
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Raytracer for Central Receiver Systems using GPU
Raytracer für Solarturmkraftwerke mit GPU

Masterarbeit
Informatik

Juni 2021

Vorgelegt von Lukas Aldenhoff
Presented by Römerstraße 311

46519 Alpen
Matrikelnummer: 333731
lukas.aldenhoff@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Matthias S. Müller
Second examiner Lehr- und Forschungsgebiet: Hochleistungsrechnen

RWTH Aachen University

Fachlicher Betreuer Dr. rer. nat. Pascal Richter
Supervisor Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat in dieser oder einer
ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.

Alpen, im Juni 2021

Lukas Aldenhoff

II

Contents

1 Introduction 1
1.1 State of the art . 2
1.2 Outline . 3

2 Optical model 5
2.1 Tower and receiver . 5
2.2 Site . 6
2.3 Sun . 7
2.4 Heliostat . 7

3 Ray tracing methodology 12
3.1 Optical errors . 12

3.1.1 Monte-Carlo method . 13
3.1.2 Convolution method . 16

3.2 Ray generation . 17
3.3 Blocking and shading . 17
3.4 Other optical losses . 21
3.5 Procedure summary . 23

4 General optimization 24
4.1 Code optimization . 31
4.2 Annual simulation considerations . 32

5 Parallelization 32
5.1 CPU parallelization . 33
5.2 GPU parallelization . 34

5.2.1 GPU architecture . 34
5.2.2 Adapting SunFlower for GPU 35
5.2.3 Execution divergence . 38
5.2.4 Floating point data types . 39
5.2.5 Intrinsic functions . 41
5.2.6 Nsight Compute performance analysis 41
5.2.7 Occupancy . 42

6 Case study 46
6.1 Validation . 46
6.2 Performance . 48
6.3 Performance comparison to state-of-the-art tools 56
6.4 Discussion of the results . 57

7 Conclusion and Outlook 59
7.1 Conclusion . 59
7.2 Outlook . 60

III

References 61

IV

1 Introduction

In the modern day surge of renewable energy investment and innovation, concentrating
solar power (CSP) plants represent a promising link between clean energy production
and high capacity energy storage in the form of thermal energy. The Gemasolar power
plant in Spain, launched in 2011 by Torresol Energy, is an example of such a commer-
cial solar tower plant with molten salt heat storage and 2650 heliostats, see Figure 1.

Figure 1: Solar tower power plant Gemasolar in the province of Seville, Spain. In
operation since 2011, it involves a molten salt heat storage system and 2650
heliostats [9].

Maximizing the commercial viability of central receiver system (CRS) based CSP plants
is tightly bound to the optimization of the heliostat field layout, which is a computa-
tionally challenging task. To fully optimize the heliostat field layout and other sub-
systems of a CRS plant an immense number of simulations have to be done. As future
CRS plants are trending towards huge heliostat fields beyond ten thousand heliostats,
this optimization becomes even more costly.
Todays technology offers many innovations to tackle computationally intensive tasks,
however with single core frequency of CPUs stagnating for well over a decade, most
of these innovations nowadays have to be exploited explicitly during implementation.
The most glaring example is the increasing amount of cores on CPUs and the arising
general purpose many-core architectures such as GPGPUs. Exploiting the computa-
tional power of these parallel architectures today is paramount in the quick solution of
computationally intensive tasks. This leads to the requirement of efficiently paralleliz-
ing computation wherever possible.
The vast majority of computation during the simulation of a CRS plant is required
for the evaluation and tracing of sun rays. For each heliostat a ray tracing module
approximates the amount of solar power that is successfully redirected to the cen-

1

tral receiver. This is typically achieved by discretizing sun rays and evaluating their
trajectory. With this methodology a high discretization resolution is key to achieve
reasonable accuracy, which leads to millions or even billions of rays being traced in
common settings. As rays can be calculated and traced independently, ray tracing has
immense parallelization possibilities, uniquely suitable to the powerful data parallelism
of the GPU architecture.

This work aims to accelerate the existing SunFlower tool for simulation and opti-
mization of CRS plants, initially introduced by Richter et al. [43]. The goal is to
improve the incorporated ray tracing methodology and to efficiently parallelize the
computationally intensive ray tracing module.

1.1 State of the art

The simulation and optimization of solar thermal power plants has been topic of re-
search since the 1970s, resulting in various tools, approaches and innovations in this
field. There also have been a number of reviews on the range of available tools, eg. by
Garcia et al. [18], Bode and Gauché [8], Cruz et al. [13] and most recently Jafrancesco
et al. [27]. Behar et al. [4] and Li et al. [31] also have done a more general review
of studies and the state of the art in this field. Given the comprehensive available
literature summarizing the state of the art, this Section only gives a brief overview and
focusses on more recent studies.

There are two predominant approaches to the simulation of the produced flux on the
receiver by a heliostat field. The first and most common approach is the Monte-Carlo
ray tracing method, pseudo-randomly generating large amounts of rays and tracing
them to approximate the error functions encountered in a CSP environment.
The tool MIRVAL [30], launched by the Sandia National Laboratory in 1979, is con-
sidered as one of the first Monte-Carlo based raytracers and today is available com-
mercially under the name SPRAY via the German Aerospace Center (DLR).
In 2003 the US National Renewable Energy Laboratory (NREL) launched the free
Monte-Carlo ray tracing tool SolTrace [49] and since improved it considerably [50],
making it a well established state of the art tool.
Another free and open-source Monte-Carlo raytracer was released in 2007 by the Uni-
versity of Texas under the name Tonatiuh [7]. MIRVAL, SolTrace and Tonatiuh com-
pute the flux distribution on the receiver with a standard forward ray tracing procedure,
generating rays on a plane above the heliostat.
The DLR incorporated a more efficient backward ray tracing procedure in their STRAL
tool [1], originating rays directly on the reflective surface (the heliostat).
TieSOL [26] represents the first established GPU implementation of Monte-Carlo ray
tracing for CSP plants in 2011. It is developed and commercially available by Tietronix
Software Inc. and showcased the potential performance of highly parallelized GPU-
based ray tracing.
Another implementation of Monte-Carlo ray tracing was done by Duan et al. [15],

2

named Quasi-Monte-Carlo ray tracing (QMCRT). This implementation uses bidirec-
tional ray tracing and limits the random generation of Monte-Carlo rays, instead using
two precomputed random variable sets. QMCRT was also implemented on GPU with
impressive performance.
A very recent commercial and on GPU parallelized Monte-Carlo raytracer is sbpRAY.
Developed by Schlaich Bergermann Partner and introduced in 2019, this tool can also
be used for heliostat field layout optimization and is extremely fast due to its GPU
parallelization.

The second approach to the flux approximation is of analytical nature and bases on
numerical convolution of the sun irradiation to avoid the generation of large amounts
of rays as in Monte-Carlo methods, instead estimating errors statistically. This allows
for very quick and efficient simulation of annual power generation at the cost of further
simplifications to the optical model.
An early implementation of this approach can be found in the tool HELIOS [5], devel-
oped at the Sandia National Laboratory in the late 1970s. This tool is not available
anymore.
The HFLCAL tool [46], first developed in the early 1980s at Interatom and since
acquired and improved by the DLR, is well established and also makes use of this
analytical approach.
During the last decade the methodology incorporated in HFLCAL was picked up and
improved several times. It was revised by Garćıa et al. [17] in 2015 and this revised
model was picked up by He et al. [22] to implement it in a GPU rendering pipeline.
Most recently this implementation was again improved in the iHFLCAL model [24],
which again reports remarkable performance on GPU.

While this is by no means an exhaustive list of tools and studies, it is clear that
the landscape of research around the optical simulation of the heliostat field is well
saturated. However, most of these modern tools only offer simulation of heliostat field
layouts without field optimization [13]. They also do not allow simulation of any other
sub-system of the CSP plant such as the thermal receiver, storage or power block. Es-
pecially the new and well performing tools are often highly specialized or oversimplified
and lack general purpose usability.
Therefore this landscape still leaves much to be desired when looking for a state-of-
the-art, versatile and powerful tool to simulate and optimize central receiver systems.

1.2 Outline

This work will discuss and implement a number of techniques to accelerate the optical
simulation and optimization of heliostat fields. This includes methodological improve-
ments as well as optimization and parallelization of the code. The tool SunFlower,
which is used as basis for this work, and the therein incorporated optical model will
be introduced in Section 2. The following Section 3 will explain the in SunFlower im-
plemented ray tracing methodology including the Monte-Carlo and Convolution tech-

3

niques to handle optical errors. Next, in Section 4, the current SunFlower code will
be evaluated using the Intel VTune Profiler and optimizations to methodology and
code will be described. Adding to these optimizations, Section 5 will present how the
most computationally intensive parts of the optical simulation can be parallelized on
both CPU and GPU. In case of the GPU parallelization, kernel performance will be
analysed with the NVIDIA Nsight Compute profiler and a number of optimizations
will be layed out. Section 6 will investigate the impact of the optimizations and code
parallelization and will compare the final versions of both raytracers on CPU and GPU
respectively. The performance of the final GPU implementation will additionally be
compared to other state-of-the-art GPU parallelized raytracers. After discussing the
results of the study in Section 6.4, the main findings of this work will be summarized
in Section 7.1. Finally Section 7.2 will give an outlook on possible future research.

4

2 Optical model

The simulation tool this work bases on is called SunFlower, is developed at RWTH
Aachen University and was first introduced by Richter et al. [43] in 2018. SunFlower
allows simulation and optimization of the heliostat field layout and a full simulation of
the optical and thermal system of central receiver power plants. The optical simula-
tion is able to calculate efficiencies for individual heliostats as well as the flux on the
receiver at a given moment or throughout a full year.
This Section will introduce the optical model of SunFlower before the ray tracing
methodology is presented in the following Section.
For the simulation of heliostat field flux distributions a sophisticated optical model is
needed that precisely defines the interacting sub-systems. The herein described model
is adapted from the model presented by Richter et al. [43, 42], Franke [16] and Ho-
evelmann [25].
In Section 2.1 the modelling of tower and receiver will be explained. Section 2.2 briefly
describes considerations about the plant side. The following Section 2.3 elaborates on
the modelling of the sun and its localization. Finally, Section 2.4 will illustrate the
heliostat model.

2.1 Tower and receiver

To define position and expansion of sub-systems a global cartesian coordinate system
is placed at the position of the solar tower. The z-axis points into the sky and x-axis
and y-axis point towards East and North respectively. The position of the tower is
given as latitude φ and longitude θ.
The tower in this model is assumed to be cylindric, has a total height of htower and
diameter of dtower. The receiver is installed close to the top of the tower with the
distance from the top of the receiver to the top of the tower denoted as htop.
We distinguish three receiver types:

• Flat tilted receiver: rectangular shaped flat cavity receiver, tilted down by angle
θrec, with height hrec and width wrec.

• Internal cylindric receiver: cavity receiver that is embedded with a window into
the tower as rough half-cylinder. It is defined by height hrec and the arc length
arec of the cut cylinder. The receiver is raised by hraise from the lower horizontal
edge of the window to avoid blocking incoming rays. The PS10 power plant in
Spain uses this type of receiver.

• External cylindric receiver: full cylinder that encloses part of the tower on 360°.
It again can be defined by height hrec and diameter drec. An example of this
receiver type can also be found in Spain, at the Gemasolar power plant.

A sketch of towers with each of these receiver types can be found in Figure 2 with
Figure 2a showing a flat tilted cavity receiver, Figure 2b showing an internal cylindric

5

(a) Flat tilted cavity receiver (b) Internal cylindric receiver (c) External cylindric receiver

Figure 2: Sketch of receiver types [16].

receiver and Figure 2c an external cylindric receiver.
The cylindric receiver types consist of a number of identical flat receiver panels ar-
ranged around the theoretical receiver arc. They can be described as edges of a regular
polygon. Figure 3a skteches the internal cylindric receiver and Figure 3b the external
cylindric receiver type.
The shown panels are further partitioned into smaller pieces for the simulation to be

able to more accurately approximate the flux distribution on each panel.

2.2 Site

The boundaries of the power plant site are defined as vertices of a polygon. Any
additional restricted area within the bounding polygon is again stated as polygon
vertices. The topography of the site is considered as elevation data which can be
specified in a cell format and is interpolated for exact positions. For any heliostat
placed on the site it then is checked whether it fits inside the polygon and whether it
crosses any restricted area. If the heliostat position is valid it is elevated according to
the given elevation data.

6

Receiver panels 1

2
3

4

5

arec

Cylindric tower

Receiver panels

s

s s

(a) Internal cylindric receiver with five panels

1

2

34

5

6

7

8

9 10

11

12

Receiver panels

drec

Cylindric tower

(b) External cylindric receiver with twelve panels

Figure 3: Two dimensional sketch of cylindric receivers with identical flat panels ar-
ranged according to a regular polygon. The viewpoint is on the z-axis.

2.3 Sun

For the optical simulation we need to model the sun position and irradiation. The sun
position is defined by the sun angles azimuth γsolar and altitude θsolar. The azimuth
γsolar is measured clockwise starting on the y-axis (North) and altitude θsolar is measured
from the earth’s surface upwards. With that we can calculate the sun vector ~τsolar as

~τsolar =

− cos(θsolar) · sin(−γsolar)
cos(−γsolar) · cos(θsolar)

sin(θsolar)

 . (1)

The sun’s irradiation can be calculated with the clear sky model MRM [2] or taken from
standardized measurement data, eg. from the weather data provided by EnergyPlus.
We only consider the direct normal irradiation IDNI as diffuse radiation can not be
concentrated.

2.4 Heliostat

The position for any heliostat i is specified in (x, y) coordinates. Additionally all
heliostats are raised on a pedestal of height hped which also is elevated according to
the topography as mentioned in Section 2.2. With this we have the global position pi
of the heliostat as (x, y, z) coordinates.
Each heliostat typically consists of multiple smaller mirrors, called facets. In our model
facets can be triangular or rectangular, constructing either polygonal or rectangular

7

heliostats. Individual facet position and alignment is calculated and stored relative to a
local coordinate system for each heliostat. The total mirror area Ai of the heliostat can
be calculated as the sum of the facet areas. This does not necessarily equal the total
heliostat area as there can be gaps between facets. Therefore the maximum expansion
for the polygonal heliostat is then given by the diameter dCircH of the cirumscribed circle
of the polygon and for the rectangular heliostat by the diagonal dH of the heliostat.
Given the incoming sun vector ~τsolar and the aim point paim

i for the heliostat i, we can
calculate the normalized ideal reflective vector ~ri as

~ri =
paim
i − pi

||paim
i − pi||

. (2)

With || · || in this case referring to the euclidean norm of the vector.
Next we calculate the heliostat normal ~ni such that the above reflective vector ~ri is
given for the incoming sun vector ~τsolar as

~ni =
~ri + ~τsolar

||~ri + ~τsolar||
. (3)

Therefore aligning Heliostat i with normal vector ~ni will aim the reflected sun ray at
the given aim point paim

i . The calculation of the sun ray trajectory ~τsolar was shown
in equation 1. It remains to determine the aim point paim

i . Here we again have to
distinguish the receiver types. For flat tilted receivers we simply take the center of the
aperture pcenter

rec which in case of a north facing receiver on a cylindric tower is calculated
as

pcenter
rec =

 0
dtower

2
+ hrec

2
· sin(θrec)

htower − htop − hrec

2
· cos(θrec)

 . (4)

For receiver facing directions deviating from the y-axis (north), the coordinates just
have to be rotated around the z-axis.

In case of the cylindric receivers the determination of the aim point has to be more
careful. Previous work assumed an aiming point at the center of the aperture for in-
ternal cylindric receivers. Taking the center of the back wall leads to problems for
heliostats on the outside of the field, as can be seen in Figure 4a. Rays reflected by
heliostats on the far outside would often be blocked by the tower. Similarly, taking the
theoretical center of the internal receiver would lead to problems for heliostats close
to the tower, as can be seen in Figure 4b. Here, rays would often be spilled above the
receiver because of the steep angle.
To avoid these problems, a simple new aim point strategy is used. As the cylindric
receivers consist of multiple flat panels, as mentioned in Section 2.1, we can take the
center of a specific panel j, denoted as pcenter

recPj
, as aim point. The decision of which

panel j to take depends on the receiver type. Given an internal cylindric receiver, we

8

take the panel that is farthest away from the heliostat. For external cylindric receivers
we instead take the panel that is closest to the heliostat. This concept applied to the
exemplary situation of Figure 4a is illustrated in Figure 5a. Figure 5b shows the choice
of aiming points for external cylindric receivers. The calculation of the coordinates of
the cylindric receiver panel centers is omitted.

Besides the alignment of the overall heliostats according to their aim points, there
is also the possibility to align heliostat facets individually to minimize spillage. The
alignment of individual facets is called canting. We differentiate two approaches: on-
axis and off-axis canting. On-axis canting assumes the sun, receiver and heliostat to
be perfectly aligned on one common axis. Using a paraboloid with the given axis as
symmetry axis and vertex at the heliostat center, the facets are then positioned around
the symmetry axis.
Off-axis canting uses a specified sun vector that deviates from the axis going through
heliostat and receiver. A similar paraboloid is used, however the facets are now posi-
tioned on the side of the paraboloid.
To make facet alignment easier, each heliostat uses a local coordinate system, which
we define using the heliostat normal vector ~ni as local z-axis. The remaining x and
y-axis are then defined as cross product with the global z-axis (0, 0, 1)T as

~xi =
~ni × (0, 0, 1)T

||~ni × (0, 0, 1)T ||
, ~yi = ~xi × ~ni. (5)

For a heliostat normal vector ~ni almost equal to the global z-axis, we have to take
another approach to avoid hazards. In this case we instead take the normalized vec-
tor from the on the global z-axis projected heliostat center (pxi , p

y
i , 0)T to the global

coordinate origin as local y-axis and calculate the x-axis as cross product:

~yi =
(−pxi ,−p

y
i , 0)T

||(pxi , p
y
i , 0)T ||

, ~xi = ~yi × ~ni. (6)

Furthermore we define a coordinate system for each heliostat facet which will be used
in the optical error considerations of the next Section. The approach is completely
analogous, however each facets coordinate system is defined relative to that of its he-
liostat. After canting each facet j may have a surface normal vector ~ni,j that differs
from the surface normal ~ni of the heliostat.

Using this optical model, we now can discuss the ray tracing methodology that will be
the focus of the optimization and acceleration done in this work.

9

1

2
3

4

5Receiver panels

Cylindric tower
Sun

Heliostat

~n

(a) Problematic situation with aim point at center of
the back wall of internal cylindric receivers

Sun

~n

Heliostat

(b) Problematic situation with aim point at theoret-
ical center of internal cylindric receivers

Figure 4: Hazards encountered with aim point strategies for internal cylindric receivers

10

2
3

4

5

Receiver panels

Cylindric tower
Sun

Heliostat

~n

Improved
aim point

(a) New aim point strategy for internal cylindric re-
ceivers: aim at center of farthest away receiver
panel

Receiver panels

Cylindric tower

1

2

34

5

6

7

8

9 10

11

12

Sun

Heliostat A

~nA

Aim point A

Heliostat B

~nB
Aim point B

(b) Aim point strategy for external cylindric re-
ceivers: aim at center of closest receiver panel

Figure 5: Aim point strategies for cylindric receivers

11

3 Ray tracing methodology

This Section will introduce the in SunFlower incorporated ray tracing methodology.
First the consideration of optical errors is established in Section 3.1. The two available
methods to handle optical errors, the Monte-Carlo method and the analytical Convo-
lution method, are presented in sections 3.1.1 and 3.1.2 respectively.
Subsequently the general ray tracing procedure is described, beginning with the ray
generation in Section 3.2. Finally, in sections 3.3 and 3.4 the handling of blocking and
shading effects and optical losses is discussed. The closing subsection 3.5 will sum-
marize the procedure and combine the considerations of this Section to calculate the
power of a ray.

3.1 Optical errors

In the optical environment of CSP power plants there are multiple sources for optical
inaccuracies. Due to necessary abstractions optical models of CSP plants typically are
not able to implicitly model these optical errors and as such they have to be modeled
explicitly.
We consider three main sources for optical errors in this model:

Heliostat tracking error
The vertical and horizontal alignment of heliostats in reality is inaccurate and intro-
duces a slight deviation from the wanted heliostat normal vector ~nH . This error can
be modeled as gaussian distribution and vertical and horizontal errors are calculated
independently, hence we distinguish the two standard deviations σver

track and σhor
track.

Heliostat surface error
The actual mirror surface is not perfectly smooth, instead having very slight irregular-
ities. This error deviates for different parts of the mirror surface and also may deviate
horizontally and vertically. Therefore we model this error with a gaussian distribution
and use two matrices of standard deviations σver

slope ∈ Rm×n and σhor
slope ∈ Rm×n. The

matrix entries then are mapped to the mirror surface and the appropriate standard
deviations σver

slope(x, y) and σhor
slope(x, y) are used for calculations at location (x, y).

Sun error
As the sun is modeled as two-dimensional plane while being a three-dimensional sphere,
actual ray directions may deviate from modeled directions. Using the proposal of
Rabl [40], we again model this error as gaussian distribution with standard deviation
σsun.

Note that we will use the heliostat facet x-axis as horizontal axis and the y-axis as
vertical axis.
Given these three gaussian distributions we make use of the Central Limit Theorem

12

which predicts the sum of multiple gaussian distributions to again be a gaussian distri-
bution. Thus, we model the above mentioned errors for a given location (x, y) on the
mirror surface with one vertical and one horizontal gaussian distribution with standard
deviations calculated as

σver
ang =

√
(σver

track)2 + (σver
slope(x, y))2 + (σsun)2,

σhor
ang =

√
(σhor

track)
2

+ (σhor
slope(x, y))

2
+ (σsun)2.

(7)

These gaussian distributions then give a statistical view on the angle of deviation of
actual rays from ideal rays in vertical and horizontal direction respectively. This can
also be described as the standard deviation length for a ray of unit length with the
tangent function:

σver
len = tan

(√
(σver

track)2 + (σver
slope(x, y))2 + (σsun)2),

σhor
len = tan

(√
(σhor

track)
2

+ (σhor
slope(x, y))

2
+ (σsun)2). (8)

We now want to incorporate this error information into our ray calculations, which in
Section 2 assumed ideal rays.
In the following the two widely used approaches to this problem are explained, begin-
ning with the Monte-Carlo method.

3.1.1 Monte-Carlo method

The Monte-Carlo method is a probabilistic approach to a wide range of numerical
problems. It estimates numerical results with a simple computational algorithm based
on repeated random sampling. Although this method is easy to use and well suited to
solve problems with probabilistic distribution, it tends to be quite slow as accurate and
reliable results can only be guaranteed with the law of large numbers. This means,
depending on the application, the number of random samplings needed to obtain a
representative result can be enormous [10].
In ray tracing the Monte-Carlo method is useful to realistically model the impact of
optical errors that can be described with probabilistic distributions. Moreover it is
very robust and easily adaptable for any environment, which can be difficult for ana-
lytical methods. Thus, many modern ray tracing tools use the Monte-Carlo method,
as mentioned in Section 1.1.

Similarly, we use Monte-Carlo to incorporate the above mentioned gaussian distributed
optical errors by sampling perturbed reflected rays. The deviation length of the re-
flected ray in horizontal direction δhor

len and in vertical direction δver
len is determined by

evaluation of the respective gaussian distributions with a random variable. To obtain
the directions of each respective error the horizontal and vertical axes of the heliostat
facet are rotated towards the ideal reflected ray. Figure 6 sketches this rotation.

13

~τsolar~r

~n

x

y

~A

β

~d hor
err

~d ver
err

Figure 6: Sketch of the rotation of the heliostat facet axes onto the ideal reflected ray.
They are rotated around rotation axis ~A by angle β to obtain the ray error
directions ~dhor

err and ~dver
err .

The rotation axis ~A for the ideal reflected ray ~r and the heliostat facet normal ~n is
given by their cross product

~A = ~r × ~n. (9)

And the rotation angle β is obtained with their dot product

β = arccos(~r · ~n). (10)

Rotating the heliostat facets x and y axes around axis ~A by angle β we obtain the
error directions ~dhor

err and ~dver
err . Now the deviation of the ray in each direction can be

calculated with the above mentioned respective deviation lengths δlen as

~rhor
err = δhor

len · ~dhor
err ,

~rver
err = δver

len · ~dver
err .

(11)

And with that the perturbed ray is given as

~rerr = ~r + ~rhor
err + ~rver

err . (12)

Finally, the perturbed ray is ready to be evaluated. When it passes the blocking and
shading check the raytracer verifies it hits the receiver and flux corresponding to the

14

Figure 7: Repeated random sampling of the perturbation of a single ray according to
an exemplary gauss distribution. The original ideal ray is illustrated by the
dashed orange line. Receiver hitting rays are colored in green, blocked and
missing rays are colored in red. Only five out of seven perturbed rays hit the
receiver successfully. One ray is blocked by another heliostat (in grey) and
one ray misses the receiver.

heliostat facet area is added to the receiver. This procedure and further considerations
will be explained in detail beginning in Section 3.2.
Following the Monte-Carlo idea of repeated random sampling, each ray that is gener-
ated by the simulation may be evaluated N times with a new random ray perturbation
being applied each time according to the above procedure. The flux that is added to
the receiver then depends on the number of samplings successfully hitting the receiver.
For k out of N rays hitting the receiver successfully, the added flux would be scaled by
k
N

. This is done by scaling the power of each sampling of the ray. The exact calculation
of a rays power is given in Section 3.5, once all necessary considerations are layed out.
This is one way in which we are able to trade additional computation time for higher
simulation accuracy by increasing N or in other words by increasing the number of
repeated random samplings we do. Figure 7 illustrates the repeated random sampling
of a single ray according to a gauss distribution. In the shown example only five out of
seven samplings of the ray successfully hit the receiver, hence the added flux is scaled
by 5

7
.

SunFlower also implements a Quasi-Monte-Carlo method which bases on predefined
sequences rather than random numbers. The idea is to avoid the generation of large
amounts of random numbers and create a uniform set of samplings with fewer evalua-

15

tions, possibly accelerating convergence.

In contrast to the easy to use Monte-Carlo method which offers great accuracy at the
expense of high computational costs, the second common approach to handling optical
errors in Convolution based methods is more complex. The idea of this approach and
its implementation in SunFlower is presented briefly in the following Section.

3.1.2 Convolution method

Convolution based methods generally seek to determine for each receiver piece the
probability Phit that an ideal reflected ray is perturbed such that it hits this piece.
More specifically, they try to approximate the flux density that a ray produces as
mathematical function. For each receiver piece this function then is integrated for an
area representative of the receiver piece.
As the exact derivations necessary for the in SunFlower implemented Convolution
methods are quite lengthy and not subject of the optimizations discussed in the later
sections, this Section will only give an overview on the idea of and general approach to
the Convolution methods. A detailed derivation can be found in the work of Hoevel-
mann [25].

The probability Phit is defined using the probability density function f(x, y), corre-
sponding to the bivariate gaussian distribution of our optical errors in horizontal and
vertical direction, given by

f(x, y) =
1

2πσhor
angσ

ver
ang

· exp

(
−1

2

(
x2

σhor
ang

2 +
y2

σver
ang

2

))
. (13)

Integrating this function over a region D then gives the probability Pint(D) that the ray
intersects this region. Choosing D as representative region Dang of our receiver piece,
this probability is equivalent to the probability Phit of the ray hitting the receiver.
The receiver region Dang is defined by the angles αi in horizontal and βi in vertical di-
rection of each corner of the receiver piece relative to the perfect reflected ray direction
~r. Encorporating computer graphics methodology, the probability density function
Pint(D) and the receiver region Dang can be adapted to instead work on the spanned
region Dspan of the receiver on the ray image plane.
The evaluation of the integral Pint(D) is based on the in 1978 depicted numerical ap-
proach by Didonato et al. [14]. The main idea of this approach is to integrate over the
to D complementary region D. This is feasible as for a probability density function
f(x, y) we know it holds that ∫ ∞

−∞

∫ ∞
−∞

f(x, y) dx dy = 1. (14)

Therefore we can derive that

Pint(D) = 1− Pint(D). (15)

16

The integral Pint(D) then is evaluated by partitioning D into four semi-infinite angular
regions corresponding to the four corners of the region D and approximating the four
individual integrals numerically, see [25, 14]. Applying this method to the receiver
region defined by Dang or Dspan gives us the desired probability Phit.
While further derivations are omitted, a summary of the implemented integration of a
two dimensional region D with error terms σhor and σver can be found in algorithm 1
and 2, which were adopted from [25]. The used polynomial (P3) for the angular region
integration can be replaced to slightly improve accuracy at the cost of additional com-
putation.

With its analytical approach, the Convolution method in contrast to the Monte-Carlo
method gives deterministic results and offers higher accuracy for the same amount of
rays. However, the mathematical complexity of the method introduces new computa-
tional intensity, making the evaluation of each ray more expensive.

3.2 Ray generation

The first step of the ray tracing procedure is to determine the rays we trace. For this,
we generate rays directly on the heliostat surface instead of on a plane above the he-
liostat. This saves computational effort as significantly less rays have to be evaluated.
For each heliostat facet j on heliostat i we may generate multiple rays by partitioning
the facet into M smaller cells for which we each generate one ray. The ray origin is
localized at the center of the cell k, given as pcenter

i,j,k . The power of the ray is correspond-
ing to the area Ai,j,k of its respective cell. Note that this single ray may be sampled
multiple times when using the Monte-Carlo method, as explained in Section 3.1.1.
The uniform partitioning of rectangular heliostat facets into smaller cells is illustrated
in Figure 8. The sum of the cell areas

∑k≤M
k=1 Ai,j,k always equals the total mirror area

Ai,j of the heliostat facet.
With the Convolution method and before perturbation in the Monte-Carlo method,

the generated rays for one facet all share the same direction according to the ideal
reflected ray for that facet. The ray direction may differ for individual facets as their
surface normal may differ after canting, see Section 2.4.

Given the localization of the ray on the heliostat, we first do a blocking and shad-
ing check before tracing the ray against the receiver.

3.3 Blocking and shading

To verify that a ray successfully travels from the sun to the given point pcenter
i,j,k on the

heliostat surface and then is reflected to the receiver without being blocked, we per-
form a blocking and shading check before actually tracing the ray against the receiver
surface. We test for two shading and one blocking effect:

17

Algorithm 1 Bivariate Polygon Integration

1: function integrateGaussianPolygon(D, σhor, σver)
2: if not isSimplePolygon(D) then
3: return −1 . Error, Polygon has to be simple

4: if isClockwiseOriented(D) then
5: D := reverse(D)

6: D′ := scaleToCircular(D, σhor, σver)
7: res := 0
8: for each vertex Vi in D′ do
9: R := |Vi|

10: if R == 0 then
11: res += arccos ((v1 · v2)/(2π))
12: continue
13: v1 := (Vi − predecessor(Vi))/|Vi − predecessor(Vi)|
14: v2 := (successor(Vi)− Vi)/|successor(Vi)− Vi|
15: l := Vi/|Vi|
16: θ1 := sign(det(v1, l)) · arccos (v1 · l)
17: θ2 := sign(det(v2, l)) · arccos (v2 · l)
18: g1 := cos (θ1)R/

√
2

19: g2 := cos (θ2)R/
√

2
20: h1 := sin (θ1)R/

√
2

21: h2 := sin (θ2)R/
√

2
22: if g1 ≥ 0 and g2 ≥ 0 then
23: res += integrateAngularRegion(R, θ1, θ2, g1, g2, h1, h2)
24: else
25: θ1 += (g1 < 0) · π · (1− 2 · (θ1 > 0))
26: θ2 += (g2 < 0) · π · (1− 2 · (θ2 > 0))
27: g′1 := cos (θ1)R/

√
2

28: g′2 := cos (θ2)R/
√

2
29: h′1 := sin (θ1)R/

√
2

30: h′2 := sin (θ2)R/
√

2
31: if g1 ≥ 0 and g2 < 0 then
32: res += erfc(h2)/2
33: −integrateAngularRegion(R, θ2, θ1, g

′
2, g1, h

′
2, h
′
1)

34: else if g1 < 0 and g2 ≥ 0 then
35: res += erfc(−h1)/2
36: −integrateAngularRegion(R, θ2, θ1, g

′
2, g1, h

′
2, h
′
1)

37: else if g1 < 0 and g2 < 0 then
38: res += (erfc(h2)− erfc(h1))/2
39: −integrateAngularRegion(R, θ1, θ2, g

′
1, g2, h

′
1, h
′
2)

40: return 1− res . ≡ Pint(D)

18

Algorithm 2 Angular Region Integration

1: P3[0] := 0.885777518572895 . Constants
2: P3[1] := −0.981151952778050
3: P3[2] := 0.759305502082485
4: P3[3] := −0.353644980686977
5: P3[4] := 0.0695232092435207
6: function integrateAngularRegion(R, θ1, θ2, g1, g2, h1, h2)
7: res := 0
8: jlast := θ2 − θ1

9: j := h2 − h1

10: for k = 0; k < size(P3); k + + do
11: res += P3[k] · j
12: copy := j
13: j := (h2g

k+1
2 − h1g

k+1
1 + jlast(k + 1)R2/2)/(k + 2)

14: jlast := copy

15: return exp (−R2/2) · ((θ2 − θ1)/2− res)/π

Facet

Cell

Cell area
Cell center

Figure 8: Exemplary heliostat facet partitioning into cells. The heliostat consists of
2x2 facets which are partitioned into 4x4 cells.

19

Tower shading
This effect may occur when the tower is aligned with the sun and the heliostat. The
tower casts a shadow onto the heliostat and intercepts any sun rays potentially being
cast onto the heliostat. To check for this effect, the minimal distance of the line from
tower position ptower into the sky to the line from sun to the point on the heliostat
pcenter
i,j,k is evaluated. When this distance is smaller than the tower radius, the point on

the heliostat is possibly shaded. In this case we check the z-coordinate of the point at
which the distance of the two lines is minimal. The heliostat area is shaded when this
z-coordinate is smaller than the position of the tower top plus the tower radius.

Heliostat shading
Any heliostat of the power plant between the point pcenter

i,j,k and the sun may intercept
rays cast from the sun on to the heliostat cell. We check whether this is the case by
first preselecting the possibly shading heliostats for each heliostat. We consider the
line from sun to the center of each heliostat i. Any heliostat m with center point pcenter

m

at a distance to this line that is smaller than the heliostat expansion potentially shades
heliostat i. We again filter these candidates for each facet of the heliostat by using half
the facet expansion plus half the heliostat expansion as threshold. These filters can
also be described as bounding sphere method: we determine whether the distance of a
heliostat’s bounding sphere to the ray is less than half the heliostat or facet expansion
respectively. An illustration of the second filter is given in Figure 9. For all potentially
shading heliostats m we then check whether a ray from our heliostat cell center pcenter

i,j,k

towards the sun intersects with any facet of heliostat m.

Heliostat blocking
Similar to heliostat shading, after the sun ray hits the heliostat and is reflected, any he-
liostat inbetween pcenter

i,j,k and the receiver may block the reflected ray. The procedure to
check this is analogous to that of heliostat shading: we preselect possibly blocking he-
liostats m by evaluating their distance to the line from center of the reflecting heliostat
i to the aim point paim

i on the receiver. Is this distance smaller than the heliostat expan-
sion, heliostat m possibly blocks the ray. Again, we filter the preselected candidates a
second time for each heliostat facet analogously to the approach for the shading filter.
We test all remaining possibly blocking heliostats for intersection with the reflected ray.

The blocking and shading test for preselected candidates is narrowed down by an
axis-aligned bounding box (AABB) tree intersection check. We consider the ray from
sun to heliostat cell center (shading) or from heliostat cell center to receiver aim point
(blocking) and the AABB tree of the occlusion candidate which encloses the entire he-
liostat surface and the heliostat facets in its leaf nodes. See Figure 10 for an exemplary
intersection check with a shading candidate. After the AABB tree intersection check
we either confirm that there is no intersection or have narrowed down the intersection

20

Sun

dF
2

dHA
2

possible
intersection!

possible
intersection!

dF
2

dHB
2

~nF

Figure 9: Filtering possible shading (or blocking) candidates for each heliostat facet
by the bounding sphere method. Is the distance between ray and bounding
sphere of a heliostat less than half the facet expansion, the heliostat remains
a shading candidate. In this case both heliostat HA and HB are confirmed
shading candidates for the considered facet.

to a small (possibly singular) number of heliostat facets. In this case we check for
intersection with each of these facets with a Möller-Trumbore ray-triangle intersection
check by splitting the facet into two triangles. Finally we can declare with certainty
whether the ray is intercepted by the occluding candidate.
Each step of this intricate approach is done to reduce the computational expense of
the blocking and shading check as much as possible.

When no blocking or shading effects occur, we trace the reflected ray against the
receiver surface, verifying that it does not miss it. It remains to determine the actual
power of the ray. For this matter, the next Section will discuss other optical losses.

3.4 Other optical losses

To accurately model the power Pray of a traced ray we factor in further optical losses.
There are three additional sources for optical losses we take into account that influence
the power of a ray:

Cosine effect
Due to the alignment of the heliostats such that they reflect the sun rays towards the
receiver, their surface is not perpendicular to the sun vector. With this angle deviating
farther from perpendicularity, the projected heliostat area decreases and less sun light

21

Sun

AABBHA

~nF

Figure 10: Narrowing down the intersection of ray and shading (or blocking) candidate
by means of an AABB tree intersection check. It is determined that the ray
intersects the bounding box of the lower right facet of the shading candidate.
Note that this example uses the facet center as reflection point for better
visibility. In actual simulation this check is done for each ray and therefore
for multiple cell centers within the facet.

reaches the receiver, which is called cosine effect [20]. For low solar altitudes θsolar the
projected area of the heliostat in fact shrinks significantly. The relative reduction of
the projected area can easily be modeled as cosine of the angle of incidence, which we
denote as ηcos,i for heliostat i [20, 33]. This is calculated by the dot product of the
heliostat surface normal and the solar vector. So for heliostat i we get

ηcos,i = ~ni · ~τsolar. (16)

Atmospheric attenuation
As the ray travels from heliostat to receiver it loses a small amount of power due to
absorption by water vapor and scattering by air molecules. This effect is modeled as
a function of the distance between heliostat i and the aim point on the receiver paim

i .
This distance is denoted as di. The function for the relative remaining power after
atmospheric attenuation is taken from Schmitz et al. [45] as

ηaa =

{
0.99321− 0.0001176di + 1.97 · 10−8d2

i di ≤ 1000m

exp(−0.0001106di) di > 1000m
. (17)

Heliostat reflectivity
Part of the sun light is absorbed or scattered when hitting the heliostat surface rather
than reflected due to dust on the surface and an imperfect reflective property of the
mirror surface. This typically is modeled as constant relative loss [50]. Adopting this

22

approach, we model the relative remaining power as constant value ηref.

With the simulation model set up and the optical losses considered, we now calcu-
late the power Pi,j,k for a traced ray and briefly summarize the whole ray tracing
procedure.

3.5 Procedure summary

The procedure consists of three steps:

1. Ray generation: we partition the heliostat facet j of each heliostat i into M
smaller heliostat cells and generate a ray for each cell. The rays power is scaled
to the cell area Ai,j,k.

a) Using Monte-Carlo: to perform repeated sampling we duplicate the gener-
ated ray N times and perturb it each time according to a random evaluation
of the horizontal and vertical gaussian distribution with σhor

len and σver
len .

2. Blocking and shading check: the generated rays are checked for blocking and
shading effects. Only those rays that are neither blocked nor shaded are evaluated
in the final step.

3. Ray evaluation: according to the employed methodology we evaluate all remain-
ing rays to determine the flux distribution on the receiver.

a) Using Monte-Carlo: rays are traced against the receiver surface to verify
that they indeed hit the receiver. To identify flux distribution we partition
the receiver panels into smaller pieces and check for intersection with indi-
vidual pieces, as mentioned in Section 2.1. If the ray hits a receiver piece,
we add flux to the piece in extent of Pmc

i,j,k.

b) Using Convolution: for each receiver piece we calculate the probability Phit

that the ray hits the piece. We add flux to every piece corresponding to
P conv
i,j,k .

The ideal power P ideal
i,j,k of a traced ray from cell k of facet j on heliostat i is simply given

by the direct normal irradiation IDNI times the area Ai,j,k of the cell the ray represents:

P ideal
i,j,k = IDNI · Ai,j,k. (18)

This power then is scaled by the in Section 3.4 mentioned factors, giving us Pi,j,k as

Pi,j,k = P ideal
i,j,k · ηcos · ηref · ηaa. (19)

Finally, the power is scaled according to our used methodology. For the Monte-Carlo
method we divide by the number N of samplings done:

Pmc
i,j,k = Pi,j,k ·

1

N
. (20)

23

When using the Convolution method, we instead scale by the probability Phit that the
perfect reflected ray will be perturbed in a way such that it hits the receiver piece:

P conv
i,j,k = Pi,j,k · Phit. (21)

Now that the simulation methodology is layed out, the next Section will begin to
present optimizations to the current procedure and its code implementation.

4 General optimization

The optical simulation of SunFlower, as portrayed in the previous two sections,
already employs state-of-the-art methods to reduce the computational intensity.

Among these is the bidirectional raytracing approach, where rays are generated
directly on the heliostat surface. In comparison to the traditional method of
generating rays in the sky, this significantly reduces the amount of rays that need to
be traced as no rays are considered that miss all heliostats.

Another already present optimization is the predetermination of potential shading
and blocking heliostat pairs according to bounding spheres. With this approach, the
blocking and shading checks for each ray only have to test for intersection with a
small number of heliostats rather than every single one. For larger heliostat fields this
methodology is all but necessary, as the number of blocking and shading checks grows
quadratically with the number of heliostats.
In this regard SunFlower even does another step not found in other tools. It uses the
found potential blocking and shading candidates to predetermine the potential
blocking and shading heliostats for each heliostat facet to further reduce the number
of intersection tests necessary for rays generated on this facet. As the number of
candidates that have to be evaluated for this step already is quite small, the added
computational intensity is manageable in comparison to the disregarded intersection
tests and this additonal step proves to be advantageous, especially for high
discretization resolutions.

Furthermore SunFlower uses bounding volume hierarchies (BVH) consisting of
axis-aligned bounding boxes (AABB) for both heliostats and receivers to speed up
remaining intersection checks with either object.
These optimizations accelerate the simulation by orders of magnitude for non-trivial
heliostat fields.

To find further optimization pathways, the first step is to identify where most time is
spent. Table 1 shows a superficial summary of the top hotspots during a serial
execution of a typical annual simulation of Gemasolar with the Monte-Carlo
raytracer. The profiling was done using the Intel VTune Profiler.

24

Function CPU-Time [%]
CGAL AABB tree ray-intersection check 27.3
Mersenne twister normal-distributed RNG 19.6
traceMonteCarlo 8.9

Table 1: Top computation hotspots during serial execution of exemplary annual simu-
lation of the Gemasolar power plant with the Monte-Carlo raytracer

Inspite of the aforementioned optimizations, 27.3% of CPU-time was still spent with
ray-intersection checks by the Computational Geometry Algorithms Library (CGAL).
The second most time is spent with the generation of the normal-distributed random
numbers, which is a common computational expense in Monte-Carlo based methods.
In this case a mersenne twister random number generator (RNG) and normal
distribution of the C++ standard library (std) is employed and used close to 20% of
CPU-time. The next most time is spent in the traceMonteCarlo function which
coordinates the raytracing, does some calculations and calls multiple functions to
perform ray generation, perturbation and evaluation.
Apart from these top three hotspots the CPU-time is spread across many smaller
functions, most of whom are geometric utility functions like vector normalization or
coordinate transformation.
An important takeaway is that a lot of time is spent on code that should respond
well to parallelization.
Lastly, there is also a considerable amount of time spent with data access and storage.
Taking a closer look at the CGAL AABB tree ray-intersection check that uses up
more than one fourth of the CPU-time, we have to differentiate the two situations in
which it is called: ray-heliostat-intersections and ray-receiver-intersections. We will
inspect the former case first.

Ray-heliostat-intersection checks
Heliostat-intersection checks are done during the blocking and shading tests, to
confirm whether one of the predetermined potential blocking and shading candidates
intercepts the ray.
As mentioned before, the predetermination of potential blocking and shading
heliostats for each heliostat facet according to their bounding spheres reduces the
amount of intersection checks significantly, but the bounding sphere method is still
overestimating and will consider many heliostats that are aligned in a way such that
they clearly will not intercept the ray.
In most cases we use high cell discretization resolutions for the heliostats to obtain
accurate simulation results, which means the blocking and shading candidates of a
heliostat facet are checked for hundreds or thousands of rays. Thus it might be
beneficial to do an additional step and again filter the remaining potential blocking

25

and shading heliostats for each facet by considering current heliostat alignment.
This can be done by considering planes along the projection of the facet in ray
direction and evaluating the position of heliostat corners relative to these planes. We
need a total of five planes: the facet surface itself and the four planes that connect
the facets corners to the corresponding corners of its projection in ray direction. For
the determination of blocking candidates the ray direction references the reflected ray
that is directed towards the receiver and for the determination of shading candidates
the ray direction corresponds to the sun vector.
If we calculate the side planes such that their normal faces inwards (as in: towards
the facet center), it only remains to check whether for all planes there is at least one
corner of the AABB of the candidate that is on the positive side of the plane. Note
that it does not have to be the same corner for all five planes. If this condition holds
for all five planes, the heliostat still has to be considered a potential blocker or shader
respectively.
Considering just heliostat corners instead of the corners of its AABB would lead to
inaccuracies, as even for flat facets the heliostat is not perfectly flat due to canting.

To underline the advantage of this additional filter, Figure 11 shows the same
exemplary situation that was also used in Figure 9, which illustrated the preceding
bounding sphere filter in Section 3.3.
For facet F the two heliostats HA and HB are checked as potential shading
candidates. The four facet side planes are constructed connecting the facet corners to
those of the projection of the facet on the sun. Next we test for all four side planes
and the facet surface plane whether there is at least one corner of the bounding box
of the candidate that is on the positive side of the plane. In Figure 11 the corner Vi
of the AABB of heliostat HA is on the positive side of all five planes. Thus, HA is
confirmed as shading candidate. For heliostat HB all corners of its AABB are found
to be on the negative side of the top or left plane and with that HB, in contrast to
the bounding sphere method, is determined to not be a valid shading candidate.

It is important to note that this filter does not replace the bounding sphere method
but instead is applied to the remaining candidates confirmed by the bounding sphere
method. This multi-step approach exhibited the best performance during testing.
While the computational intensity of the additional condition is non-negligible, it in
this way only has to be applied to the very few remaining (if any) filtered candidates
and is able to again reduce the number of intersection-checks, which trump the
expense of all applied filters. Furthermore the benefit accumulates for higher cell
discretization resolutions.

Ray-receiver-intersection checks
They occur when the blocking and shading test is passed and the ray is traced
against the receiver surface to confirm it does not miss. Note that this step is only

26

Sun

AABBHA

Vi

AABBHB

~nPb~nF

Figure 11: Filtering potential shading (or blocking) candidates for a heliostat facet by
checking whether any corner of a candidate’s AABB lies on the positive side
of all five planes that encompass the facet. Heliostat HA is confirmed as
shading candidate, HB is found to not be a valid candidate.

done by the Monte-Carlo raytracer and is omitted by the Convolution raytracer.
Depending on the receiver discretization the cost of this check can severely outweigh
that of ray-heliostat-intersection checks.
As each ray that is not blocked nor shaded has to be checked for intersection with the
receiver, we cannot reduce the number of checks but will have to make the check itself
more efficient. Therefore we will discuss how to optimize the implemented AABB
tree approach which will impact both receiver- and heliostat-intersection tests.
To have better control over the AABB tree implementation and its traversal during
the intersection check, we implement our own, very simple AABB tree. An
alternative solution to the current CGAL AABB tree will be necessary for later use
on GPU anyway, as the GPU does not directly support high level libraries like CGAL
or boost.
Picking a different method like another bounding volume should also be considered.
There are two reasons to stick with AABBs: firstly we have to build a BVH from
heliostat facets for every single heliostat and also for receivers from receiver pieces.
This already is a considerable workload. Additionally, during an annual simulation
we have to adapt the BVH for every single heliostat before every simulated moment
as heliostats are aligned to the changing sun position. Therefore we need a BVH that
is either easy to adapt or really quick to create, which is a clear strength of AABBs.
Secondly, the receiver is typically perfectly (besides from the rare slightly tilted flat
receivers) aligned with the z-axis, making AABBs a good fit.

27

AABBReceiver

(a) Combining horizontally first: the top
most levels split the vertical dimen-
sion, unable to narrow down the in-
tersected region.

AABBReceiver

(b) Combining vertically first: the top
most levels split the horizontal dimen-
sion, immediately discarding half the
region.

Figure 12: Exemplary impact of combining the AABB-nodes vertically vs. horizontally
first during BVH creation on intersection check with a ray coming from
below. It is advantageous to build such that the top most levels split the
region that has typically a smaller entrance angle to the ray.

The new AABB tree is a simple binary tree that we build bottom-up from the
receiver pieces or heliostat facets respectively. In case of the receiver, we choose to
combine vertically adjacent AABB-nodes first and horizontally second. This means
during ray-receiver-intersection tests the top-down traversal will first narrow down
the horizontal region. The reasoning for this choice is that the vertical angle between
receiver panels and incoming rays most often will be steeper than the horizontal
angle, making it harder for BVHs to narrow down the vertical region. Figure 12
depicts an exemplary intersection check of a horizontal-first vs. vertical-first build
AABB tree with a ray coming from below.
Conversely, the heliostat AABB trees are build bottom-up by combining horizontally
adjacent AABB-nodes first. The reasoning is analogous, as shading and blocking
typically occurs when the ray’s vertical angle is small.
Testing the opposite approaches as well as alternating combination of horizontal and
vertical neighbors, we confirmed that this way of building the AABB trees on average
makes later intersection checks most efficient.
With the AABB tree built it remains to decide how we check for intersection of
AABBs and rays and how we will traverse the tree.

To test whether a ray intersects a given AABB, an improved [51] and branchless [3]
implementation of the slab method [29] is used. This method truncates the ray in
each dimension such that only the section of the ray remains that is within the

28

bounding box. When the ray does not intersect the box the length of the truncated
ray is zero.
The best performing method of tree traversal heavily depends on the executing
hardware, the size of the tree and the way we save our AABB nodes.
As our AABB trees are well balanced and the depth typically quite small, a recursive
preorder traversal can be used without concerns on CPU. Heliostat AABB trees are
especially small and easily fit into the large CPU cache. Thus, the order in which we
save the nodes is not as significant. On GPU this topic has to be evaluated with
more care, so we will touch on this point again in Section 5.2.
Finally, once potentially intersected receiver pieces or heliostat facets are determined
through AABB tree traversal, a Möller-Trumbore ray-triangle-intersection test [32] is
done on the two triangles that make up the corresponding rectangle (piece or facet).

Generation of normal-distributed random numbers
Of the top three identified hotspots the random number generation offers the most
straight forward optimization: using a faster random number generator. SunFlower
previously incorporated a mersenne twister, which is a very commonly used RNG.
However, there are many more efficient alternatives that deliver pseudo-randomness
appropriate for a Monte-Carlo simulation.
One of the fastest and a very robust way to generate 64 random bits is the
xoshiro256+ algorithm developed by Blackman and Vigna [6] in recent years.
As we need normal-distributed random numbers, the generation actually consists of
an additional step to transform from uniform-distributed numbers to
normal-distributed numbers. Using two random numbers from xoshiro256+ as input,
we use a Box-Muller transform to get two normal-distributed numbers [21]. The
transformation to normal-distributed numbers N1 and N2 for uniform-distributed
numbers U1 and U2 is given by:

N1 =
√
−2 lnU1 · cos (2πU2)

N2 =
√
−2 lnU1 · sin (2πU2)

(22)

As CUDA offers its own random number generation library in cuRAND, we will
briefly touch on this topic again for the GPU in Section 5.2.

Next we take a look at the Convolution raytracer. We do a basic hotspot profile
using the same settings as before. A summary of the top hotspots is shown in table 2.
As the Convolution raytracer evaluates non-intercepted rays by a set of integrations,
this calculation is also where most time was spent. Even the in Monte-Carlo
raytracing very influential blocking and shading test was not amongst the top five
hotspots. Further inspection shows that calls to the top three functions (pow, sincos,
acos) are done almost exclusively from within either one of the last two hotspots
integrateAngularRegion and integrateGaussianPolygon. When attributing functions

29

Function CPU-Time [%]
pow 22.7
sincos 12.3
acos 8.8
integrateAngularRegion 7.8
integrateGaussianPolygon 5.9

Table 2: Top computation hotspots during serial execution of exemplary annual simu-
lation of the Gemasolar power plant with the Convolution raytracer

to their respective caller, the entire CPU-Time spent in the top five hotspots is
actually spent inside integrateGaussianPolygon or in functions called by it.
Although we do not want to alter the integration method itself, thoroughly
inspecting its code implementation reveals many ways to make it more efficient.
Let’s take a look at the in algorithm 2 layed out integrateAngularRegion function,
which is called repeatedly for each ray by the Convolution raytracer. Inside the
functions for-loop, in line 13, there are three occasions where a number is raised to a
power. In the C++ implementation this is done by calling the pow function. This
code line is in fact by far the main caller to this top hotspot function of the
Convolution raytracer. We can restructure this loop, completely eliminate the usage
of pow and instead incrementally calculate the factors gk+1

1 and gk+2
2 on the go.

Additionally we precalculate R2/2 in integrateGaussianPolygon, as R2 is a byproduct
of calculating R, and hand it as parameter instead of R. The improved
integrateAngularRegion function is depicted in algorithm 3.

Algorithm 3 Optimized Angular Region Integration

1: function integrateAngularRegion2(R′, θ1, θ2, g1, g2, h1, h2)
2: res := 0
3: jlast := θ2 − θ1

4: j := h2 − h1

5: g′1 := g1

6: g′2 := g2

7: for k = 0; k < size(P3); k + + do
8: res += P3[k] · j
9: copy := j

10: g′1 ∗= g1

11: g′2 ∗= g2

12: j := (h2g
′
2 − h1g

′
1 + jlast(k + 1)R′)/(k + 2)

13: jlast := copy

14: return exp (−R′) · ((θ2 − θ1)/2− res)/π

Due to the optimizations to the Convolution raytracer being purely code related and

30

hence SunFlower specific, further changes will not be layed out in detail. Instead we
will take a broader view and discuss the core concepts behind applied code
optimizations to the entire optical model including the Convolution raytracer.

4.1 Code optimization

Accelerating serial code without altering the underlying functionality in part is
viewed skeptically as many optimizations are already handled by the compiler. The
compiler typically also does a better job at optimizing code for a specific architecture.
However, the compiler is not always able to understand the inner workings of a
complex program or mathematical calculations.

The above described adaption to the integrateAngularRegion function shows one such
case. Here is another example: at the start of a SunFlower simulation the sun vector
is calculated and stored. During raytracing the sun vector then is repeatedly used for
different calculations such as the heliostat alignment or a ray’s reflective direction.
For multiple of these calculations the sun vector is normalized on the spot. As
developer it is easy to determine that we can do every single one of these calculations
with a normalized vector. Hence we directly normalize the sun vector after its initial
computation and save it as such at the start of the simulation. The compiler is not
able to understand the underlying geometry, cannot know that this does not alter the
functionality of the code and thus would not apply this optimization.
We look at every expensive function that is repeatedly called and evaluate whether or
not some sort of precalculation is feasible. This includes substituting calculations
with a constant if possible.
The general goal is to eliminate redundant calculations and reduce the excessive use
of expensive functions, such as sqrt, pow, trigonometric functions or division.

The next step is to eliminate unnecesssary checks and branches. In SunFlower many
functions act as independent and uninformed entities. This means they check every
input parameter for potentially hazardous cases, often with significant computational
expense. In general this is a good approach to write robust code, but for performance
it is desirable to avoid these checks. However, to ensure correctness, we cannot just
remove the checks and hope to never encounter hazardous cases. Instead we move the
responsibility to the caller of the function to only call it with reasonable input
parameters. This type of code manipulation represents a tradeoff between robust and
performant code. Working in an environment where code performance is paramount,
we want to try to minimize the impact of such safety measures without completely
discarding them. This entails additional work for the developer but speeds up specific
functions considerably. Look at the integrateGaussianPolygon function in algorithm 1
for an example. The two initial checks done in lines 2 and 4 confirm the input
polygon is a simple polygon and correctly oriented, which is necessary for the
integration to produce correct results. Both checks have significant performance
impact and can be discarded if we instead validate the way in which we construct the

31

input polygon before calling the function.

Another point is to ask the compiler to inline functions that are called excessively to
reduce function call overhead. The compiler may do this anyway for certain functions
or inspite of the developers inline directive might decide against it.

Lastly we take a brief look at how we can exploit characteristics of the annual
simulation.

4.2 Annual simulation considerations

The annual simulation consists of a set of optical moment simulations for a fixed
heliostat field setup. Thus we can reuse the heliostat field dataset and just adapt
information that is tied to the changing sun position.
This basically amounts to the alignment of heliostats, which subsequently entails
rebuilding their AABB trees and re-evaluating potential blocking and shading
heliostats. The heliostat center, bounding sphere and aiming point are invariant to
different sun positions, hence the potential blocking heliostats for each heliostat do
not need to be recomputed. However, this does not hold for the blocking candidates
for each facet, as the facet center has moved after alignment. Furthermore shading
candidates have to be computed again on both heliostat and facet level.
A new discretization of the heliostat into cells is not necessary as they are defined in
the local coordinate system of the heliostat, which is relative to the invariant
heliostat center. Global cell position is calculated for each moment during raytracing
and uses the updated heliostat axes.

Following the optimization of serial execution, the upcoming Section will discuss the
parallelization of the optical simulation.

5 Parallelization

After several refinements to the serial execution of both a moment simulation and an
entire annual simulation, this Section will tackle the parallelization of the simulation.
We start by discussing the implementation of a baseline CPU parallelization using
OpenMP [11] and will debate some steps to increase its throughput.
Following the CPU parallelization we take a look at the GPU architecture before
describing how the code is adapted to be compatible with CUDA and to make it
portable to GPU. Finally a number of performance considerations for the GPU
implementation are investigated.

32

5.1 CPU parallelization

First we parallelize the initial setup of each heliostat before the first simulation
moment by distributing heliostats among threads. It includes heliostat discretization,
aimpoint calculation and heliostat facet canting. Performance analysis with Intel
VTune Profiler shows that on our system, a typical desktop computer with a single
8-core CPU, using more than two threads for these tasks will impede performance,
likely due to their memory bound nature. This also holds for the subsequent setup
steps of heliostat alignment and AABB tree creation which are done before every
simulation moment during an annual simulation, as explained in Section 4.2.

The parallelization of the actual raytracing in other research is done by distributing
rays or chunks of rays among the threads as the enormous amount of rays allows
perfect work balancing on any system. We instead choose to again distribute the
work on the heliostat level to avoid a synchronization problem. This means each
thread handles all rays that are generated from a specific heliostat, or from a specific
set of heliostats. As one objective of a SunFlower simulation is to collect information
on the efficiency of each heliostat, it counts for each heliostat how many of its
corresponding rays hit the receiver, are blocked or shaded, and how significant the
cosine effect is. Parallelizing over rays independently from heliostats would mean
synchronization is necessary for the aggregation of these results, as multiple threads
could simultaneously try to update the values of a specific heliostat. As the size of
modern heliostat fields is increasing, simulations are commonly done with several
thousands or even tens of thousands of heliostats. Thus the workload can still be
efficiently distributed on a CPU with only a handful of simultaneous threads.
Furthermore when each thread continuously traces rays for a single heliostat we
profit from spatial data locality and can reuse certain data, such as the heliostat
aiming point, its position and coordinate system. In this way the data access is more
efficient, no synchronization is needed for heliostat efficiency results and we do not
significantly handicap load balancing.

To achieve additional throughput on CPU, one should further consider vectorization
and fused operations. Where possible, these techniques are typically applied by the
compiler, but in many cases the developer first has to revise the code to expose these
possibilities, especially vectorization, to the compiler.
In case of our ray tracing there are multiple pieces of code that could be vectorized
by restructuring the execution, however the most costly items in intersection checks,
random number generation and most of the integration cannot easily be vectorized.

In general additional optimizations of the CPU parallelization are estimated to be
very labor intensive compared to their expected impact. Consequently we at this
point refrain from further optimizations, as the goal of the CPU parallelization is
merely to establish a baseline for comparison with the later GPU implementation.
Thus we now shift our focus to the GPU parallelization.

33

Figure 13: Schematic comparison of CPU and GPU architectures [36]

5.2 GPU parallelization

Before we lay out the adaption of the software for GPU parallelization, we first take a
look at the key characteristics of the GPU architecture and the corresponding
programming model.

5.2.1 GPU architecture

We start with a brief comparison of GPU architecture to the traditional multi-core
CPU architecture. Figure 13 shows a schematic comparison of both architectures.
The CPU is a general purpose architecture and consists of few cores with dedicated,
comparably large on-chip caches as well as advanced on-chip control units. This
architecture is suited to efficiently execute any code in serial due to low latencies and
high level control logic for branch prediction and out-of-order execution. Each core
can work independently on a different task and cache coherency is ensured through
various protocols. Additional parallelism on each core is possible for some operations
on vectorized data, called Single Instruction Multiple Data (SIMD), through special
registers.

In comparison the GPU is a more specialised architecture, inherently catered towards
data parallelism. Instead of a small number of independent cores, the GPU is
composed of a large number of weaker cores which are packed as groups. In case of
NVIDIA GPUs these are called Streaming Multiprocessors (SM). They share a cache,
which can also be used as shared memory. Each thread has a limited amount of
registers available and also has private memory inside the global memory. There is no
dedicated cache for each parallel processor.

The CUDA programming model lets the developer distribute the work on GPU in a

34

CPU vs. GPU
Few powerful cores Many weaker cores
Task parallelism Data parallelism
optional SIMD inherent SIMT
Low latency High throughput
Efficient serial execution Effective parallel execution
Large coherent caches Small incoherent caches
High level control logic Basic control logic

Table 3: Key differences of CPU and GPU architectures

hierarchy. The developer sets the grid size for the start of a GPU function (kernel),
translating to the number of thread blocks that are created. Furthermore the
developer establishes how many threads should be executed in each thread block.
The thread blocks are then distributed to the SMs similarly to threads to cores on
the CPU. Each SM may be able to run multiple thread blocks concurrently if enough
blocks are started.
The execution model on SMs is a more general form of SIMD which NVIDIA calls
Single Instruction Multiple Thread (SIMT). Tasks are executed in warps of 32
threads with the entire warp working in sync. Thus branches that would diverge the
execution path of threads within a single warp have to be serialised. Table 3
summarizes the key differences of both architectures.

The following Sections will discuss how we adapt the SunFlower tool for the CUDA
C++ programming language and the GPU architecture as well as the steps we took
to further optimize the initial GPU implementation.

5.2.2 Adapting SunFlower for GPU

The CUDA C and C++ programming language essentially comprises the C
programming language extended by a subset of C++ features and functionality
necessary to run kernels on GPU. The GPU inherently does not support the use of
any C++ libraries such as the Standard Library (std), boost or CGAL. Data
structures have to mostly oblige C conventions and CUDA offers its own libraries for
advanced mathematical functions.

Throughout the entire implementation of the SunFlower tool there are many C++
libraries used. Especially the CGAL library is used extensively for the optical
simulation. The geometry of the optical model is saved in CGAL data structures and
CGAL functions are used for a multitude of computations, such as directions, angles,
distances or intersections.
Additionally std library container classes and smart pointers are used to easily
allocate memory, store and handle data.

35

Therefore, and to ease the integration of the GPU into the workflow of the SunFlower
tool, we re-implement a lightweight version of the optical model. The goal is not only
to adhere to the limitations of the CUDA C++ language, but also to strip the model
off any unneccessary clutter.
First we implement the basic geometry data structures and functionality in CUDA
C++ code. Next the entire optical model and the raytracers are added. They are
restricted to the new geometry and C style arrays and pointers for data storage.

We further implement a new Translator module that will act as interface between
host (CPU) and device (GPU) code. To setup the new model in GPU memory the
settings are read by the already existing host code at the start of the simulation.
Afterwards the Translator module allocates the required memory on host and device
for all optical entities. The data is initialized on host and finally copied to the device.
Additional memory is allocated on the device for data that will be produced during
the simulation.

As we want to avoid dynamic memory allocation on GPU, we pre-allocate necessary
memory. For most data we know very accurately how much space will be required,
but for the arrays that store the indices of blocking and shading candidates according
to the methods introduced in Section 3.3 and 4, we can only estimate the required
memory space. The worst case would be that every heliostat is a candidate for every
facet, which would mean we need to allocate
4Bytes×#Heliostats×#FacetsPerHeliostat×#Heliostats of memory for
blocking and shading each. For a field of ten thousand heliostats with 30 facets per
heliostat this equates to 24 Gigabytes of memory.
As this is an immense overestimation and also infeasible, we need to find a smarter
way to store the candidates.
After testing different sun positions and heliostat fields we determine that the sum of
all candidates for the entire heliostat field, denoted as

∑
NC, in a realistic setup is

always well below N ′:∑
NC ≤ N ′ = #Heliostats×#FacetsPerHeliostat×

√
#Heliostats. (23)

Using this estimation, we could limit the allocated memory to only 240 Megabytes
for the given example. However, this bound holds only for the total number of
candidates for the entire field, not for each facet. If we dedicate an equal amount of
memory to each facet, this estimation would cap the amount of candidates each facet
can save to

√
#Heliostats, or 100 in the given example. Some facets may exceed this

number during low sun positions, so we share the memory across a heliostat, giving
each heliostat space for #FacetsPerHeliostat×

√
#Heliostats candidates. This

suffices to reliably save all candidates for all facets. For this we implement a
simplified compressed sparse row storage (CSR) which is used for sparse matrices
[48]. We only need one indexing array each for blocking and shading that saves the
starting position of a facet’s candidates.

36

To complete the setup process a small kernel is started before the first moment
simulation that computes facet canting, heliostat expansion, atmospheric attenuation
and the AABB tree of the receiver directly on the device.

This entire setup is necessary only once before the first moment simulation. All data
on GPU can be re-used for further moment simulations of an annual simulation.
Essential manipulations of the optical model for these subsequent simulations, such
as heliostat alignment and AABB tree creation (see Section 4.2), are implemented in
device code, in part to avoid unneccessary host-to-device data migration.
After data initialization all moment simulations on GPU are started by the host by
handing the calculated sun direction to the Translator module which then executes a
number of kernels:

1. Heliostat setup kernel: each thread handles one heliostat. It aligns the
heliostat according to the sun vector, creates the heliostat AABB tree and
calculates potential blocking and shading candidates first on heliostat and then
on facet level.

2. Raytracing kernel: analogously to the CPU parallelization, each thread again
handles one heliostat. Rays are generated and evaluated according to the
chosen raytracing approach and the methodology discussed in Section 3. The
flux of hitting rays is added to the receiver flux map using atomicAdd.
Synchronization for heliostat efficiencies is not necessary (see Section 5.1).

3. Result kernels:

• Flux map reduction kernel: efficiently sums (reduces) the receiver flux
map to get the total flux on the receiver. Initially each thread sums a
small part of the flux map in shared memory, then summation continues in
a tree structure.

• Heliostat field efficiency aggregation kernel: aggregates the efficiency
values of all heliostats to evaluate the overall efficiency of the heliostat
field.

After starting each kernel the host has to wait for the device to completely
synchronize before starting the next kernel. Once the result kernels have finished, the
desired result data is migrated to the host and is integrated back into the existing
SunFlower workflow.

Random number generation with cuRAND
As mentioned in Section 4, CUDA offers its own library for random number
generation with cuRAND [36, 35]. Besides multiple high quality random number
generators it also offers output in different distributions.
The cuRAND library also implements a XORWOW RNG, which works similarly to
the xoshiro256+ generator we used for our CPU implementation. However, according

37

to NVIDIA’s own testing on a high-end GPU, the counter-based Philox
pseudo-random generator [44] is the fastest in cuRAND at generating
normal-distributed single precision numbers on GPU [35].
For our implementation of the Monte-Carlo raytracing on GPU we tested both the
XORWOW and the Philox RNG. As we could not determine noticable differences, we
choose to use the Philox generator.

With this basic GPU implementation in place, we now take a look at the additional
steps we took to optimize it’s throughput on GPU.

5.2.3 Execution divergence

A major performance concern for any code executed on GPU is execution divergence.
As explained in Section 5.2.1, the GPU groups threads in warps which work
synchronously and therefore has to serialize code that diverges the execution path of
threads within a warp. The typical scenario for this would be a large conditional
branch that is entered only by some of the threads of a warp.
We take a look at two parts of the execution where we can alter the code to mitigate
this problem.

AABB tree intersection check
First is the AABB tree intersection check. In Section 4 we briefly discussed the tree
traversal of our AABB trees and decided to use a basic recursive traversal on CPU.
However, this recursive traversal leads to high execution divergence on GPU as each
thread independently decides whether to recurse on or to skip a tree node. If two
threads decide differently, they may go out of sync [28].
As NVIDIA developer Karras [28] showcases, a carefully managed iterative traversal
minimizes this effect as all threads repeat the same loop, mostly independent of
specific traversal decisions.
We adopt the proposed iterative traversal method for our AABB tree. Although this
will not fully eliminate the problem as nearby threads may do a different number of
iterations, it greatly reduces its impact.

Bivariate polygon integration
The polygon integration necessary for the Convolution method (see Section 3.1.2 and
Algorithm 1) branches multiple times to handle four different angular cases [25]. To
ensure that threads do not go out of sync during the computation of this integral, we
re-write the code such that we avoid these branches.
As the branches largely do the same computations, only altering the parameters and
signs, we just have to manipulate the parameters and signs according to the case we
encounter without branching. For this we make use of the boolean arithmetics of the
C programming language. The in some cases undesired calls to the complementary

38

error function (erfc) can also be handled by multiplication with a boolean. Case
dependent positive or negative signs are analogously produced with boolean
arithmetic.
Algorithm 4 shows the revised version of the integration. All cases are still handled
correctly, however now all threads are guaranteed to take the exact same execution
path for the computation.

As next step we discuss our use of floating point data types as it heavily affects the
instruction throughput of the GPU architecture.

5.2.4 Floating point data types

The SunFlower tool previously worked exclusively on double precision floating point
numbers to guarantee high accuracies. For many calculations this level of precision is
not required, but on modern CPU architecture the performance implications are
negligible. In contrast, the GPU is an architecture optimized for 32-bit floating point
operations, so our 64-bit floating point calculations will not achieve optimal
instruction throughput. Depending on the exact GPU chip involved, the instruction
throughput of double precision operations is up to 32x lower than that of single
precision [36].
However, replacing all double precision variables and computation with respective
single precision ones significantly impacts the accuracy of our results. Therefore we
need to carefully evaluate where double precision calculations are necessary to ensure
high accuracy and where single precision is sufficient.

Incrementally stepping through the code, we determine that the main source of
inaccuracies with single precision values comes from the repeated summation of
miniscule values onto the receiver flux map. Especially as the flux accumulates to
larger magnitudes, further addition of very small single precision floats results in
significant rounding errors.
Similarly we detect rounding errors that occur during the accumulation of heliostat
efficiency values due to the same problem with numbers of varying magnitude.
We keep the corresponding variables as double precision, change all other to single
precision and make sure that all computations use the correct data type such that
type casting is only necessary for the summation of result values.
Finally it was found that some sensitive projection calculations of the Convolution
raytracer also introduce slight inaccuarcies on single precision numbers. In this case
the problem could not be solved by keeping a small set of values and computations as
double precision. For that reason and as deviations in results are within 0.02%, we
decide to continue with single precision. As part of the case study in Section 6, we
will validate the accuracy against the established CPU version.

Besides utilizing the extreme advantage of single precision floating point operations
on GPU another way to maximize the instruction througput is to employ GPU

39

Algorithm 4 Branchless Bivariate Polygon Integration

1: function integrateGaussianPolygon2(D, σhor, σver)
2: D′ := scaleToCircular(D, σhor, σver)
3: res := 0
4: for each vertex Vi in D′ do
5: v1 := (Vi − predecessor(Vi))/|Vi − predecessor(Vi)|
6: v2 := (successor(Vi)− Vi)/|successor(Vi)− Vi|
7: R2 := Vi · Vi
8: R :=

√
R2

9: res += (R == 0) · arccos ((v1 · v2)/(2π))
10: l := Vi/R
11: θ1 := sign(det(v1, l)) · arccos (v1 · l)
12: θ2 := sign(det(v2, l)) · arccos (v2 · l)
13: RSQRT2 := R ·

√
2

14: g1 := (v1 · l) ·RSQRT2
15: g2 := (v2 · l) ·RSQRT2
16: h1 := sin (θ1) ·RSQRT2
17: h2 := sin (θ2) ·RSQRT2
18: gg := ((g1 ≥ 0) and (g2 ≥ 0)) . Booleans for branchless computation
19: gs := ((g1 ≥ 0) and !(g2 ≥ 0))
20: sg := (!(g1 ≥ 0) and (g2 ≥ 0))
21: ss := (!(g1 ≥ 0) and !(g2 ≥ 0))
22: θ1 := θ1 + (sg + ss) · π · (1− 2 · (θ1 > 0))
23: θ2 := θ2 + (gs + ss) · π · (1− 2 · (θ2 > 0))
24: θ′1 := (ss+ gg) · θ1 + (gs+ sg) · θ2 . Branchless parameter manipulation
25: θ′2 := (ss+ gg) · θ2 + (gs+ sg) · θ1

26: g′1 := (gg − ss) · g1 + (sg − gs) · g2

27: g′2 := (gg − ss) · g2 + (gs− sg) · g1

28: h′1 := (gg − ss) · h1 + (sg − gs) · h2

29: h′2 := (gg − ss) · h2 + (gs− sg) · h1

30: res += (!gg · erfc((gs + ss) · h2 + sg · −h1)− ss · erfc(h1))/2
31: +(−1 + 2 · (gg + ss))
32: · integrateAngularRegion2(R2/2, θ′1, θ

′
2, g
′
1, g
′
2, h
′
1, h
′
2)

33: return 1− res . ≡ Pint(D)

40

intrinsic functions.

5.2.5 Intrinsic functions

CUDA offers a number of low throughput mathematical functions as so called
intrinsic functions, which are tailored to increase throughput. These functions are
only available on the device and therefore cannot be used in host code.
Intrinsic functions execute fewer native instructions compared to their standard
counterparts and subsequently are faster, but they also are slightly less accurate [36].
The intrinsics for single precision floating point numbers include a number of
operations that SunFlower regularly requires for its simulation:

• trigonometric functions

• exponential functions

• logarithmic functions

• power function

• square root and reciprocal square root

• fused multiply-add

• division and reciprocal

To inform the compiler to replace standard mathematical functions with their
intrinsic alternatives, CUDA offers the -use fast math compiler option. Due to
accuracy concerns with intrinsic functions we instead take the same approach as for
the floating point data types and step through the computationally intensive code
regions incrementally. For each mathematical function that is replaced we confirm
that the introduced inaccuracy has no notable effect on the simulation result. During
this process the deviation only raised problems with some projection and angular
calculations of the Convolution raytracer. Hence these calculations are done with
their standard functions. Again, the accuracy will be validated as part of the case
study in Section 6.

In the following we will investigate the performance of the raytracing kernel with the
Nsight Compute profiler to determine our next steps.

5.2.6 Nsight Compute performance analysis

To profile the GPU implementation, we need a larger heliostat field to have a large
enough data set for its computing power. Therefore we use a heliostat field of 8600
heliostats, called AbengoaCRS. We profile a single moment simulation of this
heliostat field on a NVIDIA GeForce RTX 2070 SUPER graphics card using the
Nsight Compute profiler [37].

41

Kernel Time spent [ms]
Raytracing kernel 946.78
Heliostat setup kernel 14.94
Result kernels 0.25

Table 4: Time spent in GPU kernels during a moment simulation of the 8600 heliostat
field AbengoaCRS on a NVIDIA GeForce RTX 2070 GPU.

Table 4 lists the reported time spent in the GPU kernels we implemented (see
Section 5.2.2). As expected the raytracing kernel is by far the computational hotspot
of the simulation.

Figure 14 shows the by Nsight calculated floating point operation roofline model of
the raytracing kernel. This model relates the theoretical limits of the hardware to
code performance depending on the code’s arithmetic intensity. The arithmetic
intensity of a code describes how many bytes of memory the code has to load (or
store) relative to the number of floating point operations (FLOPs) it conducts. In
terms of hardware limitations, there are two types of computations: memory-bound
and compute-bound computations. When the arithmetic intensity of a code is low, it
will be limited by the memory bandwidth of the hardware and is considered
memory-bound. In contrast a code that is not limited by memory bandwidth due to
its high arithmetic intensity is called compute-bound.
Nsight reports a maximum memory bandwidth of about 430 GByte/s and about 8.3
TFLOP/s peak performance for single precision for the RTX 2070 graphics card.
This is close to the values NVIDIA claims for this architecture [34].
The in Figure 14 depicted roofline model shows that computations on this hardware
are memory-bound for single precision computations with arithmetic intensity of less
than 19 FLOPs per byte. The yellow circle indicates the actual performance and
arithmetic intensity of single precision computations in the raytracing kernel.
This confirms that the kernel is not making efficient use of the GPU’s resources, as
the performance is far off from hardware limitations. It also illustrates that the code
in its current form is memory-bound.

More careful inspection of the profile reveals a possible reason for the deficient
performance. As the raytracing kernel is started with one thread for each heliostat,
we even for this large heliostat field start too few threads for the GPU architecture.
The achieved occupancy, which is a measure of how many warps are actually active
in comparison to how many warps the hardware can support, was at only 12.2%.

5.2.7 Occupancy

On the employed graphics card each SM can have up to 32 warps active
simultaneously, or a total of 1024 threads. The four warp schedulers will issue
instructions for warps that have all dependencies fulfilled while other warps will be

42

Figure 14: Floating point roofline model of the Monte-Carlo raytracing kernel during
a moment simulation of a 8600 heliostat field on a NVIDIA GeForce RTX
2070 GPU. Calculated by NVIDIA Nsight Compute.

stalled. In this way the hardware can keep the processors busy and hides latencies.
However, our raytracing kernel is not able to exploit this advantage of the hardware,
as only one thread per heliostat is started. Even for the large heliostat field this
leaves us with only close to nine thousand threads. To maximize the occupancy on
the RTX 2070 GPU we need to start at least 1024 threads on all 40 SMs, or a total of
40960 threads.

Consequently we rework the parallelization of the kernel. Instead of starting one
thread per heliostat, we start one thread block per heliostat. The rays generated on
the heliostat are equally distributed among the threads. With this distribution each
thread can evaluate it’s own heliostat efficiency values in registers and at the end it
adds it to the heliostat with the atomicAdd function. Alternative storage and
reduction in shared memory was tested, but did not offer better performance.
Another considerable advantage of this parallelization is the memory access pattern.
With each thread handling it’s own heliostat, the data that was required by a warp
was far apart and with that memory access was mostly uncoalesced. Now threads in
a block access the same or nearby located data.
Using for example 256 threads per block this approach results in over two million
threads for the AbengoaCRS heliostat field. This gives the GPU more than enough
threads even on small heliostat fields.

A profiling of the new parallelization shows significant improvement: the kernel
runtime is down by a factor of 4.5x to about 200ms.
Inspite of this progress, the achieved occupancy for this kernel merely increased to

43

Bounds [TpB, BpSM] Registers per thread Occupancy Runtime
128, 2 239 24.09% 183.5ms
128, 3 168 35.81% 181.1ms
128, 4 128 47.89% 187.4ms
128, 8 64 95.10% 197.1ms
256, 1 239 24.10% 184.8ms
256, 2 128 47.98% 189.7ms
256, 4 64 95.13% 199.8ms

Table 5: Nsight profiling results of the raytracing kernel with varying launch bound-
aries specified to the compiler. The launch boundaries specify the maximum
threads per block (TpB) and the minimum blocks per SM (BpSM) the kernel
will be executed with.

23%. The discrepancy to the improvement in runtime affirms that this parallelization
approach is advantageous not only due to higher occupancy.
Nsight Compute hints at the number of registers used per thread to be the limiting
factor for the number of active warps. Every SM on the GeForce RTX 2070 card
supports a total of 65536 registers, or 64 registers for each of 1024 threads. The
raytracing kernel used 202 registers per thread, which makes the hardware unable to
have more than 324 threads active per SM. As only full blocks are run, this is further
reduced to 256 active threads per SM.

While limiting the number of registers per thread is possible, it will likely lead to
register spilling, meaning data that would normally be kept in registers will
repeatedly be stored to and loaded from the slow local memory. However, due to the
higher occupancy the SM may be able to hide the latencies. As this tradeoff is hard
to predict, we test different settings.
With the launch bounds directive for the kernel, we can inform the compiler how
many threads will be in a thread block at maximum and how many blocks the kernel
will execute on each SM at minimum. The compiler will use this information to
predict the optimal settings for the kernel, including the number of registers each
thread is allowed to use.
Table 5 shows the profiled kernel runtime for a small set of different settings. The
tested settings include cases that maximize the theoretical occupancy as well as the
cases that do not limit register usage. The kernel runtimes indicate that the downside
of register spillage slightly overtakes the advantage of high occupancy for more than
384 threads (128 threads per block, 3 blocks).

Figure 15 shows the roofline model Nsight Compute provides for the kernel executed
with 8 blocks of 128 threads on each SM, illustrating that the register spillage results
in less arithmetic intensity and the application almost reaching the maximum
memory bandwidth.

44

Figure 15: Roofline model of the raytracing kernel with maximized theoretical occu-
pancy (128 threads per block, 8 blocks per SM) during a moment simulation
of a 8600 heliostat field on a NVIDIA GeForce RTX 2070 GPU.

Additional information in the profile of the 128 threads per block and 3 blocks per
SM launch boundary kernel verifies that this setup is also limited by memory access.
Nsight Compute reports warps to be predominantly stalled due to Long Scoreboard
dependencies, which correspond to access of data that resides outside of the SM [37].
Accordingly, further optimizations should be primarily targeted towards the memory
access patterns of the application. Even though our new parallelization approach
increases the data locality as neighbouring threads work on the same heliostat and
access nearby data, there likely is room for improvement.

The use of shared memory was tested for frequently used data such as facet pieces or
the receiver AABB tree, but no considerable advantage could be identified and space
limitations raised concerns with higher discretization resolutions. Likewise it is
infeasible to store all heliostat AABB trees in shared memory for large or medium
sized heliostat fields.

Additionally we investigated re-ordering of some data structures. For example a
pre-order storage of the AABB trees was implemented to allow efficient pre-order
traversal during intersection checks. However, the performance gain was negligible.
At this point no impactful and in the scope of this work feasible pathways were found
to further improve the implementation in regards to memory access. However,
Section 7.2 will touch on ideas that could be investigated in future research.

For that reason we conclude the optimization of the GPU implementation and

45

investigate its accuracy and performance in the following case study.

6 Case study

To thoroughly validate the accuracy of the new implementation and to obtain a com-
prehensive picture of its performance we simulate three central receiver systems: PS10,
Gemasolar and AbengoaCRS.
The PS10 power plant has a small south facing heliostat field and uses a cylindric cavity
receiver. Gemasolar is a medium sized concentrated solar power plant with heliostats
arranged around the external cylindric receiver. AbengoaCRS is a hypothetical power
plant based on data from Abengoa. It shares many of the concepts of the Gemasolar
power plant but employs a much larger heliostat field. Table 6 summarizes for each
power plant the key parameters we use in our simulation and Figure 16 shows the field
layouts.

Parameter PS10 Gemasolar AbengoaCRS
Number of heliostats 624 2650 8600
Heliostat width 12.84 m 11 m 10.71 m
Heliostat height 9.45 m 10 m 12.95 m
Heliostat facet reflectance 88 % 93 % 91.96 %
Receiver shape Cylindric cavity External cylindrical External cylindrical
Receiver panels 4 18 16
Receiver panel width 3.445 m 1.476 m 3.158 m
Receiver height 12 m 16 m 18.5 m
Receiver top height 115 m 126.5 m 229.5 m
Sun error (Gaussian) 2.35 mrad 2.35 mrad 2.35 mrad
Slope error 2.6 mrad 2.6 mrad 2.6 mrad
Tracking error 1.3 mrad 1.3 mrad 1.3 mrad

Table 6: Configuration parameters of the PS10 and the Gemasolar central receiver sys-
tems, adopted from Schöttl et al. [47], and for the hypothetical AbengoaCRS
plant.

With these three power plant configurations we cover the two most common receiver
types as well as a wide range of heliostat field sizes. The first goal of this study is to
validate the simulation results of the new GPU implementation for these three plant
configurations.

6.1 Validation

The new GPU parallelization involves a number of adaptions and optimizations with
possible accuracy implications, as discussed in Section 5.2. Therefore we validate its
results against the established CPU-based SunFlower code, which previously was val-
idated against other state-of-the-art raytracing tools [43].

First the Monte-Carlo raytracer results are scrutinized. We simulate two moments
of the 21st of June, one with low solar altitude (8AM), and one at solar noon (12PM).

46

(a) PS10 (b) Gemasolar

(c) AbengoaCRS

Figure 16: Heliostat field layout of the three power plants: PS10 (a), Gemasolar (b)
and AbengoaCRS (c).

47

Each moment is simulated with varying ray densities and every simulation is repeated
thirty times to account for the fluctuations of random number generation. As refer-
ence we simulate both moments with the CPU-based Monte-Carlo raytracer with 100
rays per square meter thirty times and take the mean. Figure 17 shows the maximum
deviations in simulated optical power from the reference for the varying ray densities
for all three power plants. In all three cases the GPU implementation yields results
with an error margin of less than 0.05% even for as little as 35 rays per square meter.
However, simulations with the same 100 rays per square meter discretization as the
reference illustrate that the GPU raytracer results deviate by up to 0.04% in a direct
comparison.

The Convolution raytracer is subjected to a similar test series. Here the simulation
results are deterministic, so each simulation is only done once. The mean of the CPU
Monte-Carlo raytracer results is again used as reference. The results are depicted in
Figure 18. The error is, similarly to the Monte-Carlo raytracer, greater with the larger
power plants Gemasolar and AbengoaCRS, but for 50 rays per square meter or more,
the error margin is again less than 0.05% for all configurations.

As both GPU raytracers deviate from CPU results by at most 0.05% for the three
tested configurations and sensible ray discretization, we conclude that the newly im-
plemented GPU raytracers deliver high accuracy despite any concerns raised in Sec-
tion 5.2.
The next step is to investigate the performance of each raytracer.

6.2 Performance

All performance tests were run on an Ubuntu 18.04LTS operating system using a
NVIDIA GeForce RTX 2070 SUPER graphics card along with a Ryzen 7x 3700x CPU
and 32GB of RAM.

To test the performance of each raytracer, we want to mimic common use cases rather
than maximizing potential throughput. Therefore we first discuss the setup of the
raytracers.
For the Convolution raytracer the setup boils down to the choice of rays per square
meter. Common users will want to simulate with high accuracy of about 99.95%. Mak-
ing use of the previous results, we therefore set 50 rays per square meter for the PS10
power plant, 35 rays per square meter for Gemasolar and 25 rays per square meter for
AbengoaCRS to achieve this.

In case of the Monte-Carlo raytracer the setup involves the additional choice of the
number of repeated samplings of each ray. Choosing to repeatedly sample each ray
reduces the fluctuations in results, but also increases the runtime of the simulation. To
gauge the impact on result fluctuation, a set of different configurations is tested. We
vary the number of repeated samplings M and the rays per square meter and measure

48

(a) PS10

(b) Gemasolar

(c) AbengoaCRS

Figure 17: Maximum deviations of the optical power for varying ray densities of the
GPU Monte-Carlo raytracer for two representative moments of the 21st of
June. The reference result is obtained by simulation with the established
CPU-based SunFlower Monte-Carlo raytracer with 100 rays per square me-
ter.

49

(a) PS10

(b) Gemasolar

(c) AbengoaCRS

Figure 18: Maximum deviations of the optical power for varying ray densities of the
GPU Convolution raytracer for two representative moments of the 21st of
June. The reference result is obtained by simulation with the established
CPU-based SunFlower Monte-Carlo raytracer with 100 rays per square me-
ter.

50

both the maximum deviation in optical power and the average runtime across thirty
simulations. The same reference as for the validation tests is used. Figure 19 shows
the runtime in relation to the maximum deviation for increasing ray densities and six
different number of samplings M .

These results illustrate that the impact of the repeated sampling of rays on accuracy is
negligible for all our test cases. In fact, if one wants to reduce fluctuation and increase
accuracy, this indicates that it is more efficient to simply increase the number of rays
per square meter.

Thus we set M = 1 and again use the results of our validation tests to set up the
rays per square meter. In short: the same ray discretization is used for the Monte-
Carlo raytracer as for the Convolution raytracer to mimic typical simulations with
accuracies of about 99.95%.

Apart from accurate raytracing for each moment, a prominent simulation goal is to
compute the annual energy production to a similarly high degree of accuracy. While
SunFlower offers various configurations for the annual simulation and integration, the
resulting optical simulation only differs in the number and choice of simulated mo-
ments. For instance the state-of-the-art monthly nearest neighbour approximation [39]
is implemented and will simulate about 80 to 100 distinct moments (depending on
power plant location) to approximate the annual energy production to accuracies of
typically above 99.5% [41]. As it is one of the most common methods for annual energy
calculation, we will use this configuration for our performance tests.

The first objective is to investigate the impact of the implemented optimizations and
to compare the performance of the new CPU and GPU parallelizations. Accordingly
the tests are run with four different code iterations:

1. CB-Serial: CB being short for codebase, this refers to the initial code version
unaltered and without parallelization.

2. OPT-Serial: this is the according to Section 4 revised (OPT imized) code without
parallelization.

3. OPT-OpenMP: the revised code with basic OpenMP parallelization, see Sec-
tion 5.1.

4. OPT-CUDA: the revised, in CUDA C re-implemented and on GPU parallelized
code, see Section 5.2.

To summarize: for each of the four code versions we measure the runtime of a simula-
tion of the annual energy production with the aforementioned raytracer configurations
and the monthly nearest neighbor method on each of the three power plants.

51

(a) PS10

(b) Gemasolar

(c) AbengoaCRS

Figure 19: Maximum deviation of the optical power for increasing ray densities of the
Monte-Carlo raytracer in relation to the runtime. Six different number of
repeated samplings M are displayed.

52

Monte-Carlo Convolution
Code iteration Runtime Speedup Runtime Speedup
CB-Serial 6699.3s 1.00x 42417.6s 1.00x
OPT-Serial 1518.3s 4.41x 11187.8s 3.79x
OPT-OpenMP 374.8s 17.87x 1409.2s 30.10x
OPT-CUDA 5.4s 1248.53x 19.4s 2184.02x

Table 7: Runtime and corresponding speedup of the AbengoaCRS simulation with the
Monte-Carlo and Convolution based raytracer for four different code itera-
tions.

Figure 20a gives a comparison of the runtime of the Monte-Carlo raytracer for the
different code versions and the three power plants.
While the initial code CB-Serial required 778 seconds to execute the annual simula-
tion of PS10 and exceeded 6600 seconds for AbengoaCRS, these runtimes are down to
about 140 seconds and 1500 seconds respectively with the optimized serial code OPT-
Serial. Basic parallelization on CPU with OpenMP further reduced the runtime to 42
seconds for PS10 and 375 seconds for AbengoaCRS. The final parallelization on GPU
OPT-CUDA in comparison finished the annual simulation of PS10 in 800 milliseconds
and AbengoaCRS in 5.36 seconds.

Figure 20b shows the corresponding results for the Convolution raytracer. The an-
nual simulation of AbengoaCRS with the codebase CB-Serial in this case took close
to 12 hours or 42400 seconds. The optimizations of Section 4 reduce this by almost
factor four to 11000 seconds with the OPT-Serial code. While OpenMP parallelization
significantly improves this even further to 1400 seconds, the CUDA parallelization on
GPU in comparison squashes the runtime to only 19.5 seconds.

To get a clearer picture of the relative improvements, Figure 21 depicts the speedup
that the revised code iterations achieve in comparison to the codebase CB-Serial on
each power plant. Speedup here refers to the factor by which the runtime is reduced.
Optimizations to the serial code accelerate annual simulations by about factor five
for the Monte-Carlo and about factor three for the Convolution raytracer. Adding
OpenMP parallelization, the initial execution times are reduced by factors of roughly
20 and 30 for the Monte-Carlo and Convolution raytracer respectively. The on GPU
parallelized raytracers achieve overall speedups of over 1000 and close to 2000.
An overview of these results for the AbengoaCRS simulations is given in Table 7.

After inspection of the accomplished performance gains, the next step is to compare
the performance of the new GPU parallelized raytracers to that of other state-of-the-
art tools.

53

(a) Monte-Carlo raytracer

(b) Convolution Raytracer

Figure 20: Comparison of the runtime of annual simulations with four different code
iterations and three power plants for the Monte-Carlo (a) and Convolution
(b) raytracers.

54

(a) Monte-Carlo raytracer

(b) Convolution Raytracer

Figure 21: Speedup of the revised code iterations compared to the codebase for the
Monte-Carlo (a) and Convolution (b) raytracers.

55

6.3 Performance comparison to state-of-the-art tools

Other high-performance central receiver system raytracers could not be tested by us
directly as they are only commercially or not at all available. Thus we have to formulate
a superficial comparison with the performance that is reported by the developers. We
were able to determine approximate performance magnitudes of three state-of-the-art
GPU parallelized Monte-Carlo raytracers:

• TieSOL is an established commercial raytracer that reports tracing 100 million
rays in 887 milliseconds on three GTX 570 GPUs [26].

• QMCRT is a Quasi-Monte-Carlo raytracer recently developed by a chinese re-
search team which reports tracing 200 million rays in 1.5 seconds [15].

• sbpRAY is a very fast commercial Monte-Carlo raytracer and optimization tool
that claims to produce converged results for a heliostat field of 25000 Stellio
heliostats in one second and close to half that for subsequent simulations [19].
Stellio heliostats have 47.5m2 of surface area [38]. We approximate that using 20
rays per square meter should produce a converged result. This would correspond
to 237.5 million rays per second or close to 470 million rays per second when
considering subsequent simulations.

The annual simulations with SunFlower’s GPU Monte-Carlo raytracer traced on aver-
age 534.5 million rays per second on the PS10 power plant, 576 million rays per second
on Gemasolar and 564 million rays per second on AbengoaCRS. Figure 22 illustrates
the reported performances of each tool in comparison to that of SunFlower’s GPU
Monte-Carlo raytracer.

Comparing the Convolution raytracer is more difficult, as we could find only two re-
ports of non-commercial GPU parallelized analytical raytracers [22, 12].
Developed by the same team as QMCRT, the HFLCAL-adopted [46] analytical ray-
tracer by He et al. [22] is fast but involves significant inaccuracies. He et al. [23] recently
published another research which proposes a more accurate version of their analytical
raytracer, called iHFLCAL, but did not report usable performance metrics. Therefore
we will use the values reported in the initial study for comparsion with SunFlower.
As this analytical raytracer does only trace a single ray per heliostat, the research
team takes the number of traced rays and multiplies it with the receiver discretization
to give a performance comparison to other raytracers. As computational workload
and accuracy of analytical raytracers is tightly bound to receiver discretization, we
find the proposed estimation to be reasonable to directly compare the performance of
analytical raytracers. For that we will denote the product of traced rays and number
of receiver pieces as R × P . He et al. [22] report tracing 624 rays for PS10 against
600× 268× 4 receiver pieces in 67.1 milliseconds. This equates to 401 million R × P
in 67.1 milliseconds or about 6 billion R × P per second. SunFlower’s Convolution

56

Figure 22: Performance comparison of SunFlower’s Monte-Carlo raytracer with three
state-of-the-art GPU Monte-Carlo raytracers: TieSOL [26], QMCRT [15]
and sbpRAY[19].

raytracer on PS10 traces 7.2 million rays per second against 20×20×4 receiver pieces,
equating to 11.5 billion R× P per second according to the proposed calculation. Fur-
thermore they claim the maximum number of rays to be reached for 30000 heliostats
and a 65 × 65 × 8 × 8 receiver resolution. The corresponding 8.11 billion R × P are
evaluated in 618 milliseconds, resulting in 13.12 billion R× P per second. In compar-
ison SunFlower’s maximum throughput in the test cases was on the Gemasolar power
plant with 18.47 billion R× P per second.

Chiesi et al. [12] developed an analytical raytracer with GPU parallelization that can
be compared in the same way. It is reported that 12000 heliostats of 1m2 are dis-
cretized into 20 × 20 cells and traced against 40 × 40 receiver pieces in 4.33 seconds.
This results in 1.77 billion R × P per second. Figure 23 gives a visual comparison of
the performance of all three analytical raytracers.

6.4 Discussion of the results

The validation study verifies that both GPU parallelized raytracers are able to deliver
highly accurate results inspite of various adaptions. The error margin was found to be
within 0.05% for both raytracers and all three simulated power plants, see Figure 17
and 18. The validation study indicates that simulation results are of high quality for
any configuration of receiver and heliostats as well as both small and large heliostat
fields.

Besides accuracy, the results in Section 6.2 exemplify that the performance in total
was improved by atleast three orders of magnitude in all cases, as Figure 21 illus-
trates. Optimizations to the serial execution sped up simulations of the Monte-Carlo

57

Figure 23: Performance comparison of SunFlower’s Convolution raytracer with two
analytical raytracers on GPU: He et al. [22] and Chiesi et al. [12].

raytracer already by factor five and the Convolution raytracer by factor three. With
this improvement as starting point, the GPU parallelization was able to again reduce
runtimes by well over factor 200. Furthermore the GPU implementation represents
a speedup of above factor 50 compared to the OpenMP based CPU parallelization.
Figure 20 also shows that runtime scales roughly linearly with the size of the heliostat
field.
As a main task of heliostat field optimization is to repeatedly evaluate annual energy
production, the implications of this study are substantial. For example a typical helio-
stat field optimization could be done on two parameters with each 50 levels, resulting
in a total of 2500 combinations to test. For each combination the annual energy pro-
duction has to be evaluated. With the previous version of SunFlower raytracers, this
was only feasible for small heliostat fields and mediocre accuracy and still involved
immense runtimes of multiple days. The revised GPU raytracers presented in this
work allow to complete this task with high accuracy in acceptable time frames, even
for large heliostat fields of ten thousand and more heliostats.
In case of the largest tested heliostat field, AbengoaCRS, the runtime of an annual
simulation with the Monte-Carlo raytracer is down from close to two hours to merely
5.3 seconds. This can further be reduced by about factor two to three by choosing
a smarter approximation method for the annual energy production [41]. The annual
simulations conducted in this case study used the monthly nearest neighbor approach
and simulated 98 moments. SunFlower offers to instead approximate the annual en-
ergy production to similar accuracy with a Lagrange approximation using only 30 to
50 simulation moments. As the workload scales linearly with the number of simulated
moments, this means an annual simulation of a field with 8600 heliostats and 99.95%
accurate results can be run in about 2 seconds. Accordingly, a heliostat field optimiza-
tion with 2500 annual simulations would take just close to 1.5 hours.

Comparison to other state-of-the-art tools showed that the performance of both the

58

Monte-Carlo and the Convolution raytracer can easily compete with other GPU par-
allelized raytracers. Our Monte-Carlo raytracer achieved several times the throughput
of the well respected TieSOL [26]. Figure 22 shows that even the recent QMCRT [15]
and sbpRAY [19] raytracers are outperformed by SunFlower in all test cases. Similarly,
our Convolution raytracer beats out the performance of both He et al. [22] and Chiesi
et al. [12] in all test cases, see Figure 23.

7 Conclusion and Outlook

7.1 Conclusion

This work presents how raytracers for solar central receiver systems can be optimized
and efficiently parallelized on GPU. The Monte-Carlo based raytracing method as well
as the analytical Convolution raytracing approach are considered. Both previously
in the SunFlower tool implemented raytracers for the respective approaches are in-
vestigated. Based on profiling information gathered with Intel VTune compuational
hotspots are identified and optimizations to the serial execution are applied. The filter-
ing of blocking and shading heliostats is enhanced and intersection checks with AABB
trees are improved by careful handling of the bounding volume hierarchy. Along with
increasing the efficiency of existing code and utilization of the simulation structure
of annual simulations, the serial execution is sped up by factor three to five for both
raytracers.

The entire optical model, basic geometry code and both raytracers of SunFlower are
re-implemented in the CUDA C programming language. Multiple GPU kernels are
introduced and several performance considerations are discussed for the GPU par-
allelization. Optimizations are layed out and implemented accordingly. To identify
remaining performance bottlenecks the kernel performance is profiled and analysed
with the help of NVIDIA Nsight Compute. Final improvements are applied based on
this analysis.

The comprehensive case study on three different plant configurations on one hand
confirms that the accuracy of the GPU implemented raytracers remains within 0.05%
of that of the previous, against SolTrace [49] and Tonatiuh [7] validated CPU raytracer.
On the other hand it shows that the performance in total is improved by factors of up
to 2000 when compared to the initial serial code. Moreover the GPU parallelization
represents a speedup of above factor 50 in direct comparison to an OpenMP paral-
lelization on CPU.
In summary, the revised GPU raytracers allow highly accurate and immensely quick
simulation of any heliostat field. Most importantly this tremendously speeds up op-
timization of heliostat field layouts, as annual simulation runtimes are reduced from
multiple hours to at worst a few seconds. This makes accurate optimization possible
even for extremely large heliostat fields, which previously was infeasible due to enor-

59

mous runtimes of days or weeks.
Additionally it is illustrated that the implemented GPU parallelized raytracers out-
perform the published performance of other GPU parallelized central receiver system
raytracing tools in all of our test cases.

7.2 Outlook

Although the new GPU parallelization yields impressive performance improvements,
the kernel profiling presented in Section 5.2 indicated that the raytracing kernel is
roughly one order of magnitude below peak FLOP throughput of the employed graph-
ics card and memory-bound. Accordingly the memory access patterns of the raytracing
kernel should be targeted to further improve performance.

For example, each thread block handles exactly one heliostat, thus the threads in each
block share heliostat-level blocking and shading candidates. As this typically amounts
to just a handful of candidates it may be feasible to prefetch the AABB trees and
triangle mesh of blocking and shading candidates into shared memory to eliminate the
otherwise inevitable uncoalesced access of global memory during blocking and shading
checks.

A more intricate but possibly impactful approach would be to divide the raytracing
kernel into multiple smaller kernels that each ensure well optimized memory access.
Currently each thread of the raytracing kernel evaluates multiple rays from their gen-
eration through to storing their final result. Instead it might prove more effective to
decouple this process into stages, temporarily storing results of each stage in shared
memory. This might allow to reduce execution and data divergence by adding a small
step inbetween stages that sorts the work such that nearby threads can work efficiently.

Aside from directly improving code efficiency, the heliostat field optimization can also
be sped up further by sharing the workload on multiple systems. While the workload
of a single annual simulation can be efficiently parallelized on a single graphics card, as
this work showcases, the large number of annual simulations necessary for layout opti-
mizations could be distributed among multiple GPUs. Depending on the optimization
approach, communication of results across systems may be necessary only sporadically
or not at all. This could reduce optimization runtimes for large heliostat fields to just
a few minutes.

60

References

[1] Nils Ahlbrink, Boris Belhomme, Robert Flesch, Daniel Maldonado Quinto,
Amadeus Rong, and Peter Schwarzbözl. STRAL: Fast ray tracing software with
tool coupling capabilities for high-precision simulations of solar thermal power
plants. In Proceedings of the SolarPACES 2012 conference, 2012.

[2] Viorel Badescu. Modeling Solar Radiation at the Earth’s Surface, volume 1.
Springer, 2014.

[3] Tavian Barnes. Fast, branchless ray/bounding box intersections, 2011. URL
https://tavianator.com/2011/ray_box.html. Last visited: June 2021.

[4] Omar Behar, Abdallah Khellaf, and Kamal Mohammedi. A review of studies on
central receiver solar thermal power plants. Renewable and sustainable energy
reviews, 23, 2013.

[5] F. Biggs and C. N. Vittitoe. HELIOS: A computational model for solar concen-
trators. Technical report, Sandia National Laboratories, 1977.

[6] David Blackman and Sebastiano Vigna. Scrambled Linear Pseudorandom Number
Generators. arXiv, 2018.

[7] Manuel J. Blanco, Juana M. Amieva, and Azael Mancillas. The tonatiuh soft-
ware development project: An open source approach to the simulation of solar
concentrating systems, 2005.

[8] Sebastian-James Bode and Paul Gauché. Review of optical software for use in
concentrating solar power systems. In Proceedings of South African Solar Energy
Conference, 2012.

[9] Juan Ignacio Burgaleta, Santiago Arias, and Diego Ramirez. Gemasolar, the first
tower thermosolar commercial plant with molten salt storage. In Proceedings of
the SolarPACES 2011 conference, 2011.

[10] Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica,
1998.

[11] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. Parallel programming in OpenMP. Morgan Kaufmann Publishers,
2001.

[12] Matteo Chiesi, Luca Vanzolini, Eleonora Franchi Scarselli, and Roberto Guer-
rieri. Accurate optical model for design and analysis of solar fields based
on heterogeneous multicore systems. Renewable Energy, 55:241–251, 2013. doi:
10.1016/j.renene.2012.12.025.

61

https://tavianator.com/2011/ray_box.html

[13] N.C. Cruz, J.L. Redondo, M. Berenguel, J.D. Álvarez, and P.M. Ortigosa. Review
of software for optical analyzing and optimizing heliostat fields. Renewable and
Sustainable Energy Reviews, 72:1001–1018, 2017. doi: 10.1016/j.rser.2017.01.032.

[14] A. R. Didonato, Jr. M. P. Jarnagin, and R. K. Hageman. Computation of the inte-
gral of the bivariate normal distribution over convex polygons. SIAM Journal on
Scientific and Statistical Computing, 1(2):179–186, 1980. doi: 10.1137/0901010.

[15] Xiaoyue Duan, Caitou He, Xiaoxia Lin, Yuhong Zhao, and Jieqing Feng. Quasi-
monte carlo ray tracing algorithm for radiative flux distribution simulation. Solar
Energy, 211:167–182, 2020. doi: 10.1016/j.solener.2020.09.061.

[16] Linus Franke. Modelling and optimization of large scale solar tower power plants
modellierung und optimierung von solarturm-kraftwerken. Master thesis, RWTH
Aachen University, 2018.

[17] L. Garćıa, M. Burisch, and M. Sanchez. Spillage estimation in a heliostats field
for solar field optimization. Energy Procedia, 69:1269–1276, 2015. doi: 10.1016/j.
egypro.2015.03.156.

[18] Pierre Garcia, Alain Ferriere, and Jean-Jacques Bezian. Codes for solar flux cal-
culation dedicated to central receiver system applications: A comparative review.
Solar Energy, 82(3):189–197, 2008. doi: 10.1016/j.solener.2007.08.004.

[19] Daniel Gebreiter, Gerhard Weinrebe, Markus Wöhrbach, Florian Arbes, Fabian
Gross, and Willem Landman. sbpRAY – a fast and versatile tool for the simulation
of large scale CSP plants. In Proceedings of the SolarPACES 2018 conference,
2019. doi: 10.1063/1.5117674.

[20] Michael Geyer and William B. Stine. Power From The Sun, 2001. URL www.

powerfromthesun.net/book.html. Last visited: June 2021.

[21] E. R. Golder and J. G. Settle. The box-muller method for generating pseudo-
random normal deviates. Applied Statistics, 25(1):12, 1976. doi: 10.2307/2346513.

[22] Caitou He, Jieqing Feng, and Yuhong Zhao. Fast flux density distribution simu-
lation of central receiver system on GPU. Solar Energy, 144:424–435, 2017. doi:
10.1016/j.solener.2017.01.025.

[23] Caitou He, Xiaoyue Duan, Yuhong Zhao, and Jieqing Feng. An analytical flux
density distribution model with a closed-form expression for a flat heliostat. Ap-
plied Energy, 251:113310, 2019. doi: 10.1016/j.apenergy.2019.113310.

[24] Caitou He, Yuhong Zhao, and Jieqing Feng. An improved flux density distribution
model for a flat heliostat (iHFLCAL) compared with HFLCAL. Solar Energy, 189:
116239, 2019. doi: 10.1016/j.energy.2019.116239.

62

www.powerfromthesun.net/book.html
www.powerfromthesun.net/book.html

[25] Florian Hoevelmann. Accelerated Raytracer for Solar Tower Power Plants. Bach-
elor thesis, RWTH Aachen University, 2019.

[26] Michel Izygon, Peter Armstrong, Claus Nilsson, and Ngoc Vu. TieSOL – a GPU-
based suite of software for central receiver solar power plants. Proceedings of the
SolarPACES 2011 conference, 2011.

[27] David Jafrancesco, Joao P. Cardoso, Amaia Mutuberria, Erminia Leonardi, Iñigo
Les, Paola Sansoni, Franco Francini, and Daniela Fontani. Optical simulation of
a central receiver system: Comparison of different software tools. Renewable and
Sustainable Energy Reviews, 94:792–803, 2018. doi: 10.1016/j.rser.2018.06.028.

[28] Tero Karras. Tree traversal on the gpu, 2012. URL developer.nvidia.com/

blog/thinking-parallel-part-ii-tree-traversal-gpu/. Last visited: June
2021.

[29] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In Proceedings
of the 13th annual conference on Computer graphics and interactive techniques -
SIGGRAPH '86. ACM Press, 1986. doi: 10.1145/15922.15916.

[30] P. L. Leary and J. D. Hankins. User’s guide for MIRVAL: a computer code
for comparing designs of heliostat-receiver optics for central receiver solar power
plants. Technical report, Sandia National Laboratories, 1979.

[31] Lifeng Li, Joe Coventry, Roman Bader, John Pye, and Wojciech Lipiński. Optics
of solar central receiver systems: a review. Optics Express, 24(14):A985, 2016.
doi: 10.1364/oe.24.00a985.

[32] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray-Triangle Intersec-
tion. Journal of Graphics Tools, 2(1):21–28, 1997. doi: 10.1080/10867651.1997.
10487468.

[33] Corey J. Noone, Manuel Torrilhon, and Alexander Mitsos. Heliostat field opti-
mization: A new computationally efficient model and biomimetic layout. Solar
Energy, 86(2):792–803, 2012. doi: 10.1016/j.solener.2011.12.007.

[34] NVIDIA. Geforce RTX 2070 SUPER, 2020. URL www.nvidia.com/en-us/

geforce/graphics-cards/rtx-2070-super/. Last visited: June 2021.

[35] NVIDIA. Random Number Generation on NVIDIA GPUs, 2021. URL
developer.nvidia.com/curand. Last visited: June 2021.

[36] NVIDIA. CUDA Toolkit v11.3.0, 2021. URL docs.nvidia.com/cuda/. Last
visited: June 2021.

[37] NVIDIA. Nsight Compute, 2021. URL developer.nvidia.com/

nsight-compute. Last visited: June 2021.

63

developer.nvidia.com/blog/thinking-parallel-part-ii-tree-traversal-gpu/
developer.nvidia.com/blog/thinking-parallel-part-ii-tree-traversal-gpu/
www.nvidia.com/en-us/geforce/graphics-cards/rtx-2070-super/
www.nvidia.com/en-us/geforce/graphics-cards/rtx-2070-super/
developer.nvidia.com/curand
docs.nvidia.com/cuda/
developer.nvidia.com/nsight-compute
developer.nvidia.com/nsight-compute

[38] Schleich Bergermann Partner. Stellio Heliostat, 2015. URL https://www.sbp.

de/en/project/stellio-heliostat/. Last visited: June 2021.

[39] Robert Pitz-Paal, Nicolas Bayer Botero, and Aldo Steinfeld. Heliostat field layout
optimization for high-temperature solar thermochemical processing. Solar Energy,
85(2):334–343, 2011. doi: 10.1016/j.solener.2010.11.018.

[40] Ari Rabl. Active Solar Collectors and Their Applications. Oxford University
Press, 1985.

[41] P. Richter, J. Tinnes, and L. Aldenhoff. Accurate interpolation methods for the
annual simulation of solar central receiver systems using celestial coordinate sys-
tem. Solar Energy, 213:328–338, 2021. doi: 10.1016/j.solener.2020.10.087.

[42] Pascal Richter. Simulation and Optimization of Solar Thermal Power Plants.
Ph.d. thesis, RWTH Aachen University, 2017.

[43] Pascal Richter, Gregor Heiming, Nils Lukas, and Martin Frank. SunFlower: A new
solar tower simulation method for use in field layout optimization. In Proceedings
of the SolarPACES 2017 conference, 2018. doi: 10.1063/1.5067217.

[44] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel
random numbers. In Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis on - SC '11. ACM Press,
2011. doi: 10.1145/2063384.2063405.

[45] Mark Schmitz, Peter Schwarzbözl, Reiner Buck, and Robert Pitz-Paal. Assessment
of the potential improvement due to multiple apertures in central receiver systems
with secondary concentrators. Solar Energy, 80(1):111–120, 2006. doi: 10.1016/j.
solener.2005.02.012.

[46] Peter Schwarzbözl, Robert Pitz-Paal, and Mark Schmitz. Visual HFLCAL - A
software tool for layout and optimisation of heliostat fields. In Proceedings of the
SolarPACES 2009 conference, 2009.

[47] Peter Schöttl, Karolina Ordóñez Moreno, De Wet van Rooyen, Gregor Bern, and
Peter Nitz. Novel sky discretization method for optical annual assessment of solar
tower plants. Solar Energy, 138:36–46, 2016. doi: 10.1016/j.solener.2016.08.049.

[48] Fethulah Smailbegovic, Georgi N. Gaydadjiev, and Stamatis Vassiliadis. Sparse
Matrix Storage Format. In Proceedings of the 16th Annual Workshop on Circuits,
Systems and Signal Processing, pages 445–448, 2005.

[49] Tim Wendelin. SolTrace: A New Optical Modeling Tool for Concentrating Solar
Optics. In Solar Energy. ASMEDC, jan 2003. doi: 10.1115/isec2003-44090.

[50] Tim Wendelin, Aron Dobos, and Allan Lewandowski. SolTrace: A Ray-Tracing
code for complex solar optical systems. Technical report, 2013.

64

https://www.sbp.de/en/project/stellio-heliostat/
https://www.sbp.de/en/project/stellio-heliostat/

[51] Amy Williams, Steve Barrus, R. Keith Morley, and Peter Shirley. An efficient and
robust ray-box intersection algorithm. In ACM SIGGRAPH 2005 Courses on -
SIGGRAPH '05. ACM Press, 2005. doi: 10.1145/1198555.1198748.

65

	Introduction
	State of the art
	Outline

	Optical model
	Tower and receiver
	Site
	Sun
	Heliostat

	Ray tracing methodology
	Optical errors
	Monte-Carlo method
	Convolution method

	Ray generation
	Blocking and shading
	Other optical losses
	Procedure summary

	General optimization
	Code optimization
	Annual simulation considerations

	Parallelization
	CPU parallelization
	GPU parallelization
	GPU architecture
	Adapting SunFlower for GPU
	Execution divergence
	Floating point data types
	Intrinsic functions
	Nsight Compute performance analysis
	Occupancy

	Case study
	Validation
	Performance
	Performance comparison to state-of-the-art tools
	Discussion of the results

	Conclusion and Outlook
	Conclusion
	Outlook

	References

