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ABSTRACT

The power produced by an offshore wind farm is subject to uncertainties such as

volatile wind, turbine performance wear, and availability losses. Knowledge about

the stochastic distribution of the power production is crucial for the planning stage

of wind farms as well as later for their performance improvement. It is equally impor-

tant to understand how uncertainties propagate through the models and ultimately

how sensitive the predicted energy production is with respect to these uncertainties.

Due to the multitude of uncertainties, a complete analysis requires high di-

mensional numerical integration techniques to determine these sensitivities. Such

an analysis has not been done in the literature for the entire set of uncertainties.

In this work, for the first time, a thorough analysis of all uncertainties is provided,

modeled by years of collected data of existing wind farms. To highlight differences

in wind park layouts, the analysis is performed on the three wind farms Horns Rev

1, DanTysk and Sandbank. Starting from a set of nine uncertain parameters, the

sensitivity analysis reveals four important candidates, allowing the other parame-

ters to be neglected in future measurement data acquisitions and sensitivity analysis

processes. Furthermore, several Uncertainty Quantification techniques are compared
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to provide recommendations for future projects.
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1. Introduction

The computation of the annual energy production in offshore wind farms depends on a

large set of parameters. Most of these parameters have a high level of uncertainty due

to the impossibility of performing ideal measurements on volatile wind, the occurrence

of material fatigue which influences the performance wear, and other uncertainties such

as availability losses. In order to make reasonable predictions for the wind farm energy

production, it has to be determined how this value can vary in relation to changes in

the uncertainty parameters.

Few publications have considered uncertainties in parameters for wind farm sim-

ulations. Lackner and Elkinton (2007) listed a set of wind farm parameters which have

an influence on the uncertainty of predicting the energy production. Murcia, Réthoré,

Hansen, Natarajan, and Sørensen (2015) analyzed the influence of measurement un-

certainties in some of these parameters in order to check for modeling errors. Foti,

Yang, and Sotiropoulos (2017) on the other hand focused on two different uncertain-

ties and directly analyzed their influence on the total power production. Rinker (2016)

investigated the sensitivity of a single turbine for four parameters which are inflicted

with uncertainties. Ashuri, Zhang, Qian, and Rotea (2016) investigated the levelized

cost of electricity of a single turbine while considering up to four uncertain param-

eters. Padrón, Stanley, Thomas, Alonso, and Ning (2016) used polynomial chaos to

compute the stochastic effect of wind direction and wind speed on the annual energy

production in wind farms.

The novelty of this paper lies in the simultaneous sensitivity analysis for a large

set of uncertainties which is based on real world data for multiple offshore wind farms.

Having an insight into the strength of these parameter sensitivities could greatly im-

prove the planning stage of future wind parks as e.g. on-site measurements could be
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focused on the most sensitive parameters. We develop a stochastic model to investigate

the impact of nine uncertain input parameters. Several different numerical integration

techniques are investigated, which are used for the propagation of the uncertainty

parameters through the model. A sensitivity analysis is performed with the most suit-

able mathematical method to determine the most influential uncertainties on different

cost function. We use extensive data to model uncertainties sourced from business

operations, in a case study featuring different wind farm layouts.

The outline of this paper is structured as follows: Section 2 describes the deter-

ministic model which we use in order to compute the annual energy production. This

involves sub-models for the wake computation, the power generation, and costs. In

Section 3 the whole model is extended by introducing randomness into the input pa-

rameters to get a stochastic model. Section 4 introduces the Uncertainty Quantification

methods starting with the classical Monte Carlo method, followed by its derivations

such as the quasi-Monte Carlo and finally the Stochastic Collocation method. The per-

formance of each method will be discussed. Subsequently one of these methods will be

recommended based on the presented stochastic model. The stochastic model and the

Uncertainty Quantification methods from these two sections are then used in Section

5 where the parameter sensitivities w.r.t. different cost functions is investigated. All

results will afterwards be summarized in Section 7.

2. Deterministic Model for the Annual Energy Production in Wind

Farms

The annual energy production (AEP) in wind farms is computed by three sub-models

which describe the wind, wake, and power generation in a wind farm. The temporal

integration of gross produced power is computed by considering the measurements of

wind speed and wind direction within one year. For each wind direction and each wind

speed, the power produced by the wind farm needs to be computed where the integral

over all directions yields the produced energy. This value is then used in a cost model

to describe economic quantities, as shown in Figure 1. In the following all sub-models

are described.
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Figure 1.: Structure of the offshore wind farm model. Input parameters are highlighted
in green. These parameters are also later used for the uncertainty quantification. Pos-
sible outputs of the wind farm model (highlighted in red) are the annual energy pro-
duction (AEP) and the levelized cost of electricity (LCOE).

2.1. Wind Model

Starting from the raw energy source, wind is quantified by thousands of measurements

of wind direction and wind speed. Figure 2 shows a clustered wind direction distribu-

tion over a time period of eight years. The distribution is divided into several sectors,

standing for the cardinal points and representing the probability of the wind direction

by the size of each sector. Furthermore, for each wind direction sector, the distribution

of wind speed is considered independently.

The classical approach is to model the raw measurement data by a Weibull distribu-

tion which is fitted to the data using a maximum likelihood estimation, see Carrillo,

Cidrás, Dı́az-Dorado, and Obando-Montaño (2014),

W(u;λ, k) =

(
k

λ

)
·
(u
λ

)k−1
· exp

(
− (u · λ)k

)
, (1)

where λ > 0 is the scale parameter and k > 0 is the shape parameter of the Weibull

distribution, as plotted in Figure 3.

In the following sections we will refer to the overall model as deterministic, which

means that the input parameters are not subject to any kind of uncertainty.

For the simulation of a wind farm we need to consider each wind direction sector and

a certain number of wind speeds. It is clear, that the model becomes more precise by

increasing the number of wind sectors Ndir and wind speeds Nspeed.

4



(a) 12 sectors (b) 32 sectors (c) 360 sectors

Figure 2.: Wind direction measurements at the FINO3 research platform in the North
Sea, about 80 km away from the German island Sylt. The measurements at a 100 m
height taken over eight years from January 2010 to December 2017 are clustered into
Ndir=12, 32, and 360 direction sectors.
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Figure 3.: Wind speed measurements at the FINO3 research platform at a height of
100 m for the eight years from January 2010 to December 2017 for the western wind
direction sector (255◦ to 285◦). The data is fitted by a Weibull distribution using the
maximum likelihood estimation.

2.2. Wake Model

In an offshore wind farm, several wind turbines are arranged in a predefined region.

The wind passing the turbine blades generates a wake behind each wind turbine, which

is responsible for wind speed reductions for subsequent wind turbines. The task of a

wake model is to compute this impeded velocity field behind each wind turbine.

In literature, one can find many different models which describe the wake ef-

fect. The first notable wake model was developed by N. O. Jensen (1983) and Katic,

Højstrup, and Jensen (1986), which is called PARK model. Further developments

are the Eddy-Viscosity wake model by Ainslie (1988) and some extensions by Lange,

Waldl, Guerrero, Heinemann, and Barthelmie (2003); Larsen et al. (2007), the Deep-

array wake model by Brower and Robinson (2012), a linearized Reynolds-averaged
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Navier–Stokes model by Ott (2009), and Large Eddy Simulations by Stovall, Pawlas,

and Moriarty (2010).

In this paper we focus on the PARK model, which is mainly used in commercial

software tools, because the velocity deficit calculated by the model has a top-hat shape

which allows for a simple and efficient computation. This efficiency is also needed in

the context of this paper as the high dimensional integration, required to obtain the

statistical quantities of interest, requires lots of evaluations of the model and therefore

is not feasible with full CFD Navier-Stokes simulations. Furthermore, investigations

by Barthelmie et al. (2006) show that the computations are quite accurate compared

to other more detailed models, such as the k-ε turbulence model which is based on

a parabolized Navier–Stokes model by Schepers (2003). It is well known that PARK

overestimates wake losses and is not considering deep array effects of wind farms,

see Gaumond et al. (2014); Pillai, Chick, and Laleu (2014). Therefore we consider an

additional loss term `wake in the model.

The velocity deficit inside the wake only changes in down stream direction. The

wake radius in the PARK model grows with a constant factor k := 0.5/ ln(z/z0),

which depends on the hub height z of the turbine and the surface roughness z0. The

wake diameter Dw(x) grows linearly by 2k, as illustrated in Figure 4. For an inflow

velocity u0, the wake velocity uw(x) at any point inside the wake of a turbine with

rotor diameter D is given by

uw(x) = (`wind · u0)−
1−

√
1− Ct(`wind · u0)(

1 + 2x
D ·

1
2 ln(z/z0)

)2 · `wake · (`wind · u0), (2)

where the last fraction describes the velocity deficit. The velocity dependent thrust

coefficient of the turbine Ct(u0) is a characteristic property of the turbine type and

thus needs to be provided by the manufacturer of the wind turbine (Figure 5). The loss

parameter `wake is used to consider wake effect losses due to internal turbine arrays,

external turbines, and future developments in the vicinity of the wind farm. Fur-

thermore, we consider wind speed losses `wind due to turbulence, off-yaw axis winds,

inclined flow, and high shear wind flow. Loss parameters are mainly based on expe-

rience and thus are used to make the developed model more realistic, by closing the
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gap between turbine power curve test conditions and actual conditions at the site.
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Figure 4.: Wind turbine with hub height z and rotor diameter D. The wake diameter
Dw grows linearly by 2k. Inside the wake, the incident wind speed u0 is reduced to
the wake velocity uw. The Figures are taken from Heiming (2015).

To compute the incident velocity of a wind turbine, we simply use a weighting

factor β between the free stream velocity u0 and the wake velocity uw(x), which is

computed by the circular intersection AIntersection of the wake cross section with the

turbine’s circular area ATurbine, β = AIntersection

ATurbine
.
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Figure 5.: Thrust coefficient Ct and power production of the turbine Vestas V80 with
cut-in speed of 4 m/s and cut-out speed of 25 m/s (dashed vertical lines).

2.3. Power Generation Model

Turbines convert the wind’s kinetic energy into electrical energy. Thus, the generated

power of a wind turbine P depends on the incident wind speed u and the power curve

(which is usually provided by the manufacturer as seen in Figure 5),

P (u) = Ppower curve(u) · `power. (3)
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With the parameter `power, power curve losses are considered, such as material per-

formance deviations from the expected power curve. The power curve depends on a

cut-in speed ucutin and a cut-out speed ucutout which specify the range of wind speeds

in which the turbine generates power. If the wind speed is lower than ucutin there is not

enough wind for efficient power production, and for wind speeds larger than ucutout

the wind is too strong such that the turbine might be damaged.

The gross annual energy production is given as the produced power for the du-

ration of one year (in hours), thus

EAEPgross = (8760h+ 6h) · P, (4)

while the total generated power P is computed from the generated power for each

wind direction ϕ,

P :=

∫ 2π

0
Pϕdϕ ≈

Ndir∑
i=1

wϕi
· Pϕi

, (5)

with direction ϕi, weight wϕi
of the quadrature rule. The power Pϕi

for one wind

direction is given by integrating along the corresponding probability function and the

power curve.

2.4. Cost Model

As a result of the last three sub-models we can compute a value for the gross annual

energy production by integrating for each wind direction and wind speed, computing

the wake velocity for subsequent turbines and evaluating the power curve (see Figure

1). This value is now used to compute different economic indicator functions, e.g. the

annual energy production, the levelized cost of electricity by Lackner and Elkinton

(2007), the net present value by González, Rodŕıguez, Mora, Santos, and Payán (2009),

or the internal rate of return by Çakar (2017). In this work, we consider the following

two economic indicator functions:
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• The annual energy production,

EAEP = EAEPgross · `performance, (6)

is the basic quantity for most economic indicator functions. With the plant per-

formance loss `performance, we consider electrical losses due to availability of tur-

bines, high wind hysteresis, and environmental performance degradation, such

as icing and high temperatures.

• The levelized cost of electricity given by Lackner and Elkinton (2007)

KLCOE =

Ccapital ·
(1 + rrate)

T · rrate

(1 + rrate)T − 1
+ CO&M

EAEP
, (7)

with total installed capital costs Ccapital for turbines, cabling, substation, decom-

mission etc., annual operation and maintenance costs CO&M, and discount rate

rrate including debt, taxes, and insurance over the time period T .

2.5. Validation of the Model

The implemented model was cross-validated using the Openwind software, see Brower

and Robinson (2012).

3. Stochastic Model for the Annual Energy Production in Wind Farms

The models described in Section 2 are purely deterministic, i.e. they will always com-

pute the same results given the same input parameter. But to consider disturbances

in some parameters we need to introduce some random variables and include them in

the model to finally get a stochastic model.

3.1. Uncertain Parameters

The deterministic model from Section 2 is extended considering uncertainties in the

parameters. In DNV (2013) several uncertainty–inflicted parameters at high level have
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been identified, listed in Table 1. The input parameters are now modeled as random

variables ξi to consider the uncertain disturbance on them. In this work we are mod-

eling all random variables as independent and normally distributed ξi ∼ N (µi, σi),

whose mean is centered around the original undisturbed value µi. We want to stress,

that this is a modeling assumption and might not be suitable for some of the presented

uncertainties. As most of the modeled random variables originate from measurement

data, a normal distribution should provide a good approximation of the actual distri-

bution. For parameters with mathematical thresholds (e.g. the ξct random variable in

equation 9), where the unbounded support of the normal distribution can lead to prob-

lems, we instead use a truncated normal distribution. See Table 1 for a complete list of

all random variables and their associated distributions. Choosing normal distributions

also yields benefits for the analysis of a high dimensional joint probability distribution

function in the case studies presented in section 5. The economically-based random

variables are almost surely independent from the ones from the physical models and

are also independent from each other as they all address separate topics. The same

holds for most of the uncertain variables from the physical domain. The uncertainty in

the thrust coefficient Ct for example is considered to be a geometric design property

of the turbine blades and thus the uncertainty lies within the generated thrust and

not the static pressure on the blades. This also holds for the power curve where the

uncertainty is modeled in the mapping of the wind velocity to the produced power

and thus is independent from the velocity itself. Recently, the effect of lift coefficients

on the performance of wind turbine blades was emphasized as a factor contributing

to uncertainty. This influences the estimation of the power curve and can increase

uncertainty sources, see Li and Caracoglia (2020). Thus, for the independence of un-

certain parameters we only assume the independence of the uncertainty on the surface

roughness and the uncertainty in the measured wind speed.

Each random variable can be rewritten to a multiplication between the undis-

turbed value and a normal distribution N (1, σ) with the mean value of one. As the

standard deviation σ is a relative property, it can be chosen to resemble any observed

deviation d. In this work, the deviation of the measurement data d describes the ex-

ceedance probability of 90% and therefore σ can be computed by evaluating the inverse
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of its distribution function for which, in case of the normal distribution, 90% of the

data lies below the bell curve. The following uncertain parameters are considered:

• Wind speed, due to site measurements, historic wind resource or the measure-

correlate-predict method, vertical extrapolation, future variability, and wind flow

extrapolation.

• Wake effect, due to model inaccuracies and neighboring sites.

• Ct curve, due to impacts of atmospheric stability and site conditions for which

Ct curve is not valid.

• Surface roughness, due to changing surface conditions caused by weather or tides.

• Power curve, due to impacts of atmospheric stability, and site conditions for

which power curve is not valid.

• Plant performance, due to electrical efficiency, availability of turbines, internal

and external grid, due to environmental as blade soiling, blade degradation and

weather effects.

• Capital costs, due to steel price fluctuations.

• Annual O&M costs, due to use of new technologies.

• Discount rate, due to fluctuations of the economic discount rate.

Uncertain parameters Distribution
Wind speed ξwind Normal
Wake effect ξwake Normal
Ct curve ξct truncated Normal
Surface roughness ξrough truncated Normal
Power curve ξpower Normal
Plant performance ξperformance Normal
Capital costs ξcapital Normal
Annual O&M costs ξo&m Normal
Discount rate ξrate Normal

Table 1.: Uncertain parameters of the wind farm model at high level.

3.2. Stochastic Model

The above defined random variables are now included into the model to finally get a

stochastic model.
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Wind Due to inaccurate measurements, imprecise long-term predictions, inter-annual

variability, and further interference DNV (2013), the distribution of the wind speed u

is a highly uncertain parameter. Therefore, we disturb the raw data of the wind speed

with a normally distributed random variable ξwind such that disturbed probability

density functions of the Weibull distribution are obtained (see Figure 6). In Çakar

(2017) and in Tuzuner and Yu (2008) it is shown that a disturbance d of the wind

speed corresponds to the disturbance d of the Weibull parameter λ, such that the

resulting probability for each wind speed u can be formulated as a random variable.

Compare with equation (1):

W
(
u;λ, k, ξwind

)
=

(
k

λ · ξwind

)
·
(

u

λ · ξwind

)k−1

· exp
(
− (u · λ · ξwind)k

)
, (8)

where λ > 0 is the scale parameter and k > 0 is the shape parameter of the Weibull

distribution, which are determined with the maximum likelihood estimation using the

undisturbed wind speed data.
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Figure 6.: Fitted Weibull distribution with maximum likelihood estimation (MLE) for
the wind speed distribution over the years from January 2010 to December 2017 for
the western wind direction sector (255◦ to 285◦) measured at the FINO3 research
platform. Red and green plots represent the fitted Weibull distribution with MLE
after disturbing the wind speed data with factors of ±6%, ±12%, and ±18%. The
random variable ξwind(u) represents the Weibull distribution between the highest red
plot (MLE fit -18%) and the lowest green plot (MLE fit +18%) with a probability of
99.73%.
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Wake Within a wind farm or outside of the wind farm there can be some wake effects

from future installations. The predicted wake effect is disturbed due to uncertainty in

the model inputs (including wind direction), model performance, and appropriateness

for the site. Furthermore we need to include uncertainty related to any proposed

neighboring sites (construction time, layout, turbine type), see DNV (2013). Therefore

we disturb the velocity deficit of a wake with a normally distributed random variable

ξwake. Furthermore, the wake model depends on the Ct curve and the surface roughness

z0. Due to imprecise measurements of the Ct curve, we disturb this parameter with

the random variable ξct (see Figure 7). Here, in order to prevent negative values in the

root of the numerator of equation 9, we used a truncated normal distribution, which

enforces Ct(u0) · ξct ≤ 1 as this could otherwise lead to non-physical complex wake

velocities.

The surface roughness depends on the topography and flora, see Wiernga (1993),

i.e. for offshore wind farms it depends on the wave field, wind speed, upstream fetch,

and water depth, see Lange, Larsen, Højstrup, and Barthelmie (2004). Thus, also this

parameter z0 should be stochastic and is therefore disturbed with a truncated normally

distributed random variable ξrough to enforce z0 ·ξrough > 0. Altogether, the wind speed

behind a turbine at any point x from equation (2) changes as follows:

ũw
(
x, ξwake, ξct, ξrough

)
= (`wind · u0)−

1−
√

1− Ct(`wind · u0) · ξct(
1 + 2x

D ·
1

2 ln(z/(z0·ξrough))

)2 · `wake · ξwake · (`wind · u0).

(9)

Power generation In the power generation model the turbine performance is dis-

turbed due to material fatigue which leads to uncertainty in the power curve. Further-

more, there is uncertainty in performance under site conditions for which the power

curve is not valid. This also includes the impact of atmospheric stability and uncer-

tainty associated with uncertain icing losses as well as other environmental losses, e.g.

blade soiling, blade degradation, weather effects. As it is difficult to quantify these

sources of uncertainty in terms of individual standard deviations, we model them as

a single uncertain parameter and thus disturb the power curve by the normally dis-

tributed random variable ξpower (see Figure 7). This changes equation (3) for the power
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curve as follows:

P̃
(
u, ξpower

)
= Ppower curve(u) · `power · ξpower. (10)
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Figure 7.: Exemplary disturbed Ct and power curve of a Vestas V80 turbine with a
cut-in speed of 4 m/s and cut-out speed of 25 m/s (dashed vertical lines). The red
tube illustrates the Ct and power curve with a disturbance of ±10%.

Annual energy production The annual energy production is the basic value for all

other economic indicator functions. As plant performance losses due to e.g. availability

or curtailment are uncertain, we disturb the performance with the normally distributed

random variable ξperformance, which results into the following formula:

ẼAEP = EAEPgross · `performance · ξperformance. (11)

Levelized cost of electricity The capital costs Ccapital mainly depend on the price

of steel. But because of the long planning stage of several years for a wind farm, the

calculation depends on long-term predictions for the steel price which is very volatile.

Therefore, we disturb the capital costs with a normally distributed random variable

ξcapital. The same argument holds for the discount rate rrate, which during an early

planning stage is very tentative thus it is disturbed with a normally distributed random

variable ξrate. The costs for annual operation and maintenance CO&M are also affected

by the volatile price of steel (for the material), and other political decisions like payroll

taxes. Therefore, this parameter is also disturbed with a normally distributed random

variable ξo&m. Altogether, the the levelized cost of electricity from (7) changes as
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follows:

K̃LCOE =

Ccapital · ξcapital ·
(1 + r̃rate)

T · r̃rate

(1 + r̃rate)T − 1
+ CO&M · ξo&m

ẼAEP

, (12)

with disturbed discount rate r̃rate = rrate · ξrate.

4. Methods of Uncertainty Quantification

As is it the goal of this paper to investigate the influence of uncertainties in the input

parameters onto different model outputs, e.g. gross annual energy production, it is

necessary to introduce methods which allow quantifying their influence on a certain

quantity of interest. The overall idea of propagating uncertainties through models and

then computing the sensitivities of these models in relation to the inputs is in literature

referred to as Uncertainty Quantification (UQ).

From a practical point of view the methods for Uncertainty Quantification, see

Smith (2013), Sullivan (2015), de Cursi and Sampaio (2015), Ghanem, Higdon, and

Owhadi (2017), can be divided into two different categories: While intrusive methods

introduce changes to the original problem as the governing equations become statis-

tical, non-intrusive methods on the other hand evaluate the original problem with

varying inputs and compute the statistics from the results. For complex problems, a

non-intrusive method is often favored as it requires no modification to the original

code. While Lackner and Elkinton (2007) and Foti et al. (2017) used a Monte Carlo

simulation, Murcia et al. (2015) performed a Latin Hypercube simulation for their

investigations.

In this paper the influence of the uncertainty of some parameters in the context

of an offshore wind farm will be investigated by the means of the classical Monte Carlo

method, see Smith (2013), low-discrepancy quasi-Monte Carlo methods by Niederreiter

(1992), and also the Stochastic Collocation method by Babuška, Nobile, and Tempone

(2007). We will then provide a recommendation for the method which performs best

with respect to the underlying offshore wind farm problem setting.
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Figure 8.: Visual representation of different sampling strategies on a two-dimensional
unit square. (a) classical Monte Carlo with pseudo random numbers generated by
the Mersenne Twister Engine from the C++ standard library, (b) Quasi-Monte Carlo
with pseudo random numbers generated by the Sobol sequence, and (c) Stochastic
Collocation on Smolyak sparse grids with Clenshaw Curtis nodes.

4.1. Monte Carlo

In order to compute a given quantity of interest, such as the expectation of the annual

energy production, the problem can be written mathematically as:

E[u( ~X, ~ξ)] =

∫
Γ
u( ~X, ~ξ)ρ(~ξ)d~ξ, (13)

where u( ~X, ~ξ) is the disturbed model involved in computing the annual energy produc-

tion, ~ξ are the random variables modeling uncertainties within the inputs, ρ(~ξ) as the

respective probability density function, and ~X the vector of undisturbed parameters.

The Monte Carlo method uses sampling in the probability space of the associated

random variable ~ξ to evaluate the integral in equation 13. By computing M deter-

ministic solutions (sampling), each starting from a different set of realizations of the

uncertain parameters, M solutions of the type um( ~X) = u( ~X, ~ξm) are obtained. If

~ξm, m = 1, . . . ,M is a sequence of independent and identically distributed random

variables, application of the central limit theorem yields:

1

M

M∑
m=1

u( ~X, ~ξm)
a.s.−−→ E[u( ~X, ~ξ)].

This means that, in the limit, the method converges to a fixed value for the mean and

also the variance of the Quantity of Interest. The rate of convergence for the Monte
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Carlo method with random sampling isO(M−1/2), as shown by Caflisch (1998). O(·) in

this context describes the upper bound for the growth rate of a function. Therefore, in

order to achieve one additional digit of accuracy, it is necessary to compute 100 times

more samples. This slow convergence rate can cause issues in case of computationally

expensive problems. On the other hand, the convergence rate of the Monte Carlo

sampling is not a function of the dimension of the probability space.

Generating random numbers for the sampling process is a difficult task in practice as

computers are deterministic machines. In this work we use pseudo random numbers

generated by the Mersenne Twister method by Matsumoto and Nishimura (1998) from

the C++ standard library. A visual representation of generated samples can be seen

in Figure 8a.

4.2. Quasi-Monte Carlo

An improvement to the classical Monte Carlo method is the quasi-Monte Carlo method

(QMC). It relies on the sample principle like the classical Monte Carlo method with

the difference being, that it makes use of a low-discrepancy sequence in order to

generate its random numbers. Morokoff and Caflisch (1995) examined three different

low discrepancy sequences: the Halton, Sobol, and Faure sequence. The result indicated

that Halton sequences are best for up to six dimensions and the Sobol sequence is best

for all higher dimensions. As we are interested in these high dimensional cases, the

Sobol sequence is used in this paper. The Sobol sequence can be briefly explained as

a sequential instruction set that fills a multi-dimensional hypercube, while trying to

avoid the creation of void regions. These created values are deterministic and thus are

called pseudo-random, but they evenly fill the hypercube and therefore potentially lead

to a faster convergence compared to the pure Monte-Carlo method. The more equal

filling can be seen in Figure 8b. For a detailed explanation regarding the generation

of the sequence, see Bratley and Fox (1988). By using the Sobol sequence to generate

pseudo random numbers, the convergence of the quasi-Monte Carlo is of the order

O(M−1(logM)dim(~ξ)), see Caflisch (1998). This means that for small dimensions, the

quasi-Monte Carlo simulation only needs to compute roughly five to ten times fewer

samples in order to achieve one additional digit of accuracy compared to the classical
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Monte Carlo method.

4.3. Sparse Grid Stochastic Collocation

Compared to the previous methods, the sparse grid Stochastic Collocation (SC)

method is not a variant of the classical Monte Carlo method. The main idea of the

sparse grid Stochastic Collocation method is to choose a set of M collocations points

in probability space and then to compute the solution at these points. As the posi-

tions of the collocation points are generally freely chosen, the sparse grid Stochastic

Collocation method selects them based on a quadrature rule and exploits the corre-

sponding quadrature weights to compute the statistics of a given quantity of interest

such as e.g. the annual energy production. In case of a high dimensional probability

space it is thus necessary to use an efficient quadrature rule, as for common methods

the number of required quadrature points increases exponentially with the dimension

of the probability space. This leads to overall expensive computations as a solution of

the deterministic problem needs to be computed on every quadrature point.

One way to construct such an efficient rule is by using the so-called Smolyak sparse

grids. These grids are constructed from nested one-dimensional quadrature rules, which

restricts the degrees of freedom involved in the discretization of the problem and thus

allows for a slower growth of the required quadrature points. In this paper Smolyak

sparse grids with Clenshaw Curtis nodes are used for the computations involving the

sparse grid Stochastic Collocation method. As this node type yields a quadrature set

for the bounded interval [−1, 1] and thus would not be a suitable quadrature rule for

unbounded probability density functions as e.g. the normal distribution, we use an

inverse cumulative distribution function transform to expand the quadrature set to

(−∞,∞) as described in van Wyk, Gunzburger, and Burkardt (2016). For further

details on the sparse grid method, see Smith (2013); Wolters (2016). Figure 8c shows

an example for such a sparse grid for the domain [0, 1]2.

The convergence rate of the method is of the order O(M−α(logM)(dim(~ξ)−1)(α+1)),

with dimension of the uncertain parameter space d, M as total number of grid points

and α depending on the regularity of the solution. It has to be stressed that the num-

ber of samples M is indirectly determined by the dimensionality of the probability
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space and the level of the underlying quadrature rule which can be selected by the

user. Also differing from the previously discussed Monte Carlo type methods, is the

convergence rate of the sparse grid Stochastic Collocation method as it decreases for

higher dimensions. This phenomenon is often referred to as the “curse of dimension-

ality” and restricts usability of collocation methods for high dimensional probability

spaces.

4.4. Error Comparison of UQ Methods

In order to demonstrate the convergence behavior of the described methods, we use

the computation of the levelized cost of electricity (see Figure 1) as a benchmark. The

uncertain parameters in this computation resemble the maximal amount of param-

eters in the results presented in Section 5. The associated probability distributions

used in the sampling process for each parameter can be seen in Table 4, while the

remaining input data is configured according to the Horns Rev 1 wind farm dataset.

As we are computing the levelized cost of electricity, all nine parameters from Table

4 have an influence on the solution and therefore the resulting joint probability space

is nine-dimensional.

The convergence rates of all presented methods are recapitulated in Table 2. As these

Monte Carlo quasi-Monte Carlo Sparse Grid Stochastic Collocation

O(M−1/2) O(M−1(logM)dim(~ξ)) O(M−α(logM)(dim(~ξ)−1)(α+1))

Table 2.: Order of the convergence rates of the presented UQ methods.

values only show the theoretical order and neglect the influence of any constant fac-

tors, Figures 9 and 10 show the numerically studied error evolution patterns. This is

especially interesting for the sparse grid Stochastic Collocation method, as its con-

vergence rate depends on the unknown smoothness α of the underlying problem. The

methods are compared in terms of the relative error in the expectation and variance

with respect to a quasi-Monte Carlo simulation computed with a sufficiently large

sample size of M = 1 · 108. Normally the classical Monte Carlo simulation should be

used as a reference as it will always converge towards the correct result for M → ∞,

but the high dimensionality of the problem combined with the slow convergence rate
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of the method demanded an unreasonable sample size.
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Figure 9.: Convergence behavior of the presented methods in terms of the relative
error in the mean w.r.t to the quasi-Monte Carlo reference solution.
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Figure 10.: Convergence behavior of the presented methods in terms of the relative
error in the variance w.r.t to the quasi-Monte Carlo reference solution.

The presented results show that the Monte Carlo is the least accurate method

in terms of the observed relative error across all sample sizes which coincides with its

theoretical convergence rate. The sparse grid Stochastic Collocation method shows a

higher convergence rate compared to the quasi-Monte Carlo method, despite having a

higher initial error for lower grid levels. Both methods achieve similar relative errors of

7 · 10−7 for the expectation and 9 · 10−5 for the variance with respect to the reference

quasi-Monte Carlo solution. The dashed lines in Figure 9 and 10 show the theoretical
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convergence rates of the classical Monte Carlo and the quasi-Monte Carlo methods.

While the classical Monte Carlo method shows the expected convergence rate, it is

worth noting that the quasi-Monte Carlo method, whose convergence rate is plotted

with dim ~ξ = 1, shows a comparable error decline despite the much higher dimension-

ality of the problem. This implies that the probability space of the underlying problem

might be dominated by a single dimension and that the low discrepancy sequence of

the method can successfully exploit this fact for an accelerated convergence behavior.

This observation becomes more apparent in the sensitivity analysis presented in Sec-

tion 5.

Considering the computational costs of both methods, the costs of computing the

sparse grid for the Stochastic Collocation method scale in a nonlinear way with the

dimension of the probability space and the grid level, while the sequence generation

of the quasi-Monte Carlo method is linear in the number of sample points and thus

potentially faster for large numbers of samples/dimensions. As the grid calculations

could also be done once and stored prior to the actual Uncertainty Quantification

analysis, this does not pose a significant drawback except for very high dimensions

and many grid levels.

Based on the obtained results, it can be concluded that the quasi-Monte Carlo

method is favorable over the other methods. This observation is based on the three

criteria: error control, computational overhead, and finally ease of implementation.

While Stochastic Collocation and quasi-Monte Carlo yield comparable results for the

demonstrated sample sizes, it has to be stressed that the reference solution has also

been computed using quasi-Monte Carlo method and the relative error thus has a

bias in favor of quasi-Monte Carlo. Purely based on the observed relative convergence

rate, the Stochastic Collocation method converges at a higher rate. Quasi-Monte Carlo

allows for an arbitrary sample size and thus a fine-grained error control, while the used

sparse grids in the Stochastic Collocation method, only allows for very discrete sample

sizes, which exponentially increase with the selected level (see marker in the Stochastic

Collocation plots in Figures 9 and 10) due to the inherent nestedness of quadrature

nodes. Furthermore, quasi-Monte Carlo does not required any precomputations, as

computing the next sample from the Sobol sequence has negligible computational
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cost. Lastly, numerical codes for the Sobol sequence have better availability across

multiple programming languages compared to arbitrary dimension and level sparse

grid generators.

The presented results in Section 5 are therefore solely obtained by the application of

the quasi-Monte Carlo method. For the sample size we choose 1 · 106 samples as the

obtained results show a relative error of O(10−6) for the LCOE, which also includes

the computation of the AEP (see Figure 1) and thus errors for the mean should be of

the order O(1) [GWh] for all presented test cases.

5. Case Study Results

This section describes the evaluation of the stochastic models introduced in Section 3

by using the methods of Uncertainty Quantification from Section 4. The influence of

the input variables on the computed annual energy production and levelized cost of

electricity will be determined, and their computed statistics will be analyzed.

For the model we will use the parameters of the three wind farms Horns Rev 1 1,

DanTysk2, and Sandbank3. As each of these wind farms differ significantly in the used

turbine types and grid layout, they will also have different losses and sensitivities with

respect to the presented uncertainties. Because the wind farms are all closely positioned

on a global scale, the same wind data will be used in each of the evaluations. The

source of this wind data is the FINO34 met mast, positioned about 50 km southwest

of Horns Rev, 2 km west from DanTysk, and 20 km east from Sandbank. We use all

data recorded between January 2010 and December 2017 at a height of 100 meters.

For each wind farm, turbine positions are given in Figure 11, its turbine Ct and

power curves are shown in Figure 12, while its general settings, losses, and uncertainties

are listed in Tables 3 and 4. The values presented in these tables originate from data

which was gathered over multiple years by the Vattenfall Europe Windkraft GmbH.

Before analyzing the propagation of uncertainties, we introduce some of the no-

tation used by the variance-based sensitivity analysis for the joint probability space,

1More information: https://powerplants.vattenfall.com/horns-rev
2https://powerplants.vattenfall.com/dantysk
3https://powerplants.vattenfall.com/sandbank
4https://www.fino3.de/en/
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Figure 11.: Turbine positions for the wind farms Horns Rev 1 (left), DanTysk (center),
and Sandbank (right). The constructed wind farm Horns Rev 1 is located in the North
Sea close to the Danish coast. This wind farm has been built in 2002 and is commonly
used as a test case for all kinds of offshore wind farm related research, e.g. Murcia et
al. (2015), Gaumond et al. (2014), Barthelmie et al. (2009). The DanTysk wind farm is
located close to the German shore in the North Sea, approximately 70 km west of the
island Sylt. Build in 2014, it covers an area of 70 square meters and can theoretically
produce 288 MW of power, if each of its 80 turbines would operate at full load. The
Sandbank wind farm is located right next to the DanTysk wind farm and is the newest
of all presented wind farms as it was recently built in 2017. Containing 72 turbines,
laid out in rows across an area of 60 square kilometers, each capable of producing 4
MW of electrical power, the wind farm has a theoretical peak electrical power output
of 288 MW. The turbines also have a much higher cut-out speed compared to the
turbines of the other two wind farms.

spanned by the uncertainties w.r.t. all nine variables given in Table 1, as described by

Saltelli et al. (2010). This notation is especially designed to express how the uncer-

tainty in the model output can be linked to uncertainties in the inputs. The stochastic

model derived previously will be represented by Y in the following, while the model

inputs will be referred to as ξi. The uncertainty propagation of ξi through Y is best

described in the context of this notation by the sensitivity measure by Saltelli et al.

(2010)

Si =
varξi(Eξ∼i

(Y|ξi))
var(Y)

, (14)

which is technically the first order sensitivity coefficient that measures e.g. the additive
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Figure 12.: Thrust coefficient Ct (left) and power production (right) of the turbines
Vestas V80 by L. Jensen et al. (2004), Siemens SWT-3.6-120, and Siemens SWT-4.0-
130. The dashed vertical lines show the cut-in and cut-out speeds.

Parameter Horns Rev 1 DanTysk Sandbank
Positions see Figure 11 see Figure 11 see Figure 11
Wind data FINO3 (2010–2017) FINO3 (2010–2017) FINO3 (2010–2017)
Wind speed losses `wind 98.5 % 99.2 % 99.5 %
Turbine type Vestas V80-2.0MW Siemens SWT-3.6-120 Siemens SWT-4.0-130
Rotor diameter D 80 m 120 m 130 m
Hub height z 70 m 88 m 95 m
Cut-in speed ucutin 4 m/s 4 m/s 4 m/s
Cut-out speed ucutout 25 m/s 32 m/s 32 m/s
Surface roughness z0 0.2 · 10−3 m 0.2 · 10−3 m 0.2 · 10−3 m
Wake effect losses `wake 99.9 % 99.9 % 99.9 %
Power curve P (u) see Figure 12 see Figure 12 see Figure 12
Ct curve Ct(u) see Figure 12 see Figure 12 see Figure 12
Power curve losses `power 98.8 % 98.9 % 99 %
Total capital costs Ccapital 278 000 000 e 1 000 000 000 e 1 200 000 000 e
Annual operation and maintenance costs CO&M 52 000 000 e 43 200 000 e 43 200 000 e
Discount rate rrate 2 % 3.75 % 0.15 %
Project lifetime T 20 years 20 years 20 years
Plant performance losses `performance 88.5 % 88.8 % 89 %

Table 3.: Parameters for the wind farms Horns Rev 1, DanTysk, and Sandbank.

effect of ξi on the model output. Si can also be interpreted in terms of expected

reduction of variance. This interpretation allows an easier understanding of the factors

involved in the computation of Si:

• var(Y): output variance with all inputs modeled as random variables

• varξi(Eξ∼i
(Y|ξi)): expected reduction in variance that would be obtained if ξi

could be fixed

In the following we use box plots to visualize statistical characteristics of the solution.

The inside of the box, bounded by the lower and upper quartiles, represents 50 % of the

computed samples. The vertical line inside the box stands for the median of the data

set. The lower whisker is the smallest data value which is larger than: lower quartile−

1.5 · inter-quartile-range, where the “inter–quartile–range” is the difference between

the upper and lower quartiles. The upper whisker is the largest data value which is
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Uncertainty Horns Rev 1 DanTysk Sandbank
deviation σ deviation σ deviation σ

Wind speed ξwind 8.0% 0.0486 6.0% 0.0365 7.5% 0.0456
Wake effect ξwake 3.0% 0.0182 3.0% 0.0182 3.0% 0.0182
Ct curve ξct 2.0% 0.0122 2.0% 0.0122 2.0% 0.0122
Surface roughness ξrough 0.000021% 1.277 · 10−7 0.000017% 1.034 · 10−7 0.000016% 9.737 · 10−8

Power curve ξpower 2.0% 0.0122 2.0% 0.0122 2.0% 0.0122
Plant performance ξperformance 2.3% 0.0140 2.1% 0.0128 2.1% 0.0128
Capital costs ξcapital 3.0% 0.0182 3.0% 0.0182 3.0% 0.0182
Annual O&M costs ξo&m 3.0% 0.0182 3.0% 0.0182 3.0% 0.0182
Discount rate ξrate 4.0% 0.0234 1.0% 0.0061 0.5% 0.0030

Table 4.: Uncertain parameters for the wind farms Horns Rev 1, DanTysk, and Sand-
bank. The surface roughness parameter is given by using the maximum approximation
of Foti et al. (2017), σrough = 1.5 · 10−5/z. The values presented in this table originate
from data which was gathered over multiple years by the Vattenfall Europe Windkraft
GmbH.

smaller than: upper quartile + 1.5 · inter-quartile-range.

5.1. Annual Energy Production

In Figure 13 the results regarding the annual energy production for all six influencing

uncertainty parameters, i.e. wind speed, wake effect, Ct curve, surface roughness, power

curve, and power loss are shown. For their deviation we choose two test cases: an

academic test case for which we choose equal deviations of 5 % for all six uncertainty-

inflicted parameters, while for the realistic test case we choose the deviations as given

in Table 4 by the Vattenfall Europe Windkraft GmbH.

Each box plot represents the results of an uncertain parameter. The topmost box

plot represents the model output for the case that the six uncertainties are disturbed

at the same time. In the box plot it can be seen that the deviation from the expected

annual energy production value behaves similarly in both directions of the AEP. The

deviations of the wind speed, power curve, and plant performance have the largest

impact on the annual energy production in comparison to all other uncertainties. This

holds for the academic and realistic test case.

The results in terms of the variance-based sensitivity analysis are shown in Table

5 (academic test case) and Table 6 (realistic test case). In the realistic test case,

for all three wind farms the sensitivity is higher than 84 %. The sensitivities of the

power curve and plant performance follow with about 3 to 9 percent. All remaining

uncertainties (wake effect, Ct curve, and surface roughness) are below 0.3 % and thus
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have a rather negligible influence on the variance of the model output.
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(a) Horns Rev 1 test case with equal devia-
tions of 5 %.

400 450 500 550 600 650 700 750

Plant performance

Power curve

Surface roughness

Ct curve

Wake effect

Wind speed

All uncertainties
simultaneously

AEP [GWh]

(b) Horns Rev 1 test case with different devi-
ations according to Table 4.
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(c) DanTysk test case with equal deviations
of 5 %.
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(d) DanTysk test case with different devia-
tions according to Table 4.
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(e) Sandbank test case with equal deviations
of 5 %.
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(f) Sandbank test case with different devia-
tions according to Table 4.

Figure 13.: Graphical visualization of the sensitivity analysis with all six uncertainty
parameters wind speed, wake effect, Ct curve, surface roughness, power curve, and
plant performance at the same time (simultaneously) compared to single disturbances
of the uncertainty parameters computed with the quasi-Monte Carlo method with 106

samples for the Horns Rev 1, DanTysk, and Sandbank wind farms. The mean AEP
corresponds to the given values in literature, namely 599.5 GWh (Horns Rev 1), 1310.6
GWh (DanTysk), 1316.4 GWh (Sandbank).
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Uncertainty Horns Rev 1 DanTysk Sandbank
variance sensitivity variance sensitivity variance sensitivity

Wind speed ξwind 1.6887 · 109 48.12 % 5.5619 · 109 39.3 % 5.6467 · 109 39.36 %
Wake effect ξwake 1.1276 · 107 0.32 % 3.125 · 107 0.22 % 3.8256 · 107 0.27 %
Ct curve ξct 2.1235 · 107 0.61 % 5.1429 · 107 0.36 % 7.266 · 107 0.51 %
Surface roughness ξrough 4.2003 · 106 0.12 % 1.7947 · 107 0.13 % 2.0629 · 107 0.14 %
Power curve ξpower 9.0764 · 108 25.86 % 4.3241 · 109 30.55 % 4.3729 · 109 30.48 %
Plant performance ξperformance 8.9968 · 108 25.63 % 4.2771 · 109 30.22 % 4.3179 · 109 30.1 %

Table 5.: Results of the variance-based sensitivity analysis where all uncertainties are
fixed to 5 % of AEP calculation with 106 samples using the quasi-Monte Carlo Method.

Uncertainty Horns Rev 1 DanTysk Sandbank
variance sensitivity variance sensitivity variance sensitivity

Wind speed ξwind 1.5966 · 109 92.81 % 2.9557 · 109 84.61 % 4.6948 · 109 89.7 %
Wake effect ξwake 3.6257 · 106 0.21 % 5.7514 · 106 0.16 % 1.2469 · 107 0.24 %
Ct curve ξct 3.6569 · 106 0.21 % 6.0823 · 106 0.17 % 1.3101 · 107 0.25 %
Surface roughness ξrough 2.7336 · 106 0.16 % 3.9914 · 106 0.11 % 1.0173 · 107 0.19 %
Power curve ξpower 5.6519 · 107 3.29 % 2.6036 · 108 7.45 % 2.6928 · 108 5.14 %
Plant performance ξperformance 7.3561 · 107 4.28 % 2.862 · 108 8.19 % 2.9539 · 108 5.64 %

Table 6.: Results of the variance-based sensitivity analysis of AEP calculation with
106 samples using the quasi-Monte Carlo Method.

5.2. Levelized Costs of Electricity

In Figure 14 the results regarding the levelized costs of electricity for all nine in-

fluencing uncertainty parameters are shown, according to an equal deviation of 5 %

(academic test case) and according to the deviations given in Table 4 (realistic test

case).

As before, it can be seen that the uncertainty of wind speed causes the main

impact. Another interesting result is that the outliers of the combined and wind speed

box plot only spread in the direction of a higher LCOE, which again speaks for the

high sensitivity of the wind speed.

Table 7 and Table 8 show the results in terms of the variance-based sensitivity

analysis for the academic and realistic test case. Because the LCOE highly depends on

the AEP, the uncertainties show a similar behavior as before. In the realistic test case,

for all three wind farms the sensitivity is higher than 78 %, while the sensitivities of

the power curve and plant performance follow with about 3 to 8 percent. Furthermore,

the sensitivities for the capital costs and the annual O& M costs are in-between 1.4

and 7.7 percent. All remaining uncertainties (wake effect, Ct curve, surface roughness,

and discount rate) are below 1.2 % and thus have a rather negligible influence on the
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variance of the model output.
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(a) Horns Rev 1 test case with equal devia-
tions of 5 %.
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(b) Horns Rev 1 test case with different devi-
ations according to Table 4.
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(c) DanTysk test case with equal deviations
of 5 %.
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(d) DanTysk test case with different devia-
tions according to Table 4.
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(e) Sandbank test case with equal deviations
of 5 %.
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(f) Sandbank test case with different devia-
tions according to Table 4.

Figure 14.: Graphical visualization of the sensitivity analysis with all nine uncertainty
parameters wind speed, wake effect, Ct curve, surface roughness, power curve, plant
performance, capital costs, O&M costs, and discount rate compared at the same time
(simultaneously) to single effects of the uncertainty parameters computed with the
quasi-Monte Carlo method with 106 samples for the Horns Rev 1, DanTysk, and
Sandbank wind farms.
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Uncertainty Horns Rev 1 DanTysk Sandbank
variance sensitivity variance sensitivity variance sensitivity

Wind speed ξwind 6.7186 · 10−1 42.13 % 2.6737 · 10−1 33.94 % 2.1755 · 10−1 34.53 %
Wake effect ξwake 2.6063 · 10−2 1.63 % 1.1135 · 10−2 1.41 % 9.4152 · 10−3 1.49 %
Ct curve ξct 2.7456 · 10−2 1.72 % 1.1165 · 10−2 1.42 % 9.6657 · 10−3 1.53 %
Surface roughness ξrough 2.3825 · 10−2 1.49 % 1.0576 · 10−2 1.34 % 8.8553 · 10−3 1.41 %
Power curve ξpower 3.4543 · 10−1 21.66 % 1.9984 · 10−1 25.37 % 1.6189 · 10−1 25.69 %
Plant performance ξperformance 3.433 · 10−1 21.53 % 1.9832 · 10−1 25.18 % 1.6045 · 10−1 25.47 %
Capital costs ξcapital 4.3827 · 10−2 2.75 % 8.5743 · 10−2 10.88 % 6.2208 · 10−2 9.87 %
Annual O&M costs ξo&m 2.1092 · 10−1 13.23 % 3.7667 · 10−2 4.78 % 3.5661 · 10−2 5.66 %
Discount rate ξrate 2.4519 · 10−2 1.54 % 1.8883 · 10−2 2.4 % 8.8718 · 10−3 1.41 %

Table 7.: Results of variance-based sensitivity analysis where all uncertainties are fixed
to 5 % of LCOE calculation with 106 samples using the quasi-Monte Carlo Method.

Uncertainty Horns Rev 1 DanTysk Sandbank
variance sensitivity variance sensitivity variance sensitivity

Wind speed ξwind 6.3759 · 10−1 90.15 % 1.3795 · 10−1 78.52 % 1.7992 · 10−1 85.92 %
Wake effect ξwake 8.1103 · 10−3 1.15 % 1.0691 · 10−3 0.61 % 1.9739 · 10−3 0.94 %
Ct curve ξct 8.0655 · 10−3 1.14 % 1.0721 · 10−3 0.61 % 1.9698 · 10−3 0.94 %
Surface roughness ξrough 7.8208 · 10−3 1.11 % 9.9291 · 10−4 0.57 % 1.8982 · 10−3 0.91 %
Power curve ξpower 2.6861 · 10−2 3.8 % 1.2308 · 10−2 7.01 % 1.0983 · 10−2 5.24 %
Plant performance ξperformance 3.2909 · 10−2 4.65 % 1.3451 · 10−2 7.66 % 1.19 · 10−2 5.68 %
Capital costs ξcapital 1.0469 · 10−2 1.48 % 1.0952 · 10−2 6.23 % 8.9661 · 10−3 4.28 %
Annual O&M costs ξo&m 3.2609 · 10−2 4.61 % 4.5816 · 10−3 2.61 % 5.4487 · 10−3 2.6 %
Discount rate ξrate 7.9749 · 10−3 1.13 % 1.1177 · 10−3 0.64 % 1.8975 · 10−3 0.91 %

Table 8.: Results of variance-based sensitivity analysis of LCOE calculation with 106

samples using the quasi-Monte Carlo Method.
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6. Discussion of the Results

For the three existing wind farms Horns Rev 1, DanTysk, and Sandbank a sensitivity

analysis with regard to the two different objective functions AEP and LCOE was

performed. For the deviation of the uncertainty-inflicted parameters, we chose two

different settings: academic and realistic test cases.

The wind speed has the largest impact with a sensitivity higher than 78 %. This

result shows that the assessment of the wind resource is of very high importance. This

effect can also be seen in the convergence plot of the UQ methods in Figure 9, as

quasi-Monte Carlo and Stochastic Collocation show faster convergence than expected.

The uncertain parameters describing the wake effect, Ct curve, surface rough-

ness, and discount rate have a sensitivity below 1.2 %. In further investigations, these

values should not be considered anymore to save computation time. The other four

sensitivities for power curve, plant performance, capital costs, and annual O&M costs

are in-between 1.4 and 9 % and could therefore be considered in further investigations.

As for UQ methods, quasi-Monte Carlo and Stochastic Collocation show the

fastest convergence rates. For ease of implementation and fine-grained error control,

we recommend the quasi-Monte Carlo method.

7. Conclusion

Within this work we investigated the sensitivity of certain input parameters for the

estimated economics of offshore wind farms. We developed a model describing the

wind, wake, and power generation of an offshore wind farm which delivers an output

of two economic goal functions, i.e. the AEP and the LCOE. These goal functions are

usually used for site evaluation and construction feasibility. We extended the deter-

ministic model by introducing nine uncertain model parameters, e.g. uncertain wind

speed and wake effects. Due to the nature of the resulting stochastic model, solution

methods from the field of Uncertainty Quantification are needed. Several methods

were compared in terms of convergence rate, overhead, and ease of implementation.

As a result of this investigation, the quasi-Monte Carlo was used for the propa-

gation of uncertainties in a wind farm simulation. This is due to the method offering

32



fast convergence rates, low implementation efforts, and good error control.

In a case study we performed a sensitivity analysis on three existing wind farms,

i.e. Horns Rev 1, DanTysk, and Sandbank. We investigated the influence of our nine

uncertainty-inflicted parameters on two economic quantities.

Our results show that for all wind farms and for all objective functions, wind

speed has the largest influence on the variance of the model output. Furthermore,

four more parameters could be considered for further sensitivity analyses, while the

remaining four parameters are negligible.
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