
+BΦ(u0

r ,uR)
(
uR − u0

r

)
. (38)

It remains to find the Riemann solution u0
r . Because the pressure is non-linear, the conventional model provides

genuinely nonlinear waves, such that the exact Riemann invariants cannot be found. We follow the relaxation

approach of Suliciu [35, 36] and adapt it to the two-phase flow problem. Thus, we extend the original system with

an additional balance law. Therefore, Suliciu intoduced the relaxation pressure π as a new parameter, which is

defined by a Chapman-Enskog expansion of first order, π := p + επ(1), such that for the relaxation time ε → 0 it

holds π → p. The balance law of the relaxation pressure is given by

∂t(αρπ) + ∂x(αρvπ) = −αρ2c2︸ ︷︷ ︸
≈a2

∂xv + αρ 1
ε (p− π)︸ ︷︷ ︸
=−π(1)

. (39)

The pre-factor of the velocity derivative, αρ2c2 is replaced by a constant parameter a2, which is defined in (42).

The two-phase flow model is extended by appending the relaxation pressure balance laws (39) for each phase.

Additionally, all pressure terms p in the mass, momentum and energy balance laws are replaced by π, such that a

relaxation two-phase flow model with nine equations12 is reached,

∂tũ + ∂xf̃(ũ) + B̃(ũ) ∂xũ = sr(ũ) + s̃(ũ), (40)

with ũ =
(
α1, α1ρ1, α1ρ1v1, α1ρ1E1, α1ρ1π1, α2ρ2, α2ρ2v2, α2ρ2E2, α2ρ2π2

)T
. For the closed quasilinear form we

define Ã(ũ) := ∂ũf̃(ũ) + B̃(ũ). In the following we will see that by construction, the enlarged model has the same

thermodynamical and mathematical properties as the original system.80

11See Serre [34], Theorem 8.2.3
12The fully expanded parameters ũ, f̃ , B̃, sr, s̃ and the corresponding system matrix Ã can be found in [18], Part II, Eq. (5.49)ff.
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4.1. Properties of the relaxation two-phase flow model

The system admits nine real eigenvalues which are all real but not necessarily distinct,

λ̃1 = v1 −
a1

ρ1
√
α1
, λ̃2 = v2 −

a2

ρ2
√
α2
, λ̃3 = v1, λ̃4 = vi, λ̃5 = v2, λ̃6 = v1 +

a1

ρ1
√
α1
, λ̃7 = v2 +

a2

ρ2
√
α2
, (41)

where λ3 and λ5 are double eigenvalues. To fulfill the sub-characteristic condition13, we choose

a1 ≥
√
α1ρ1c1 and a2 ≥

√
α2ρ2c2, (42)

such that the wave velocities of the origin system never exceed the corresponding wave velocities in the extended

system [37], see also Whitham [38] and Liu [39]. This choice furthermore fulfills the non-resonance condition,

vi 6= v1 ± a1

ρ1
√
α1

and vi 6= v2 ± a2

ρ2
√
α2

, such that the corresponding eigenvectors are linearly independent and

therefore the system is hyperbolic14. As in Subsection 2.4 it can be shown that with the entropy-entropy flux pair85

(16) the relaxation model is consistent with the second law of thermodynamics15. In comparison to the original

entropy variables in (18) we get the additional entries − 1
T1

and − 1
T2

for the relaxation pressure in ṽ(ũ). Furthermore,

as before it can be shown that the relaxed system is symmetrizable16 [18].

4.2. Characteristic fields

The motivation to construct a relaxation model was to obtain a system, such that all characteristic fields of the

relaxation model are linearly degenerate17. Thus, for each eigenvalue λ̃j and its corresponding right eigenvector

Rj it should hold ∂ũλ̃j Rj = 0 [19]. Note that the eigenvalue vi was already chosen in equation (9), such that its

associated field is linearly degenerated. Each j-characteristic field has several j-Riemann invariants w
(j)
p , which are

constant along the trajectories of the vector field Rj :

∂ũw(j)
p Rj

!
= 0, (43)

13The sub-characteristic condition for the relaxed two-phase flow model was also shown in [18], Part II, Section 5.3.4.
14Hyperbolicity for the relaxed two-phase flow model was also shown in [18], Part II, Section 5.3.2.
15The entropy inequality for the relaxed two-phase flow model was also shown in [18], Part II, Section 5.3.1.
16The symmetrization of the relaxed two-phase flow model was also shown in [18], Part II, Section 5.3.5.
17The characteristic field of the relaxed two-phase flow model was shown in [18], Part II, Section 5.3.3

11



From this definition it is obvious to see that λ̃j is also a j-Riemann invariant if the j-characteristic field is linearly

degenerated [24]. The j-Riemann invariants are given by [18]:

w(1) =

{
α1, ρ2, v2, u2, π2, v1 −

a1

ρ1
√
α1
, π1 + v1

a1√
α1
,− 1

2π
2
1 + u1

a2
1

α1

}
,

w(2) =

{
α1, ρ1, v1, u1, π1, v2 −

a2

ρ2
√
α2
, π2 + v2

a2√
α2
,− 1

2π
2
2 + u2

a2
2

α2

}
,

w(3) =
{
α1, v1, π1, ρ2, v2, u2, π2

}
,

w(4) =
{
vi, α2ρ2(v2 − vi), u1 +

π1

ρ1
+ 1

2 (v1 − vi)
2, u2 +

π2

ρ2
+ 1

2 (v2 − vi)
2,

α1ρ1π1(v1 − vi) + a2
1v1, α2ρ2π2(v2 − vi) + a2

2v2,

α1ρ1s1(v1 − vi) + α2ρ2s2(v2 − vi), α1

(
π1 + ρ1v1(v1 − vi)

)
+ α2

(
π2 + ρ2v2(v2 − vi)

)}
,

w(5) =
{
α1, ρ1, v1, u1, π1, v2, π2

}
,

w(6) =

{
α1, ρ2, v2, u2, π2, v1 +

a1

ρ1
√
α1
, π1 − v1

a1√
α1
,− 1

2π
2
1 + u1

a2
1

α1

}
,

w(7) =

{
α1, ρ1, v1, u1, π1, v2 +

a2

ρ2
√
α2
, π2 − v2

a2√
α2
,− 1

2π
2
2 + u2

a2
2

α2

}
. (44)

Due to the non-linearities of the vi-Riemann invariants, the intermediate states of the Riemann problem are difficult

to determine. An approximate solution can be obtained by weaken the nonlinear Rankine-Hugoniot conditions at

the vi-contact discontinuity. Thus, we propose the following approximated vi Riemann invariants:

w(4)
approx :=

{
v1, π1, v2, π2, α1ρ1, α2ρ2, u1 +

π1

ρ1
, u2 +

π2

ρ2

}
(45)

As for the original vi-Riemann invariants w(4) it holds that for the case of equal volume fractions αL = αR at the90

left-hand and right-hand side of the Riemann problem, the spatial derivative of the volume fraction is zero, such

that the Riemann invariants of the vi-wave reduce to w
(4)
αL=αR = {ρ1, v1, u1, π1, ρ2, v2, u2, π2}. Furthermore, with

this choice of w
(4)
approx at least six out of eight original Rankine-Hugoniot conditions are always fulfilled. Just the

fifth w
(1)
5 and sixth w

(1)
6 of the original vi-Riemann invariant can be unfulfilled due to the hidden void fraction α

in a1 and a2.95

4.3. Riemann solver for the relaxation two-velocity two-pressure model

The vi-contact discontinuity is the only wave which changes the volume fraction α1 and thus enforces an exchange

of the liquid and steam phase. The other six waves act like two independent Euler systems: they just affect their

own phase without having influence on the other phase nor the volume fraction. To develop a Riemann solver we

need to order the eigenvalues (41) and formulate an equation system from the Rankine-Hugoniot jump relations100

across the discontinuities.

For subsonic flow, it is clear that the eigenvalues which contain the speed of sound (hidden in the parameter a1

and a2) are the slowest (λ̃1, λ̃2) and fastest (λ̃6, λ̃7). Furthermore, as λ̃4 = vi was chosen as convex combination of

λ̃3 = v1 and λ̃5 = v2, see (9), the interfacial velocity is ordered in-between the phasic velocities. This gives us the

12



following order of the eigenvalues:

min
{
λ̃1, λ̃2

}
≤ max

{
λ̃1, λ̃2

}
< min

{
λ̃3, λ̃5

}
≤ λ̃4 ≤ max

{
λ̃3, λ̃5

}
< min

{
λ̃6, λ̃7

}
≤ max

{
λ̃6, λ̃7

}
.

(46)

A contact discontinuity with corresponding characteristic speed λ̃j separates two neighboring states ũj−1 and ũj ,

see Figure 1. As the corresponding j-Riemann invariants w(j) are constant across the contact discontinuities it

must hold w(j)(ũj−1)
!
= w(j)(ũj).

x

t

v1 − c1

v2 − c2

v1 vi
v2

v1 + c1

v2 + c2
ũL

ũ1

ũ2

ũ3 ũ4

ũ5

ũ6

ũR

Figure 1: Sketch of the solution of the Riemann problem with ordered eigenvalues and given left ũL and right ũR state. The Rankine-

Hugoniot jump relations across the discontinuities are used to find the six intermediate states ũj .

For the Godunov solver the solution at the interface position x = 0 between two states ũL and ũR is needed.

Thus, for subsonic flow we are mainly interested in the intermediate states ũ2 to ũ5. As the neighboring contact

discontinuities λ̃1 and λ̃2 affect different phases, the solution of the intermediate state ũ2 does not depend on the

order of these waves in (46). The same holds for the contact discontinuities λ̃6 and λ̃7 with the intermediate state

ũ5. Now using the Rankine-Hugoniot jump relations across the discontinuities we obtain the following primitive

parameters of the unknown intermediate states in dependency of the known left uL and right state uR:

ũprim
2 =



(α)L

(ρ1)2

(v1)?
(u1)2

(π1)?
(ρ2)2

(v2)?
(u2)2

(π2)?


, ũprim

3 =



(α)L

(ρ1)3

(v1)?
(u1)3

(π1)?
(ρ2)3

(v2)?
(u2)3

(π2)?


, ũprim

4 =



(α)R

(ρ1)4

(v1)?
(u1)4

(π1)?
(ρ2)4

(v2)?
(u2)4

(π2)?


, ũprim

5 =



(α)R

(ρ1)5

(v1)?
(u1)5

(π1)?
(ρ2)5

(v2)?
(u2)5

(π2)?


. (47)

To ensure that the order of the contact waves also holds for the determined intermediate states we choose (ak)∗

large enough (for the phases k = 1, 2) with

(ak)∗ > max
{

(ak)L , (ak)R

}
. (48)
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Furthermore, we get from the Rankine-Hugoniot conditions the velocity

(vk)? =
(vk)R

√
(αk)L+(vk)L

√
(αk)R√

(αk)L+
√

(αk)R

+

√
(αk)L

√
(αk)R((πk)L−(πk)R)

(ak)∗

(√
(αk)L+

√
(αk)R

) , (49)

the relaxed pressure

(πk)? =
(ak)∗(vk)L−(ak)∗(vk)R+(πk)L

√
(αk)L+(πk)R

√
(αk)R√

(αk)L+
√

(αk)R

, (50)

the density

(ρk)2 =

(
1

(ρk)L
+
(

(vk)? − (vk)L

)√
(αk)L

(ak)∗

)−1

,

(ρ1)3 =

(ρ1)2 , if (v1)? > (v2)?

(ρ1)5
(α1)R

(α1)L
, else

(ρ2)3 =

(ρ2)5
(α2)R

(α2)L
, if (v1)? > (v2)?

(ρ2)2 , else

(ρ1)4 =

(ρ1)2
(α1)L

(α1)R
, if (v1)? > (v2)?

(ρ1)5 , else

(ρ2)4 =


(ρ2)5 , if (v1)? > (v2)?

(ρ2)2
(α2)L

(α2)R
, else

(ρk)5 =

(
1

(ρk)R
−
(

(vk)? − (vk)R

)√
(αk)R

(ak)∗

)−1

, (51)

and the specific inner energy

(uk)2 = (uk)L +
(

(πk)
2
? − (πk)

2
L

)
(αk)L

2(ak)2
∗
,

(u1)3 =

(u1)2 , if (v1)? > (v2)?

(u1)5 +
(α1)R−(α1)L

(α1)R
· (π1)?

(ρ1)5
, else

(u2)3 =

(u2)5 +
(α2)R−(α2)L

(α2)R
· (π2)?

(ρ2)5
, if (v1)? > (v2)?

(u2)2 , else

(u1)4 =

(u1)2 +
(α1)L−(α1)R

(α1)L
· (π1)?

(ρ1)2
, if (v1)? > (v2)?

(u1)5 , else

(u2)4 =

(u2)5 , if (v1)? > (v2)?

(u2)2 +
(α2)L−(α2)R

(α2)L
· (π2)?

(ρ2)2
, else

(uk)5 = (uk)R +
(

(πk)
2
? − (πk)

2
R

)
(αk)R

2(ak)2
∗
. (52)

Now, we can develop the interfacial velocity at intermediate state (vi)∗ from formula (11). As vi is an eigenvalue,

we can wither use the values from neighboring state at the left-hand side ũ3 or on the right-hand side ũ4,

(vi)∗ :=
(1− ξ) (α1)L (ρ1)3 (v1)? + ξ (α2)L (ρ2)3 (v2)?

(1− ξ) (α1)L (ρ1)3 + ξ (α2)L (ρ2)3

=
(1− ξ) (α1)R (ρ1)4 (v1)? + ξ (α2)R (ρ2)4 (v2)?

(1− ξ) (α1)R (ρ1)4 + ξ (α2)R (ρ2)4

. (53)
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Altogether, the Riemann solution is now given by

ũr(0) =



ũ2 , if 0 < min ((v2)? , (v1)?) ,

ũ3 , if min ((v2)? , (v1)?) < 0 < (vi)? ,

ũ4 , if (vi)? < 0 < max ((v2)? , (v1)?) ,

ũ5 , if max ((v2)? , (v1)?) < 0.

(54)

5. Case study105

To investigate the behavior of the developed schemes, several test cases have been performed. For comparability

of the results we use adaptive time steps with a CFL number of 0.45.

5.1. Isolated coupling wave

As a first test for the two-phase flow model, a problem of Gallouët, Hérard, and Seguin [16] is used, which

produces a moving contact discontinuity. The interfacial modeling parameter (10) for this problem is given by110

ξ = 0.5. For the domain x ∈ [0, 1000] a Riemann problem is defined at x = 500, where the initial values are given

in Table 1. As closure, ideal gas with γ1 = γ2 = 1.4 and cv1
= cv2

= 718 J/kg K is chosen. The simulation time is

tmax = 3 sec.

α1 ρ1 v1 p1 ρ2 v2 p2

Left 0.9 1 100 105 1 100 105

Right 0.5 0.125 100 105 0.125 100 105

Table 1: Initial values for the isolated coupling wave problem.

Because all velocities are chosen equal, the volume fraction propagates with constant speed of 100 m/s, such

that its exact solution is known, where the shock position of α moves from position x = 500 to x = 800.115

In Figure 2 grid refinement results of the volume fraction α are shown, using the approximate Godunov-Suliciu

(PC) solver and the Rusanov (ESPC) solver. It can be seen that both schemes converge to the exact solution, while

the convergence of the Godunov-Suliciu (PC) is faster than the Rusanov (ESPC) scheme.
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0.5
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Figure 2: Grid refinement for the isolated coupling wave problem at tmax = 3. The results for the volume fraction α1 are shown (zoomed

around the shock position), using the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.

As the exact solution of the volume fraction α1 is known, this parameter is used as a measure for the accuracy

in the L1, L2 and L∞ norm, see Table 2. In Figure 3 (a), the L2-error is plotted against the number of grid cells.120

15



103 104

10−1.8

10−1.6

10−1.4

10−1.2

Number of grid cells

L
2
-e
rr
or

Rusanov (ESPC)

Godunov-Suliciu (PC)

(a) Convergence of accuracy

100 101 102 103

99.96

99.97

99.98

99.99

100

CPU run-time (sec)

L
∞
-a
cc
u
ra
cy

(i
n
%
)

Rusanov (ESPC)

Godunov-Suliciu (PC)

(b) Run-time analysis

Figure 3: L2-error against the number of grid cells (a) and run-time analysis (b) for the Rusanov (ESPC) and Godunov-Suliciu (PC)

scheme. The accuracy of the run-time analysis is measured in the L∞ error norm.

It can be seen that the empirical order of convergence is the same for both schemes, whereas the entropy-stable

scheme is more dissipative. The accuracy of the different schemes related to the CPU run-time18 is depicted in

Figure 3 (b). The reason for the larger run-times for the Rusanov (ESPC) scheme comes from the approximation

of the integral along the path with a numerical quadrature rule in (32).

Number of Rusanov (ESPC) Godunov-Suliciu (PC)

grid cells L1 L2 L∞ L1 L2 L∞

500 0.026474 0.055776 0.0003962 0.0076614 0.029954 0.0003908

1000 0.01878 0.046908 0.00019866 0.005419 0.025194 0.00019675

2000 0.0038323 0.021188 9.885e-05 0.013283 0.039448 9.9551e-05

4000 0.0093911 0.03317 4.9832e-05 0.00271 0.017818 4.9593e-05

8000 0.0066405 0.027892 2.4941e-05 0.0019164 0.014984 2.4856e-05

Table 2: Convergence analysis of the Rusanov (ESPC) and Godunov-Suliciu (PC) schemes using the L1, L2, and L∞ norm to measure

the error.

18The run-time highly depends on the implementation. For comparison reasons we measure the evaluation time in every grid cell for

both fluxes without re-using information from the neighboring cell.
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5.2. Pressure disequilibrium125

The pressure disequilibrium test case [16] is a more difficult version of the isolated coupling wave. This test case

was performed to investigate the Riemann invariants at the vi-contact discontinuity. In comparison to the previous

test case in 5.1 we only change the initial values according to Table 3 and the simulation time to tmax = 0.7 sec

[13]. As reference solution, the Godunov-Suliciu (PC) solver with 100 000 cells is used.

α1 ρ1 v1 p1 ρ2 v2 p2

Left 0.9 1 0 105 10 0 104

Right 0.5 0.125 0 104 1.25 0 103

Table 3: Initial values for the pressure disequilibrium problem.

In the following Figures 4 and 5 grid refinement results for the partial mass αkρk of both phases are shown, using130

the approximate Godunov-Suliciu (PC) solver and the Rusanov (ESPC) solver. It can be seen that both methods

converge to the reference solution, while again the entropy-stable scheme converges slower than the relaxation

scheme.

In Figure 6 the Riemann invariants at the vi contact discontinuity defined in equations (44) are shown (just

zoomed around the position of the corresponding wave). As expected for the approximate Godunov-Suliciu (PC)135

scheme, we see a smooth behavior of the Riemann invariants at the contact discontinuity (at x ≈ 605). Furthermore,

the fifth w
(1)
5 and sixth w

(1)
6 Riemann invariant show some ”delayed corrections” (at x ∈ [605, 615]), which comes

due to the simplification we made in (45). It is interesting to see that the entropy-stable Rusanov scheme has jumps

in every Riemann invariant. It may be that the chosen uniform viscosity for (36) is not the best choice for this

problem.140
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Figure 4: Grid refinement for the pressure disequilibrium problem at tmax = 0.7. The results for the partial mass α1ρ1 are shown, using

the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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Figure 5: Grid refinement for the pressure disequilibrium problem at tmax = 0.7. The results for the partial mass α2ρ2 are shown, using

the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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Figure 6: Riemann invariants at the vi-contact discontinuity for the pressure disequilibrium problem at tmax = 0.7 (just showing the

region around the position of the corresponding wave at about x = 605).
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5.3. Mixture at rest with increase in the volume fraction

This test case was proposed by Schwendeman, Wahle and Kapila [40] and is used to investigate the impact of

the interfacial modeling parameter ξ, which defines the interfacial pressure pi (20) and interfacial velocity vi (11).

For the domain x ∈ [0, 1] a Riemann problem is defined at x = 0.5, where the initial values are given in Table 4. As

closure, ideal gas with γ1 = γ2 = 1.4 and cv1
= cv2

= 718 J/kg K is chosen. The simulation time is tmax = 0.2 sec.

α1 ρ1 v1 p1 ρ2 v2 p2

Left 0.8 1 0 1 0.2 0 0.3

Right 0.3 1 0 1 1 0 1

Table 4: Initial values for the mixture at rest problem.

145

In the following Figures 7 and 8 the phasic velocity v1 and v2 at different phasic mixtures ξ ∈ [0, 1] are shown,

using the approximate Godunov-Suliciu (PC) solver and the Rusanov (ESPC) solver. The results show a good

agreements among both solvers. It can be seen that the solution strongly depends on the choice of the parameter ξ.

In Figure 9 the total entropy dissipation η(tn) := ∆x ·∑N
i=1 η(uni ) for different meshes is plotted. It can be

observed that the entropy dissipation for both solvers converge in different speeds in direction to the reference150

solution, what shows that both schemes satisfy the entropy inequality (14).
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Figure 7: Different phasic mixtures ξ for the mixture at rest problem at tmax = 0.2 using 16 000 cells. The results for the phasic velocity

v1 are shown, using the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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Figure 8: Different phasic mixtures ξ for the mixture at rest problem at tmax = 0.2 using 16 000 cells. The results for the phasic velocity

v2 are shown, using the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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Figure 9: Total entropy dissipation for the mixture at rest problem at tmax = 0.2 using ξ = 0.5 and 16 000 cells. The results for the

phasic velocity v2 are shown, using the (left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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5.4. Water faucet problem

The test case of a water faucet was performed by Ransom [41] to investigate the influence of source terms on the

mixture of water (indexed by 1) and air (indexed by 2). The source terms are mainly influenced by gravitation,

s(u) =



1
θ
α1α2

p1+p2
(p1 − p2)

0

α1ρ1g

α1ρ1v1g − 1
θ
α1α2

p1+p2
(p1 − p2)pi

0

α2ρ2g

α2ρ2v2g + 1
θ
α1α2

p1+p2
(p1 − p2)pi


, (55)

with gravity g = 9.81m/s2 and pressure relaxation θ = 5 · 10−4. Initially, we have homogeneous values throughout

the vertical tube of 12 m length (which corresponds to a closed water faucet at the end of the tube). With the

start of the simulation the water faucet is opened, such that the gravity field is introduced to the problem. The155

top boundary (x = 0) has the same values as the initial values, where the bottom (x = 12) of the tube is open to

atmospheric conditions [16], see Table 5.

α1 ρ1 v1 p1 ρ2 v2 p2

Initial 0.8 1000 10 105 1 0 105

Top boundary 0.8 1000 10 105 1 0 105

Bottom boundary – – – 105 – – 105

Table 5: Initial and boundary values for the water faucet problem.

The interfacial modeling parameter is chosen as ξ = 0.5. As closure, ideal gas with γ1 = 1.0005, γ2 = 1.4, and

cv1 = cv2 = 718 J/kg K is chosen [13]. The simulation time is tmax = 0.5 sec.

In the following Figure 10 grid refinement results for the air volume fraction α2 are shown, using the approximate160

Godunov-Suliciu (PC) solver and the Rusanov (ESPC) solver. It can be seen that both methods converge to the

reference solution, while again the entropy-stable scheme converges slower than the relaxation scheme. While the

Godunov-Suliciu (PC) solver already shows good agreement with the reference solution by using just 300 grid cells,

the Rusanov (ESPC) scheme would need 8000 cells instead. This is due to the fact that the entropy-stable scheme

is a more dissipative method.165
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Figure 10: Grid refinement for the water faucet problem at tmax = 0.5. The results for the air volume fraction α2 are shown, using the

(left) Godunov Suliciu (PC) scheme, and the (right) Rusanov (ESPC) scheme.
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5.5. Discussion and analysis of the results

We used four test cases to investigate the qualitative behavior of the Godunov-Suliciu (PC) method and the

entropy-stable Rusanov (ESPC) method. With a grid refinement for the isolated coupling wave test case we could

identify a fast convergence speed of the Godunov-Suliciu (PC) method. Comparing the L2 norm as the a measure

for the accuracy, it can be seen that the Rusanov (ESPC) scheme is more dissipative than the Godunov-Suliciu170

(PC) scheme. For the pressure disequilibrium test case, we investigated the Riemann invariants at the shock of

the volume fraction. While the Rusanov (ESPC) scheme not necessarily shows a smooth behavior of the Riemann

invariants, in contrast, the Godunov-Suliciu (PC) scheme fulfills at least six of eight Rankine-Hugoniot conditions

at the vi-contact discontinuity. By investigating the total entropy dissipation for the mixture at rest test case, the

Rusanov (ESPC) scheme behaves according to its entropy stable property. But also the Godunov-Suliciu (PC)175

dissipates entropy with a high convergence rate. For the test cases with source terms, the water faucet problem,

it was observed that the Rusanov (ESPC) scheme needs a finer mesh than the approximate Godunov-Suliciu (PC)

scheme.

6. Conclusion

Within this work a two-velocity two-pressure seven-equations model is developed, which considers important180

mathematical and thermodynamic properties. As the model only describes transport effects, it is formulated as

hyperbolic system by using the non-resonance condition. To preserve the volume fraction α1 through the vi-contact

discontinuity, vi is chosen in such a way that this discontinuity is associated with a linearly degenerate field.

Furthermore, the the entropy inequality is derived and used as additional condition, to satisfy the second law of

thermodynamics which ensures a physically relevant entropy solution.185

The developed inhomogeneous model is in non-conservative form. An approximate Godunov-Suliciu approach

is developed to solve the non-conservative parts of the PDE system. As the pressure is non-linear, the conventional

model provides genuinely nonlinear waves. Ti find the Riemann invariants we follow the relaxation approach of

Suliciu and adapt it to the two-phase flow problem. Due to the non-linearities of the vi-Riemann invariants, the

intermediate states of the Riemann problem are difficult to determine. An approximate solution is obtained by190

weaken the nonlinear Rankine-Hugoniot conditions at the vi-contact discontinuity, such that at least six out of eight

original conditions are always fulfilled.

The new scheme is tested with four multiphase flow problems from literature and compared against an entropy-

stable Rusanov scheme. Both schemes converge for a grid refinement and dissipate entropy. The approximate

Godunov-Suliciu is faster and more accurate than the entropy-stable scheme. Furthermore, it shows a smooth195

behavior of the Riemann invariants at the shock of the volume fraction.

It is interesting to see that the entropy-stable Rusanov scheme has jumps in every Riemann invariant. It may

be that the chosen uniform viscosity for (36) is not the best choice for this problem. For these types of schemes it

remains to investigate different viscosity term in order to obtain stable schemes.

Altogether, the here-in developed approximate path-conservative Godunov-Suliciu schemes delivers promising200

results for the seven-equations two-phase flow model.

23



Acknowledgments

P. Richter acknowledges funding by the Friedrich-Naumann-Stiftung für die Freiheit, and thanks Martin Frank

and Manuel Castro for the discussions.

References205

[1] G. Wallis, One-dimensional two-phase flow, McGraw-Hill, 1969.

[2] S. Sahoo, S. Singh, R. Banerjee, Steady state hydrothermal analysis of the absorber tubes used in linear fresnel

reflector solar thermal system, Solar Energy 87 (2013) 84–95.

[3] J. Feldhoff, Analysis of once-through boiler concepts in parabolic troughs, Ph.D. thesis, RWTH Aachen Uni-

versity (2015).210

[4] J. Feldhoff, T. Hirsch, L. Pitz-Paal, R.and Valenzuela, Transient models and characteristics of once-through

line focus systems, Energy Procedia 69 (2015) 626–637.

[5] A. Aurousseau, V. Vuillerme, J.-J. Bezian, Modeling of linear concentrating solar power using direct steam

generation with parabolic-trough, in: Proceedings of the 11th International Modelica Conference, Versailles,
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