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Abstract. An accurate and computationally fast ray-tracer is the key part for the simulation and optimization of the 
optical irradiation of a heliostat field layout in a solar central receiver system. Within this work we present an analytical 
ray-tracer which is fast in runtime while obtaining highly accurate results. The runtime improvement is achieved by a 
faster integration method that does not require a discretization of the receiver. This allows for discretizing the heliostat 
surface into smaller cells each having a representative flux function to better account for a variety of optical errors. Our 
new ray-tracer is implemented on the same C++ platform as other existing ray-tracers, such that reasonable cross 
validation with direct run-time comparisons are possible. Within a case study we demonstrate that the new convolution 
method decreases the run-time by a factor of 20 compared to HFLCal, and a factor of three compared a bidirectional 
Monte-Carlo ray-tracer, while achieving a stable accuracy of 99.98 %. 

INTRODUCTION 

There exist several different ray tracing techniques to compute the solar irradiation at the receiver surface, which 
all have their benefits and drawbacks in accuracy and runtime. The ray tracing techniques can be classified into two 
groups: First, the Monte Carlo ray-tracers as Tonatiuh [1], SolTrace [2] and STRAL [3] where the randomized rays 
are used to compute the solar power at the receiver. The second group are the analytical ray-tracers as HFLCaL [4] 
and UNIZAR [5] which represent the reflected solar flux of a heliostat on a plane orthogonal to the reflection 
direction, called image plane, by a two-dimensional function, as a circular Gaussian distribution or an error function. 
The incoming solar power at the receiver is then calculated by integrating over an area representing the receiver. 
This is commonly done numerically using some kind of quadrature rule, thus discretizing the receiver into smaller 
pieces. Monte-Carlo ray-tracers tend to be more accurate than analytical ray-tracers as they replicate real photon 
interactions. But due to the large number of rays required to achieve accurate and stable results, they have a higher 
runtime than analytical ray-tracers which commonly use one flux function for a whole heliostat facet. 

The overall principle of both groups of ray-tracers is similar. For the sake of simplicity, we will concentrate on 
the bidirectional ray-tracers where the rays are generated on the heliostat’s surface instead of on a plane above it. So, 
the heliostat’s surface gets discretized into several cells with an area of 𝐴!"##. Here, the analytical ray-tracers are 
using the whole heliostat facet as a cell. A ray is placed in the center of each cell and reflects the direct normal 
irradiation 𝐼$%& from the sun towards the receiver, while taking a variety of effects into account, see Fig 1. The 
shape of the sun results in an uncertainty of the solar ray 𝜏'(#)*. Since the heliostat is not a perfect mirror and might 
deviate to its intended alignment, its normal also fluctuates. These errors are referred to as the slope and tracking 
error, respectively. Altogether they lead to a deviation of the perfect reflected ray. The portion of rays potentially 
hitting the receiver without considering other losses determines the intercept efficiency. Besides that, the heliostat 
can also be shaded by other heliostats or the reflected ray can get blocked such that the ray does not reach the 
receiver. Moreover, the reflective area of the heliostat is reduced by the cosine efficiency 𝜂!(', its mirror only 
reflects a certain amount of solar power specified by the reflective efficiency  𝜂*"+, and power loss as the ray travels 
through the air given by the atmospheric attenuation  𝜂)). In respect to the optical losses the representative ray 
power 𝑃*), of the current heliostat cell is given by 𝑃*), = 𝐼$%& ⋅ 𝐴!"## ⋅ 𝜂!(' ⋅ 𝜂*"+ ⋅ 𝜂)). 



 
 
 
 

 
FIGURE 1. Illustration of the ray disturbance and its causes. The heliostat is shown in blue and the receiver in green. 

 
Besides the described heliostat blocking and shading, the tower is also casting a shadow and certain receiver 

types can block incoming rays. Blocking and shading calculations are almost equally for each ray tracer. For the 
Monte Carlo methods, a perturbed version of the representative ray is evaluated whereas analytical ray-tracers use 
the ideal reflected ray. The ray is then traced, i.e., it is checked for intersections with potential blocking heliostats. 
Moreover, to encounter shading effects, intersections of the incoming sun ray with potential shading heliostats as 
well as the tower are evaluated. 

To accelerate this process, for each heliostat a set of potentially shading or blocking heliostats is precomputed by 
using a simplified representation of the heliostats and rays. With this preselection, a single ray just needs to evaluate 
against this list of objects instead of testing all heliostats in the field. 

An accurate computation of the shading and blocking effects is one of the main reasons for a large number of 
needed rays for the Monte Carlo ray-tracer. On the other hand, a problem with existing analytical ray-traces is, that 
so far just one ray (or flux) represents a whole facet of a heliostat. This causes inaccuracies as the ideal reflected ray 
in the facet center either is blocked/shaded, or not. Thus, a partial blocking or shading of a facet is often not 
considered. 

As a last step for all non-blocked/shaded rays, the ray-tracer is calculating interceptions with the receiver. The 
Monte Carlo ray tracing methods are utilizing the straightforward approach of computing whether the perturbed ray 
is intersecting the receiver or not. Since this is a common task in the field of computer graphics, it is accelerated a 
lot by existing methods such as using axis-aligned bounding boxes for the receiver. When enough rays are generated 
the ray disturbance is accurately represented. Furthermore, as ray intersections can easily be calculated for different 
geometry, Monte Carlo ray tracing methods are suitable for complex cases where analytical techniques are not 
applicable anymore. However, considering the computational effort involved in simulating a vast number of rays, 
these methods have a comparatively long processing time. Analytical ray-tracers, on the other hand, calculate the 
intercept efficiency by integrating the flux function over an area that represents the receiver. This can also be seen as 
computing the probability of the ideal reflected ray being perturbed in such a way that it intersects the receiver. 
Multiplying the probability with the ray power then gives the incoming power at the receiver. Therefore, flux 
functions consist of a two-dimensional probability density function that is scaled by a factor representing the total 
power reflected by the heliostat. Since these functions are often defined on a plane orthogonal to the ideal reflected 
ray, the receiver needs to be mapped onto the plane. To integrate over the resulting area most existing ray-tracers are 
using some kind of quadrature rule meaning that the receiver surface is discretized into smaller pieces. However, 
these types of integration methods are computational expensive which is one reason why analytical ray-tracer use 
one ray per facet. In the following we present our convolution ray-tracer which addresses these issues. 

CONVOLUTION RAY-TRACER 

Our new Gaussian convolution method aims to deliver a higher precision for the computation of the received 
solar power on the receiver. This is achieved by rasterizing the heliostat’s surface in a number of cells and using an 



accelerated method to evaluate each cell. Similar to HFLCal [9] and based on the idea of Rabl [8], we model the sun 
error with a Gaussian distribution. However, in contrast to HFLCal our ray-tracer can model different tracking and 
slope errors in vertical and horizontal direction. With the Central Limit Theorem these Gaussian distributions are 
convoluted to two Gaussian distribution with standard deviations 𝜎hor and 𝜎vert for the horizontal and vertical 
direction, respectively. The horizontal and vertical directions are defined relative to the cell and its normal and the 
convoluted deviation directions are obtained using a rotation [7]. As two separate Gaussian distributions are used to 
describe horizontal and vertical deviation of the perfect reflected ray, our two-dimensional probability density 
function is given by 
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Besides a better representation of photon interactions, the fine discretization also improves accounting for 

blocking and shading effects. After accounting for blocking and shading effects, the power at the receiver from each 
heliostat cell is then calculated in two steps. First the area corresponding to the receiver on the image plane where 
the bivariate Gaussian distribution is defined is computed, see Fig. 2. 

 

 
FIGURE 2. Sketch for the perspective projection of the receiver area onto the plane where the bivariate Gaussian distribution 

is defined. 
 
Thus, we need to compute the integral over each cell area D, 
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The area is obtained by a perspective projection of the receiver onto the image plane. Projecting a corner of the 
receiver requires only one matrix multiplication and gives the projected point in local coordinates of the image 
plane. A perspective projection results in an exact representation of the receiver for the case of a perturbed version 
of the ideal reflected ray, because if such a ray intersects the area it will also hit the receiver. To also account for 
tower blocking in the case of a cavity receiver, the polygonal receiver represenation gets cut by computing its 
intersections with two lines representing the blocking boundaries of the receiver [7]. Now, on the resulting polygon 
we need to evaluate the integral of the bivariate Gaussian distribution. Instead of using a quadrature rule to solve the 
integral as it is commonly done our ray-tracer directly integrates over the polygon in an efficient and accurate 
manner with a method developed by Di Donato et al. [6] which got extended in [10] to handle arbitrary polygons. 
Thus, the algorithm evaluates the integral over the complementary region �́�, i.e., over the outer region of the 
polygon. As the bivariate Gaussian distribution f(x,y) is a probability density function it holds that 
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To compute 𝑃int9�́�: the algorithm divides the region �́� into angular regions 𝐴; as illustrated in Fig. 3 and relies 
on a fast method to evaluate the integral over those regions. For each vertex 𝑉; of the Polygon a corresponding 



angular region 𝐴; is introduced. The angular regions 𝐴; are defined as the semi-infinite part bounded by two 
intersecting lines [6] as shown in Fig. 3. Before calculating the integral over these regions, the integrand of 𝑃int(𝐷) 
is reduced by substitution to 
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Note that the polygon D′ also has to be given in coordinates of u and v and thus is obtained by using the same 
substitution. The corresponding coordinate transformation matrix is added to the transformation matrix used to 
project the receiver such that the polygon is directly given in coordinated of u and v . With this substitution a 
circular symmetric bivariate Gaussian distribution is reached. This property is required in order to calculate the 
integral over an angular region 𝐴;, such that 
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FIGURE 3. Angular regions of a polygon with four vertices [7]. 

 
Due to the circular symmetry, a rotation of the axes can be performed without changing the result. Therefore, the 

axes can be rotated such that the line L of an angular region as shown in Fig. 4 coincide with the positive u-Axis [6]. 
The line L is defined by the Vertex V and the origin. Its corresponding angular region is described using the distance 
from the origin to the vertex V and the angles 𝜃3 and  𝜃4. From now on the axes are assumed to be rotated but are 
still referred to as u and v. 

                  
FIGURE 4. General angular region before (left) and after the rotation (right) [7]. 

 
Using polar coordinates centered at the vertex 𝑉 with the distance 𝑅 from the origin, we get 
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This equation can be solved using integration by parts on the inner integral. For the case of  |𝜃3| ≤
5
4
, and |𝜃4| ≤

5
4
  

we get 
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with factors 𝑎< as the minmax polynomial fit of erfc(𝑤)/𝑧(𝑤), and 𝑤 = =

√4
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  (8) 
where 
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For angles outside of the range of  |𝜃3| ≤

5
4
, and |𝜃4| ≤

5
4
 the angular regions are transformed to the base case, for 

more information we refer to [6,7]. The fitting of erfc(𝑤)/𝑧(𝑤) has been done with different polynomials 
depending on the desired accuracy of 𝑃?(𝐴;?), thus offering a trade-off between run-time and accuracy. It has been 
proven that 𝑃?(𝐴;?) can be evaluated with an accuracy of up to 12 decimal digits [6]. With all this, 𝑃?(𝐴;?) can be 
evaluated and thus the desired probability 𝑃int(𝐷) calculated. In combination with the perspective projection of the 
receiver, an almost exact of the ray disturbance of the ideal reflected ray. 

Altogether, we have three extensions to the state-of-the-art analytical ray-tracers: rasterization of the heliostat 
surface to allow an adjustable tradeoff between accuracy and runtime, perspective projection of receiver, and fast 
and accurate evaluation of the integral over a polygon. 

CASE STUDY 

In a large case based on the PS10 we compared our new ray-tracer against a bidirectional Monte Carlo ray 
tracing method and an implementation of HFLCal capable of simulating multiple rays per facet. To see how the 
number of rays influences the accuracy of the ray-tracers, different numbers of rays per facet were simulated ranging 
from one to eight rays per facet for the HFLCal comparison and 12 to 126 rays per facet for Monte Carlo. The 
results are normalized by the average result of the bidirectional Monte Carlo method simulating ten million rays 
twenty times. For HFLCal the receiver was discretized into 400 pieces. A comparison of the accuracy against the 
runtime is given in Fig. 5. For the bidirectional Monte Carlo ray-tracer each setup was simulated 20 times and the 
highest and lowest 5% results got cut off. The fluctuations of the results are illustrated by the shaded region. 

As shown in Fig. 6, our convolution ray-tracer is more than 20 times faster than HFLCal especially when 
simulating multiple rays per facet. Moreover, using 10 thousand receiver pieces the differences in their results went 
down to less than 0.02 %. In Fig. 7 it can be seen that our method is also capable of achieving highly accurate results 
that are always within the boundaries of the bidirectional Monte Carlo method. Furthermore, our ray-tracer 
converges faster and does not fluctuate. 



 
FIGURE 5. Accuracy vs. runtime of our convolution method and the bidirectional-Monte Carlo ray-tracer, using the PS10 

test case with 624 heliostats. 

 
FIGURE 6. Accuracy of the optical power vs. runtime of our convolution method and the HFLCal method, using the PS10 test 

case with 624 heliostats. 
 

Beside comparing the summed optical power on the receiver surface, we now investigate the accuracy for each 
single receiver cell of the flux map. In Figs. 7, 8 and 9, we see the flux maps for the Monte Carlo, HFLCal and 
convolution method with about 140 000 rays for the PS10 test case with cavity receiver, using 40 by 40 receiver 
pieces and a DNI of 820 W/m2. All methods show a similar flux map. 

 

    
FIGURE 7. Flux map derived by the Monte Carlo method, using the PS10 test case with 624 heliostats. 
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FIGURE 8. Flux map derived by our convolution method, using the PS10 test case with 624 heliostats. 

 

    
FIGURE 9. Flux map derived by the HFLCal method, using the PS10 test case with 624 heliostats. 

 
To measure its accuracy, we compute the root mean square error (RMSE) to the reference solution, using once 

again the bidirectional Monte Carlo method with 140 000 rays. The receiver resolution then got quadratically 
increased, thus splitting one receiver piece into four new ones each iteration. Afterwards the fluxmaps are summed 
back to the 40 by 40 resolution. With an increase of the receiver resolution the run-time increases while the RMSE 
decreases. Fig. 10 illustrates the relative difference between the flux maps. As expected, the fluxmaps of our 
convolution method have the exact same RMSE. This is caused by the fact that the perspective projection of a 
splitted receiver piece take up the same area as the projection of the original piece. Moreover, the integration of each 
piece is almost exact. Thus, the optical power of the four splitted pieces sum up to the same power as the original 
one. Since the accuracy of HFLCal largely depends on the receiver resolution, it takes about four times as long to 
reach a similar RMSE. Fig. 10 also shows that the 40 by 40 fluxmap of our convolution ray-tracer is three times as 
accurate than the one generated with HFLCal. 



 
FIGURE 10. Accuracy of the flux map vs. runtime of our convolution method and the HFLCal method, using the PS10 test case 

with 624 heliostats. 

CONCLUSION 

The above shown investigation indicates the main advantage of the new convolution ray tracing method. It is 
faster than existing analytical ray-tracers such as HFLCal and can also handle multiple rays per facet making it 
applicable for achieving highly accurate results. Since the method is deterministic, the results for a given setup are 
identical and thus do not fluctuate. Within a case study our method is applied for the central receiver system PS10 in 
Spain. Besides the precision, our convolution method has also been shown to reach a high accuracy in a 
comparatively small time. For this reason, it is especially useful in an optimization process. 
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