
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Resource Optimized Scheduling of Scientific
Simulations on CPU and GPU Computing Platforms

Resourcenoptimiertes Scheduling von
wissenschaftlichen Simulationen auf CPU- und

GPU-Plattformen

Masterarbeit
Informatik

Dezember 2020

Vorgelegt von Serjoscha Bender
Presented by Hermann-Behn-Weg 1

20146 Hamburg
Matrikelnummer: 344493
serjoscha.bender@rwth-aachen.de
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First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University
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1 Introduction

Since their early days, computers have been used in science. The scientific community
develops software to solve a wide variety of problems, perform data analysis or run
simulations based on mathematical models to verify assumptions or make completely
new findings. Usage of theses scientific software tools can be cumbersome, however.

Operation of the software might be not intuitive and only understandable to expe-
rienced users, the execution can require specialized or dedicated hardware and might
take a considerable amount of time to finish, in which the computer cannot be used
unrestrictedly. Because of such constraints the distribution of scientific software to a
broader audience as well as user friendliness and accessibility often remains a difficulty.

A solution could be to adopt a model that has had increasing significance in commer-
cial software distribution over the last years: Software-as-a-Service (SaaS). A central
provider takes over the hardware allocation and the execution of programs, which can
be triggered and later evaluated by the user via a web interface.

A Case Study Consumption of energy in general and electricity in particular is on
the rise all around the world. From 1990 to 2017 the global electricity consumption
has more than doubled from 10.9 Pwh to 24.7 Pwh [5]. To meet this growing demand
while reducing the emission of greenhouse gases, so called renewable sources such as
sunlight or wind are used for energy production. Possible types of renewable energy
power plants are offshore wind farms or concentrated solar thermal facilities.

While it seems that there is an unlimited supply of these energy sources, the aim of
the plant operators is to maximize energy production while minimizing operating costs
and using only a limited and predefined area to build the facilities. This describes an
optimization problem based on a large amount of parameters. Scientists are creating
models that allow to simulate the power plants and find optimal characteristics.

Two examples are the SunFlower[21] and WindFlower[17] projects. They offer soft-
ware tools that can perform several computations of varying complexity.

To overcome the aforementioned obstacles of scientific software, a web application
for Wind- and SunFlower has been developed during several university labs. It provides
a platform independent user interface to control the input, trigger computations and
view the corresponding outputs. It also serves as a platform to share projects and
results and use the software collaboratively. The computations themselves, using the
SunFlower and WindFlower software tools are managed by the web application and
run on allocated servers. The user thus does not need to provide and manage any
resources, which makes it convenient.

It becomes clear though, that for the providers of such services a new challenge arises.
They are dealing with a variety of computations that are requested by different users.
Runtime for these computations is distributed over a wide range, as it depends not
only on the type, but also on the input parameters. The providers face expectations
of their users regarding the time from triggering to completion of a commissioned
computational job. This expectation usually is dependent on the adressed runtime
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considerations as well as the customer status, i.e. users who pay a fee expect a higher
quality of service (= lower completion time) than users who are on a free plan.

The goal of this study is to develop a strategy which allows providers of the Wind-
or SunFlower web application to offer a reasonably good quality of service to their
users while minimizing the costs of running the application. Therefore, mainly two
techniques are being used: Scheduling of computational jobs and Scaling of cloud
computing resources.

1.1 Outline

In Section 2 the theoretical concepts and technologies that are used in this thesis are
described and an overview of works with similar goals is given. Section 3 covers the
software tools that perform the actual simulations which are to be scheduled. Then, in
Section 4 the web application offering a user interface and computing platform for the
simulations is presented. In Section 5 the considerations for developing the scheduling
and scaling infrastructure and strategies are explained. Following, in Section 6 different
scheduling scenarios are created and the performance of strategies is evaluated. Section
7 contains the conclusion of this work and gives an outlook on possible future research.

2 State of the Art

In this section we will give a brief overview over the scheduling problem and cloud com-
puting technologies. Also, we present scientific works that dealt with similar scheduling
scenarios as this thesis.

2.1 Scheduling

Scheduling problems refer to the chronological allocation of tasks to resources (or vice
versa), the creation of a schedule. Usually, there exists a set of constraints and the goal
is to optimize the schedule w.r.t. a certain set of parameters. This type of problem
arises in private life, e.g. the creation of a timetable in school, in industry, where
machines and workers have to be assigned time slots to work on certain orders, as well
as in computing environments.

One prominent example in a computing environment is the process scheduling in
multi-tasking operating systems. The CPU or, to be precise, one CPU core can only
handle one process at a time. To achieve the appearance of parallel process execution,
a schedule is created that makes the CPU work on slices of the processes in turn. By
assigning different priorities to processes, the ratio of CPU time per process is shifted
so that more important processes get handled faster in comparison.

On a higher level there is computational job scheduling. Jobs may be program
executions, e.g. for scientific calculations, that are to be run on single computers or on
a cluster of machines. The job parameters may vary as well as the resources offered by
the machines. Scheduling is needed to make efficient use of the provided resources and
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offering satisfying execution times to the job creators. [15] This kind of scheduling is
an integral part of this thesis.

Comprehensive overviews over scheduling problems, its variations and solutions can
be found in the books by Brucker [9] and Pinedo [19]. Below, based on this literature,
we provide definitions for further usage.

Scheduling problems in general can be formalized as follows: There is

• A set of m machines Mj(j = 1, ...,m)

• A set of n jobs Ji, i = 1, ..., n

A schedule is created that allocates time slots on the machines for certain jobs, as
shown in 1. Both, machines and jobs are described by further parameters.

Jobs

• pij - Processing Time: The processing time that is needed to complete job Ji on
machine Mj. There are several units possible for this value, e.g. seconds or CPU
cycles.

• wi - Weight: Acts as a priority for Job Ji.

• ri - Release Date: At this point in time the job becomes available. Processing
on Ji can start at ri at the earliest.

• di - Due Date: The point in time at which the job is expected to be finished.
This deadline can be a ”hard” or ”soft” one. In the first case, the finishing until
di is mandatory, in the latter a job still can finish after di, but this is penalized
in the scheduling process.

• pmtn - Preemption: If preemption is allowed for job Ji, processing of Ji can be
paused and continued later and/or on another machine. If preemption is not
allowed, Ji, once started, is processed until completion, accordingly.

Machines The characteristics of machines can take many different forms, of which
some are:

• 1 - Single Machine: Only one machine processes jobs, one after another.

• Pm - Identical machines in parallel: Any job can be processed on each of the m
Machines with the same speed.

• Qm - Parallel machines with different speeds: m parallel machines with differing
speeds vj are available. Job Ji takes time pi

vj
to process on machine Mj.

• Rm - Unrelated parallel machines: The speed of one machine is also dependent
on the job that is to be processed and is denoted by vij. Job Ji takes time pi

vij
to

process on machine Mj.
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Figure 1: Visualisation of an exemplary schedule. It shows a P2 machine setup with
no preemption and it can be seen that Job J4 fails to meet its deadline d4.

Job Cost When assessing the quality of a schedule, a cost function ci(t) is used which
calculates the cost of completing job Ji at time t. It usually depends on di and wi.

The completion time Ci is the point in time at which a scheduled job Ji is completed
and leaving the machine. Based on Ci the lateness Li can be computed, which is a
measure of the job’s urgency.

Li = Ci − di
The tardiness Ti works in a similar way, but cannot get negative. That means, it does
not differentiate how early a job finishes, as long it does not violate its deadline.

Ti = max{Ci − di, 0} = max{Li, 0}

Lateness and tardiness both can be used as costs.

Total Cost To calculate the total cost of a schedule there are essentially two possi-
bilities: Using the max function, representing the bottleneck of the schedule

ctotal = max{ci(Ci), i = 1, ..., n}

or the sum of costs

ctotal =
n∑

i=1

ci(Ci)

2.1.1 Objective

In general the goal of scheduling can be described as reducing the total cost of the
schedule to the least possible value that is reachable under the prevailing constraints.
A schedule with cost co is optimal, if every possible schedule for the same scenario has
a cost c with c ≥ co.
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For many scheduling problems optimal solutions can be found by using well-studied
techniques, such as linear programming [22] or dynamic programming [8]. It has been
show though, that scheduling for multiprocessors in most cases is NP-complete and
only specific multiprocessor scheduling problems have a solution in polynomial time
[14].

However, often a ”good”schedule is sufficient and it might not be necessary to find the
optimal schedule or the cost for optimizing simply is too high. There are many ”fixed”
scheduling strategies that can provide adequate results, depending on the scenarios.
Some of which are:

• First in, First out (FIFO): Jobs get scheduled by ascending release dates

• Priority Scheduling: (Released) jobs get scheduled by descending priorities

• Round-Robin: The scheduler cycles through available jobs, of which each gets
assigned a certain time slot (which can depend on the priority)

2.1.2 Online Scheduling

While some scheduling problems can be solved before running the schedule (i.e. at
compile time), there are many scenarios in which the schedule has to be created at run-
time. This is called online scheduling. In this case the jobs, or certain properties of jobs,
only get known to the scheduler over time. While it is still possible to create optimal
schedules for single processor environments based on this limited information, there
cannot be an optimal scheduling algorithm for all input instances in multiprocessor
environments without full a-priori knowledge of computation times, release and due
dates for all jobs [10].

To evaluate the performance of online scheduling algorithms, competitive analysis is
used [20]. It compares the worst-case relative error of an algorithm with the optimal
the solution. Let ctotal(A, I) be the total objective cost of using algorithm A on input
instance I and OPT the optimal scheduling solution for this problem. Algorithm A is
c-competitive if ctotal(A, I) ≤ c · ctotal(OPT, I) + b for any input instance I.

2.2 Container-Based Virtualization

Traditionally, when talking about virtualization in computing environments, this meant
hypervisor-based virtualization. The hypervisor is a software tool that abstracts the
hardware of a physical computer (the host) and allows running so called virtual ma-
chines (guests of the host) on it. These virtual machines can run an arbitrary operating
system and perform like a dedicated computer. The abstraction makes it easy to share
physical resources between different users and migrate systems. That way the oper-
ation of computation resources (e.g. server farms) can be made more efficient, while
maintaining isolation between systems in order to ensure security [13].

In contrast to hypervisor-based virtualization, in container-based virtualization there
is no emulation of hardware, but the software is directly run on the operating system.
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The operating system therefore has capabilities to isolate processes, preventing access
to other containers and the host itself. The result is a reduction in overhead compared
to hypervisor environments regarding the size of system images and the time to boot
a system up, as there is no operating system included.

Also, containers lend itself to the use of continuous development techniques, such
as continuous integration (CI) or continuous deployment (CD). A modular system,
consisting of different applications that each are build as a container image can be
set up and continuously updated by automatic build systems easily, while avoiding
dependency conflicts.

Docker The breakthrough of container technology came with the emergence of Docker
[1] from 2013 on. Docker is a software that abstracts the technical configuration and
tasks needed for running containers and offers users a simple command-line interface
with which they easily can build, run and manage containers.

2.3 Cloud Computing

Cloud computing is a concept to provide computing resources to customers in a rapid
and flexible way. The resources, which can be servers, storage, applications, network
features and more, are bundled in a ’pool’ at the providers premises and customers can
request a claim on a certain share of them at any time through a simple interface. To
account for this on-demand resource-leasing, billing is based on the actual usage that
is metered precisely. E.g. servers are billed per uptime minute/second and network
resources per transferred megabyte [11].

2.3.1 Providers

As offering cloud computing services requires running adequately large data centres
there are few companies that dominate the market. The biggest cloud service providers
(CSPs) are: Amazon with its Amazon Web Services (AWS) holds the largest market
share followed by Microsoft Azure and Google Cloud Platform. Theses three make up
a 60% share of the cloud computing market as of June 2020 [4].

2.3.2 Scaling

The advantage cloud computing resources hold over long-term-acquired ones is the
flexibility to dynamically scale a system to the resource demand at any time. When a
customer expects a higher demand of his services during day time in a specific regions,
he can request more resources for that timespan which get shut down again for the
night while only paying for the actual runtime. Furthermore, CSPs offer functionality
to automatically take up the scaling based on a set of metrics, e.g. the CPU usage of
a server pool over a certain time period.
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2.4 Related Work

The general problem of scheduling has been extensively studied as stated in Section
2.1, but also the more specific task of scheduling scientific computational jobs was topic
of several works.

Bittencourt et al. have developed a cost optimized scheduling algorithm for work-
flows (HCOC) in hybrid cloud environments [7]. Workflows are sets of tasks which
are represented by a directed acyclic graph in which the nodes represent the tasks and
the relations represent the order in which tasks have to be executed. The algorithm
decides when to acquire additional resources from a public cloud. A similar analysis
for workflows was done by Malawski et al. [18], highlighting also the case of prioritized
tasks.

Azar et al. studied online scheduling of jobs on cloud servers, taking into account
the booting time of virtual machines and finding upper bounds for costs and delays for
their algorithms [6].

In [16], Jindal et al. described the development of an application that is capable of
automatically scaling cloud resources based on a prediction algorithm that generates
a forecast of a certain metric, e.g. the CPU load of the running servers.

3 Simulation and Optimization of Power Plants

For several years now the topic of understanding, simulating and optimizing certain
renewable-energy power plants has been a research topic at the group of Theory of
Hybrid Systems at RWTH Aachen University. Using numerical methods and different
optimization techniques a number of models and algorithms have been developed to
simulate separate parts of solar power plants or offshore wind farms and optimize
parameters in order to maximize the profitability. These developments have been
combined in software tools called Windflower and Sunflower, written in C++.

3.1 Sunflower

The subject of all Sunflower calculations are concentrated solar thermal power plants.
These are composed of large mirrors that reflect and, through their orientation, con-
centrate the sunlight onto an absorber, the thermal receiver. In the absorber a certain
fluid is being heated up which then can be used to generate electricity, for example by
the means of steam turbines.

Sunflower software tools provide a set of calculations of which the following are
relevant to this thesis:

• Simulation: For given weather data and a certain central receiver solar thermal
power plant, the Annual Energy Production (AEP) and a set of economic features
is calculated. The simulation is based on a chain of models that cover the whole
process: Optical, Thermal, Storage, Electrical and Economic. This is sketched
in 2.
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• Optimization: The goal is to find an arrangement of a given number of heliostats
that optimizes a certain economic value, e.g. the total energy that is produced.
Therefore it runs a high number of simulations and alters the positions of the
heliostats every time, following a certain algorithm. Execution stops when a
threshold (time or iterations) is reached or the improvements made are too small.

• GenerateTopography: Generates a file with the topographic properties of the
site based on satellite data. It is only executed once at the creation of a project
and requires only few resources.

• Generate3DPrinterFile: Generates a STL-File, containing a 3D model of the
plant. This includes the topography, the central receiver and the heliostats.

☼
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Figure 2: Operation breakdown of a central receiver solar thermal power plant with
the corresponding simulation models. The interaction of the different models
is shown as well as the ingress points of parameters and outputted values.
Partly reprinted and adapted from [21].
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3.2 Windflower

Windflower provides similar calculations for offshore wind farms. These are made up
from a number of wind turbines arranged in a certain area at sea. At sea, there are no
obstructions that slow down the wind and the turbines can be bigger while not needing
the height of an equivalent turbine on land. An electrical substation at the wind farm
connects the turbines to the electricity grid on land via a subsea cable.

Analogous to Sunflower the software tools of Windflower provide the following cal-
culations:

• Simulation: Simulates wind over a full year and subsequently the power generated
by the given offshore wind farm. Also a set of economic features is calculated.
Similar to Sunflower, a chain of models describes the process: Wind, Wake, Power
Generation and Cost. This is depicted in 3.

• Optimization: Analogue to the Sunflower optimization, in Windflower the aim is
to position a given number of wind turbines inside the site boundaries so that a
certain economic parameter is optimized. The optimization process stops when
the improvement between iterations falls below a certain threshold or a maximum
number of iterations or a time limit is reached.

• SensitivityAnalysis: Multiple simulation runs are made with slightly changed
input parameters every time.

• GenerateTopography: Generates a file with the topographic properties of the
site based on subsea terrain data. It is only executed once at the creation of a
project and requires only few resources.

• Generate3DPrinterFile: Generates a STL-File, containing a 3D model of the
wind farm. This can include the ocean ground topography.

Wind Data

Wind Model Wake Model

Surface RoughnessWake Effect

Ct Curve

Power Generation Model

Power Curve

Gross AEP Cost Model

Plant Performance Loss

Economic Parameters

NPV

IRR

LCOE

Net AEP

Input Output Model

Figure 3: Concept of the individual simulation models and their corresponding inputs
and output values for WindFlower offshore wind farm simulations. Reprinted
from [12].
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3.3 Input Files

Input Data for Sun- and Windflower is provided via several CSV and JSON-Files that
contain a large number of parameters. These parameters describe for example the
power plant itself, weather, economic assumptions and settings concerning program
execution. Depending on the calculation that is carried out, different Input Files may
be actually used. Listing 1 shows an example input file, which defines the properties
of a single heliostat and is used in the optical model of a Sunflower simulation.

Listing 1: heliostat.json file for PS10 solar thermal power plant

{
"version": "1.0",
"facet_surface_form": "flat",
"focal_length": [ 145, 160, 190, 210, 265, 290, 355, 395,

520, 700 ],
"heliostat_shape": "rectangular",
"facet_width": 3.21,
"facet_height": 1.35,
"num_horizontal_facets": 4,
"num_vertical_facets": 7,
"facet_gap": 40,
"canting": "on_axis",
"off_axis_reference_angles": {

"azimuth": 180,
"altitude": 77.7

},
"pedestal_height": 5.17,
"cluster_pattern": "single"

}

4 Web Application

The web application has been built around Sun- and Windflower and fulfils the follow-
ing purposes:

• Serving as user interface for the software tools. Before, they were only accessible
via the command line, input was provided by editing the corresponding text files
and the calculation output also saved as a JSON-file.

• Providing a platform to save projects and calculation outputs

• Offering a platform to collaborate. Projects can be shared with other users
of the web application to collaboratively adjust the parameters and share the
calculation results
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• Providing computation capacity. Calculations are being run on servers, so users
do not have to allocate the computing resources.

4.1 Frontend

The frontend is implemented as a cross-platform single-page web application. There
exist specific versions for Sun- and Windflower respectively. After logging in, the user
can see his projects and the appendant jobs. A project corresponds to a real or fictive
power plant. It contains a set of parameters that describe the plant and are valid
inputs for the calculations. It can be edited by its creator and all other users that
have gotten the necessary permissions by another authorized user, e.g. the creator.
For a project the aforementioned computational jobs can be triggered by users in the
frontend and the results are displayed there. , where a project is a single set of input
data for calculations, corresponding to a real or fictive power plant. Projects are also
displayed on a map for easy access.

The pages for setting project parameters are grouped into logical sections and each
parameter is manipulated using adequate input methods (e.g. sliders, maps, etc.) as
shown in Figure 4a. 3D visualizations help validating and envision the components
(wind turbines or heliostats) and the power plants as a whole (see Figure 4b).

4.2 Backend

The backend is responsible for the data management of the web platform and serves
as the connector between the frontend and the execution environment for the Sun-
/Windflower calculations. It’s logic has been implemented as a Node.js application,
MongoDB is used as database and RabbitMQ is used as the message broker towards
the workers, which are described in Section 4.3. The Node.js backend application, the
MongoDB database and the RabbitMQ message broker are run in separate Docker
containers and connected via a virtual private network. The orchestration is done with
Docker Compose.

The Node.js application itself is designed to be modular and consists of a number of
services that communicate with each other via a bus-like messaging system, called the
event bus. Incoming HTTP requests are handled by the API router service, which is
built on top of the Express.js framework. Depending on the type of the request, the
api router redirects it to one of the other services. Login or other user related requests
are handled by the user service, getting a list of existing projects or changing project
parameters for example is processed by the project service.

MongoDB is a database software that is widely used with Node.js applications and
stores data as JSON-like documents, which makes it suitable for storing project pa-
rameters.

RabbitMQ is a middleware software that implements the Advanced Message Queuing
Protocol (AMQP). It enables messaging between different programs. Messages get
buffered in queues and publishers and consumers get decoupled. It is used to queue
and distribute new tasks from the backend to simulation workers and return the results
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(a) Setting project parameters

(b) 3D visualisation of an offshore wind farm

Figure 4: Example views of the web application frontend.
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Figure 5: Interaction of the web application’s backend components.

after execution. Additionally, execution status updates are sent by the workers. We
are using two separate queues: tasks for delivering new tasks with the corresponding
parameters from the backend application to the simulation workers and lifecycle to
return status updates and calculation results.

A task refers to a single execution of a Sun- or Windflower calculation as described in
Section 3.1 and 3.2. This thesis aims to provide a scheduling algorithm and implemen-
tation along with resource scaling to optimize the execution of these tasks by instances
of the simulation worker. When a user triggers a calculation from the frontend, e.g. a
simulation run for a wind farm, the following happens in the backend: the calculation
service requests the project parameters from the project service, which fetches them
from the database. Also a database entry for the task is created. Here the current
status of the task and, after successful completion, the simulation results are retained.
The calculation service also commits the new task to the tasks service, which enqueues
it in the task queue on the RabbitMQ instance.

4.3 Simulation Worker

A simulation worker is a Node.js application which connects to the RabbitMQ message
broker and is incorporated in a Docker container together with Sun- and Windflower
executables.

As soon as a simulation worker is idle, it can fetch the task from the task queue. The
delivered project parameters are saved to temporary files and the requested calculation
is started with the corresponding executable. The execution environment inside the
Docker container has all required dependencies to run the executables. Via the lifecycle
queue the simulation worker gives feedback on the current task’s execution status to
the tasks service, which relays it to the calculation service to update the status in the
database entry. When a user polls the task he now can see that it is running. While
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Figure 7: Illustration of the development cycle of the Node backend. The depicted
Docker registry is GitLab’s internal container registry, thus the entire CI/CD
process is facilitated by GitLab.

a calculation is running the worker constantly monitors its progress and sends status
updates back to the tasks service. Upon successful completion the result is read from
the output file and transferred back to the tasks service via the lifecycle queue.

4.4 Continuous Integration/Continuous Deployment

To automate the build process of the web application’s components a setup for con-
tinuous integration and deployment (CI/CD) has been created.

CI/CD is done through GitLab pipelines. Docker images are built and published to
the local GitLab container registry on every push. Tests are being run with the new
containers and upon successful completion the new is being rolled out automatically.
Figure 7 depicts the continuous delivery process of the Node backend triggered by a
developer’s commit and resulting in a new version getting published to the production
server.

5 Scheduling and Scaling Strategy

Running calculation tasks for Sun- and Windflower can be computationally expensive,
especially for optimizations. When providing a web service where a group of users all
can trigger tasks at any time one might be coming to a point where computational
resources are not sufficient to process all tasks right away. In this case it is necessary
to prioritize tasks and delay less important ones, i.e. to times when emergence of new
tasks is low. The priority of a specific task may depend on a multitude of factors.
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Another way of handling fluctuating demand for computational resources is resource
augmentation. The number of machines that process tasks can be increased or de-
creased dynamically. This is only possible, if there is sufficient supply of such dynam-
ically available computers and it is only reasonable if it results in an economisation
compared to a fixed size computing cluster.

In the following we will concentrate on the Windflower calculations only. But as the
concepts and calculation types of Windflower and Sunflower are similar, the results
of this thesis should roughly be applicable for Sunflower, too. Furthermore, we will
take in consideration only the three calculation types Simulation, SensitivityAnalysis
and Optimization. That is, because we are expecting only very small amounts of the
two GenerateTopography and Generate3DPrinterFile and they are very similar to the
simulations in terms of their runtime characteristics.

5.1 Simulation Worker Host Platform

For the decision on how to schedule tasks it is important to know what platform, i.e.
what hardware, the simulation workers are running on.

An obvious solution would be to use the server on which the rest of the backend is
deployed already. This has the advantage of not needing additional hardware. On the
downside, the available computation power is very limited, inflexible and the simulation
worker competes with the web application for processing power. High workload on
either the web application or the worker leads to worse performance of the other and
prediction of task runtimes gets difficult.

Another option is to rent a number of dedicated servers or virtual machines. These
offer a guaranteed computation capacity and reasonable pricing per time unit. But
they take time to provision and their renting period normally is a month, so going
with these servers would mean a loss of flexibility.

The third option are cloud servers. These are VMs that can be provisioned quickly
and started or stopped at any time. They get billed only for the actual time they run,
but the price per time unit is higher than with machines that are rented long-term.
The flexibility of cloud servers makes them very suitable for use cases where much
scaling of resources is necessary.

In our case we are using a setup that is often referred to as a hybrid cloud : a
constantly available private server that offers a basic computing capacity as well as on-
demand VMs from a public cloud service provider that can be added to the compute
pool for absorbing higher loads.

The private server features an AMD Ryzen 7 3700X 8-Core Processor, 32GB of
RAM and hardware for GPU computing. Because it is not exclusively used by our
project, we restrict the maximum number of parallel executions to four. As the server
is running permanently, there are no additional costs occurring for the executions of
our simulation tasks. The GPU hardware offers the opportunity to accelerate specific
calculations when they are adapted to the hardware.

For the additional public cloud servers we are using services of the Google Cloud
Platform (GCP). Many cloud computing providers provide services that allow direct

16



deployment of containers. GCP for example offers the Kubernetes Engine, which is
runs containers in a cluster, orchestrated by the Kubernetes software. Kubernetes
includes an option to automatically scale services, i.e. create more container instances,
when CPU load of the existing ones is high or based on other metrices. This can be
useful for our purpose, but by reason of wanting to have more fine-grained control of
the deployment process, we are not using it here.

Instead, we are using general VMs provided by the GCP Compute Engine. New
VMs can be created via a graphical web interface or by a certain call to an API. When
creating the new instance, several settings can be controlled, along which are:

• Machine Type

• Region

• Boot Image

• Network

The machine type controls on which (virtual) hardware the VM runs. The number
of virtual CPU cores and size of memory can be selected. There are options to use
more powerful CPUs as well as shared CPUs, where the full computing power may not
be available at all times.

A region determines where the datacenter is located in which the actual servers
stand. Using different regions can decrease latency, depending on the location of cus-
tomers, as well as increase protection against downtimes because of local effects (e.g.
power outages). Depending on the selected region the choice of machine configurations
can vary and also prices differ. Two sample regions are schon in Table 1. Because of
geographical reasons and the availability of optional additional GPUs we will only use
resources from the europe-west3 region.

Region Location Machine
Types

CPU
Families

Resources Hourly rate
n1-standard-1

europe-
north1

Hamina,
Finland

E2, N2, N1,
C2, M1

Broadwell,
Skylake,
Cascade
Lake

- $0.0523

europe-
west3

Frankfurt,
Germany

E2, N2, N1,
M1, M2, C2

Broadwell,
Skylake,
Cascade
Lake

GPUs $0.0612

Table 1: Example of two GCP regions. Frankfurt offers one more machine type and
additional GPU resources, but Finland has lower costs. Data taken from [2]
and [3].
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The boot image is a disk image that includes an operating system to which the
VM can boot on its first startup. Because we do not want to configure each machine
separately, we have prepared an image that contains Ubuntu Linux as an operating
system and has Docker installed. On start-up it will pull the latest Docker image of
the simulation worker from the Gitlab docker registry (see Section 4.4) and run it. The
IP address of the RabbitMQ instance that shall be used is passed at start-up as an
environment variable and then used by the simulation worker to connect to.

Network configurations mostly consider virtual cloud internal networks. In our
setups all simulation workers are located in the same virtual network. The workers do
not have an associated fixed external IP address, but communicate to the RabbitMQ
via a gateway router. This router has a fixed external IP address, which allows for
a connection to the RabbitMQ instance via an ssh-tunnel. In any case the network
connection to RabbitMQ only has to be set up on the router without changing the
workers’ configurations.

5.1.1 Machine Type Selection

As already mentioned, cloud computing providers offer machines with different con-
figurations. Amongst other things this affects the number and speed of CPUS as well
as memory size. The simulation worker application can run an arbitrary number of
calculations in parallel, but each calculation only runs in one thread, meaning that a
single calculation will only utilise one CPU at a time. The simulation worker shows
only little memory usage that will not be a limiting factor concerning usual memory
configurations of servers.

As prices vary for the different server configurations, we want to select the machine
type which allows for the fastest and/or most cost efficient execution of simulation
tasks. We run the Windflower SensitivityAnalysis with a sample size of 1000 at least
50 times per machine type and capture the needed time for the executions. A sample
size of 1000 means that 1000 simulations of the same wind farm are run, each with
slightly changed parameters. We use the DanTysk sample data set as basis for the
simulations.

A first test is done with the simulation worker only running one calculation at a
time. The results are shown in Table 2 and Figure 8. The standard deviation of
execution times shows to be very low. The fastest execution time is reached by the
c2-standard-4 type, a computing-focused machine with 4 cores, followed by the single-
core n1-standard machine. All other multi-core machines produced much worse times,
but very similar to each other. This shows that the ”highcpu” options indeed just mean
a higher CPU-to-memory ratio with otherwise same performance. While it is also not
surprising that multi-core machines do not speed up the execution of a single-thread,
it is astonishing how much better the single-core machine performed in comparison. In
consequence the n1-standard-1 machine by far offers the best cost-performance ratio.

To better utilise the capacities of the multi-core machines additional tests were run
with two and four parallel calculation threads respectively. The results are plotted
in Figure 9. They show that the average execution time increases when the number
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Figure 8: Comparison of different machine types’ performances as in Table 2.
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Machine
Type

vCPUs Hourly Rate Avg. Execu-
tion Time

Std Price per 1000
Executions

c2-standard 4 $0.2305 11.984s 0.078s $0.7673

e2-highcpu 2 $0.0637 30.321s 0.164s $0.5365

e2-standard 2 $0.0863 30.664s 0.397s $0.7351

n1-highcpu 2 $0.0912 30.400s 0.1204s $0.7702

n1-standard 1 $0.0612 17.419s 0.456s $0.2961

n1-standard 2 $0.1224 30.398s 0.227s $1.0335

n1-standard 4 $0.2448 29.830s 0.102s $2.0285

Table 2: Comparison of different machine types’ performances with only one calcula-
tion running at a time. One Execution refers to one run of the Windflower
SensitivityAnalysis with a sample size of 1000 on the DanTysk data set.

of parallel calculations reaches the number of CPUs available. Also, the multi-core
machines get more cost-efficient with multiple tasks running in parallel but still cannot
match the cost-performance ratio of the n1-standard-1 machine.

In conclusion this means that there are several aspects in favour of using n1-standard-
1 machines for our computations:

• They offer the highest flexibility as we do not have to care about the utilisation
of the multiple cores. There can be provisioned one machine per running task.

• They offer fast computation in comparison to most of the other availably machine
types

• The cost-performance ratio is superior to the alternatives

Therefore, we will use n1-standard-1 machines as cloud servers in the following. It
is to be noted however, that c2-standard machines can offer faster computations when
not fully utilised, at a higher cost.

5.1.2 Boot Time

While the public cloud machines can be started at any time on demand, they have to
boot like every other computer. We have to consider the boot time when scheduling
tasks on cloud machines. For the n1-standard-1 machine type we have recorded an
average boot time of 21 seconds, from sending the boot command until the simulation
worker registers with the RabbitMQ message broker.

20



Figure 9: Comparison of different machine types’ running the same calculations as in
Figure 8, but with multiple calculations in parallel. Also, the execution du-
ration of the same calculations on the private server is shown for comparison.
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5.2 Runtime Analysis

For the scheduler to produce the desired result it is crucial that it can generate accurate
estimates of the tasks’ runtimes. We will use these estimates as a basis for simulating
the arrival of calculation tasks in order to evaluate the scheduling performance as well
as for the scheduling decision itself.

As we are looking at three different types of tasks that are to be scheduled, the
runtime depends on that type in the first place. But depending on certain parameters,
execution times may diverge even for the same kind of calculation. We therefore analyse
the runtime of the task types in detail.

5.2.1 Simulation

The simulation aims to compute the costs and revenues of a wind farm over the course
of one year based on a chain of calculation models, shown in Figure 3. To estimate
the runtime, we first identify the set of input parameters that have a non-constant
influence on the computational complexity. Looking at the parameter files and the
simulation code it becomes clear that most of the parameters represent coefficients,
e.g. cost or loss factors, for various calculations that do not affect the runtime.

What has an impact on the runtime, however, is the resolution and type of the wind
model as well as the size of the wind farm in terms of the number of installed turbines.
Analysis of the code brought up the following candidates to consider for complexity
and runtime estimation:

• num_wind_directions: The number of wind directions that are possible for
the wind model. Wind gets discretised to these directions before simulating wake
and power generation. Value range: 4 to 1200.

• num_wind_speeds: Wind speed is discretised analogously to wind directions.
Value range: 3 to 100.

• wake_model: Wake describes the turbulences that form behind a turbine when
it is hit by wind. These models are outlined in [23]. Possible values: park,
modified park.

• num_turbines: Not a real input parameter, but defined by the number of
positions given for the wind turbines. The amount of turbines impacts numerous
calculations including wake, cabling and power generation.

To get a picture of how the single parameters influence the runtime, tests were run,
each with all parameters fixed except for one of the considered ones. The results of the
runs are plotted in Figure 10. For the number of wind directions, respectively speeds
a linear dependence clearly shows. Also the choice of the wake model has a small, but
noticeable effect.

However, the most interesting curve is produced by the number of turbines involved:
Here, an exponential increase of the execution time can be observed dependent on the
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increase of turbines. A polynomial regression of order 2 seems to be not able to fit this
curve well, while the regression of order 3 provides a very close result. The reason for
this exponential behaviour lies in the wake model: The wake of each turbine impacts
the wind conditions on potentially every other turbine of the same wind farm.

To find an overall estimator, first, large datasets were generated on the two ma-
chine types that are supposed to run the tasks. Simulations were run with random
combinations of the input parameters in question and the runtime recorded. On each
of the machine-specific datasets a regression model was trained then. The categorical
wake_model parameter was one-hot encoded and the parameters were expanded to
polynomial combinations of up to an order n. Then a linear regression model was fitted
to get a polynomial regression overall.

The R2-score for order n = 2 is at R2 ≈ 96%, improves to R2 ≈ 99.3% for n = 3 and
even further to R2 ≈ 99.98% for order n = 4. Higher orders of polynomial regression
show no enhancement of the R2-score.

The correspondent residual graphs are plotted in Figure 11. They show the deviation
of the runtime estimates compared to the observed values for a separate validation data
set which was not used in the fitting process of the model. For order n = 2 and n = 3
a systematic non-linear residual pattern is clearly visible while the graph for n = 4
shows a pattern that is very likely to be only noise.

Accordingly, we will use the polynomial regression of order n = 4 for estimating
simulation runtimes.

5.2.2 SensitivityAnalysis

For the sensitivity analysis there is one decisive input parameter: sample_size. It
defines the number of simulations which are to be carried out. As all relevant input
parameters for the simulation runtime are not altered in the course of the analysis
the runtime can be calculated as the product of sample_size and the simulation
runtime according to Section 5.2.1.

5.2.3 Optimization

The runtime of the optimization is harder to estimate. It depends on the type of
optimization used, can be parametrically bounded and potentially has a random com-
ponent affecting it. The multi-step optimization algorithm presented in [23] operates
in a number of iterations. This number has a lower bound nmin it and an upper bound
nmax it. There are two stop criterions for the optimization:

1. nmax it iterations have been performed.

2. At least nmin it iterations have been performed and the improvement between
two iterations was worse than a certain threshold ε.

To find possible optimized settings, the optimization performs numerous simulations,
with the exact number depending on the grid settings on which the turbine placement
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(a) (b)

(c) (d)

Figure 10: (n = 5000 each)
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(a) n = 2

(b) n = 3

(c) n = 4

Figure 11: Residual graphs for the runtime estimation by polynomial regression of dif-
ferent orders.
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Figure 12: Simple cost functions for use in scheduling.

takes place. With parameter c representing the number of circular grids, n representing
the number of grid positions and t representing the number of turbines, the count of
simulations per iterations nsim it can be computed as nsim it = c · n · t.

With nsim it, nmin it and nmax it we can estimate the lowest and highest possible
runtimes of the optimization with relatively high precision as per Section 5.2.1. But
estimating when the progress of the optimization falls below ε, leading to its abortion,
is not possible. Thus we cannot estimate the runtime in this case.

5.3 Cost Function

To take a qualified scheduling decision and to further evaluate the quality of a schedule
in hindsight we want to define a value that rates the point in time when the execution
of a task starts or ends and the computational resources needed. We want to assess
this value by the means of a cost function. In Section 2.1 we already gave two examples
for such cost functions, each based on the completion time Ci and a fixed deadline di
for some task (job) Ji:

• Lateness: Li = Ci − di

• Tardiness: Ti = max{Ci − di, 0} = max{Li, 0}

Another method is to use a kind of unit penalty that does not linearly grow with time,
but is a step function that penalizes with a fixed cost if the deadline is violated and
imposes no costs otherwise.

• Unit penalty: Ui =

{
1 , Ci ≥ di
0 , otherwise

Of course, for these cost functions we need to determine the deadline di first. It is
usually dependant on the release time ri and, especially if it is a hard deadline that
should be feasible to meet, should not be less than the processing time pi after ri:
di ≥ ri + pi. It is possible to use a constant offset oc or make it a (linear) function of
the runtime pi.
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• Constant: di = ri + pi + oc

• Linear: di = ri + (1 + f) · pi

In our use case we do not have hard deadlines, because there are no essential measures
depending on the timely execution of tasks as there would be in important real time
execution environments or also in manufacturing processes for example. Rather it is
the user experience that is compromised if the execution of simulation tasks takes too
long. It is to assume that a user has a certain tolerance for delayed task runtimes,
which may also vary from user to user.

For our cost function this has the following implications:

• It is not desirable to reward overly punctual completion of tasks. If we can have
reasonable runtimes for a large share of tasks, we prefer this over fast runtimes
for only a few ones. Our cost function will be non-negative and provide a “grace
period” in which no costs occur at the beginning.

• A function like the unit penalty which stops growing with time at a certain point
tends to make already long waiting tasks“starve”when waiting queues get longer.
To minimize costs only very young tasks are selected to run and older ones which
already passed the deadline are neglected because they are already “written off”
cost-wise. Our cost function must prevent starving and therefore will be (from a
certain point on towards infinity) strictly monotonically increasing.

• It is to consider that we are dealing with three categories of tasks which have very
different runtimes. We have to make sure that the right balance is given when
comparing task delays of different categories. If we take an exemplary simulation
with a runtime of 0.5s and an optimization with a runtime of 3600s = 1h then an
additional delay of 10s for the execution should lead to a bigger cost increase for
the simulation than for the optimization. In contrast we can get over waiting on
the simulation for a multitude of its actual runtime (e.g. 50 · 0.5s = 25s), while
we want to prevent the same for the longer optimization task (e.g. 50 · 1h ≈ 2d).

This leads us to use the following cost function based on the delay with which a task
has been started and the delay ratio to the tasks’ estimated runtime.

Wi =

{
Ci − pi − ri , Ci ≥ ri + pi

0 , otherwise

ci(Wi, pi,private) =

√
Wi ·

Wi

pi,private
)

When we take the resource scaling by means of cloud resources into account we are
dealing with another type of cost: The monetary fees that incur for the time period a
cloud machine is running (whether it is actually executing tasks or not).
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Figure 13: Cost of three exemplary tasks plotted over time. The simulation task has
a runtime of p = 0.5s, the sensitivity analysis one of p = 50s and for the
optimization task it holds p = 3600s. All three have the same release time
of r = 0. Cost is once plotted over the absolute time and once over the
factor of time since release over runtime.

Comparing these two types of cost directly is not meaningful and also trying to adjust
them with a constant factor does not compensate for the balancing we are doing with
our cost function. In a resource scaling scenario we therefore have to minimize the cost
characteristics separately from each other.

5.4 Scheduling Simulation

Testing scheduling scenarios in the production environment sketched in Section 4 would
take a huge amount of time and in consequence be unfeasible. We therefore have devel-
oped a simulation tool to explore different scenarios and validate scheduling algorithms
via Monte Carlo simulations.

The simulation tool reproduces all relevant components of the web application. In-
stead of user input it uses randomly generated events and instead of performing the
actual calculations the task runtimes are calculated based on the models developed in
Section 5.2 and machine utilization and queues simulated accordingly. The time span
that is covered by the simulation can be selected arbitrarily and experiments can be
run repeatedly with the same or slightly changed parameters to conduct a sensitivity
analysis.

The core classes that make up the simulation tool are depicted in Figure 14 and will
be briefly described in the following.

Project The Project objects correspond to projects in the web application. They
include the set of parameters needed for the runtime estimation. The activity variable
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defines how many tasks for this project shall be launched per day on average. With
the acitivityType we can control the pattern of the times at which tasks are created.
This way we can not only simulate uniform patterns where the task release rate is
constant, but also launch patterns where tasks are only created during working hours
or following certain burst characteristics. Following that pattern, launch dates for new
tasks are generated step-wise using a Poisson probability distribution. Parameter λ
for the Poisson distribution is chosen according to the activity value.

Task When created, a Task object calculates the estimates for its runtime on different
machines. It keeps track of its start and end dates and, when scheduled on a worker,
determines a “real” runtime that might differ from the estimate to account for the
uncertainty we see in the collected runtimes from Section 5.2. This runtime can scatter
around the estimate and also be systematically higher or lower.

Worker The Worker objects are responsible for keeping track of currently executing
tasks, their end dates and for the handling of finished tasks. They offer statistics on
their workload for given time periods.

For a simulation run we define the time period that shall be simulated. At the
beginning a set of projects is created randomly or as defined by us. The workers that
represent our private computing server are created and booted up. Possible additional
cloud resources are created, but not yet booted. The simulation then works off the
time period in steps. New tasks are launched and workers clear their finished tasks
if necessary. If there are tasks waiting the scheduler takes a decision based on the
task queue and the current worker situation. After the simulation run is finished the
relevant statistics are collected and plotted.
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scheduling-simulator

1

*

1

*

Project

name : string
activity : int
activityType : string
parameters : int[]
tasks : Task[]

newTask(taskType : string) : Task
randomTask() : Task
nextTaskDate() : Date

Task

project : Project
taskType : TaskType
status : TaskStatus
machine : Machine
createDate : Date
scheduleDate : Date
startDate : Date
endDate : Date
runtime : int
estimates : int[]

estimateRuntime(machineType : MachineType) : int
calculateCost(machine : Machine, startDate : Date) : int
schedule(machine : Machine, date : Date) : void
start() : void

Machine

name : string
status : MachineStatus
machineType: MachineType
cores : int
processes : Task[]
log : string[]

boot(): void
shutdown() : void
coresIdle() : int
run(task : Task, cores : int) : void
endDates() : Date[]
nextEndDate() : Date
killProcess(task : Task) : bool
clearFinished() : bool
workload(startDate : Date, endDate : Date) : float
log(event : String)

RuntimeEstimator

models : LinearRegression[]

init(datasets, features : string[]) : void
estimate(taskType : TaskType, machineType : MachineType, parameters : int[]

�enum�
TaskType

simulation
sensitivityAnalysis
optimization

�enum�
TaskStatus

created
scheduled
running
finished

�enum�
MachineType

private
n1-standard-1

�enum�
MachineStatus

created
running
shutdown

1
Figure 14: Class diagram showing the core classes of the Monte Carlo simulation tool

developed in the course of this thesis.
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6 Case Study

To investigate the dynamics of the simulation tasks in our web application environment
and to evaluate the performance of different scheduling approaches, a case study is
conducted using the simulation tool described in Section 5.4.

6.1 Parameter Settings

During the case study we will vary different parameters of the scheduling simulations
that we want to analyse, while others stay consistent. These settings are described in
the following.

6.1.1 Task Type Distribution

We expect that the number of times the three relevant task types for WindFlower are
each triggered are not equally distributed. Instead, most of the requested tasks will
be simulations, followed by optimizations and sensitivity analyses, which together are
only expected to make up 15% of the launched tasks. The individual expected shares
are shown in Table 3.

Task Type Expected Share of Tasks

Simulation 80%

Optimization 15%

Sensitivity Analysis 5%

Table 3: Assumed shares of executed task types.

The share of total runtime shows a contrary picture. Due to the huge number of
simulations carried out in a single optimization or sensitivity analysis, simulations
make up only for a marginal share of the overall execution time as shown in Figure 15.

6.1.2 Project Parameters

When projects get initialized at the beginning of a scheduling simulation run, the
relevant project parameters as described in Section 5.2 are set and used for all tasks
descending from the project. While some of these will not be varied, others will be
chosen randomly to create variance in the runtimes between different projects. The
values are picked according to Table 4. For the optimizations we will assume the worst
case, which is that they run through nmax it iterations with c · n · t simulations per
iteration.
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Figure 15: The total run times per task type from 20 runs of the scheduling simulation
with different task type distributions for comparison, including the one from
Table 3.

6.1.3 Time Period

For each setting we will run 100 simulations, each over a time period of 9 weeks. The
first week will be excluded for data analysis to prevent distortion by certain dynamics
having to build up at the beginning of a run.

6.1.4 Load Patterns

The requirements for scheduling algorithms depend not only on the characteristics of
single task but also on the timings and frequency of the tasks’ release dates. We will
therefore survey the scheduling behaviour on different patterns of incoming tasks.

• A uniform pattern where the probability of a task’s release is equal for every
point in time

• A pattern depicting a scenario in which a significantly higher volume of tasks
is released during the working hours of a certain geographical region. If the
majority of the web application’s users is located in a particular part of the
world and uses the application for their work, we would expect that more tasks
are launched approximately between 7 am and 6 pm of their time zone than
during the night.

The uniform and working hours pattern are exemplarily plotted in Figure 16. Besides
these two patterns we will analyse the schedulers response to bursts of new tasks that
occur irregularly. In this case we will concentrate on the time period around the burst
and not a longer span. The impact of such a burst on the incoming task load is depicted
in Figure 17.
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Figure 16: Comparison of the two distributions of task release times. The total accu-
mulated runtime of the tasks is the same for both cases. A value of 1.0 for a
certain hour indicates that a single simulation worker thread on the private
computing server needs exactly 1 hour to process all tasks that have arrived
during that particular hour.

33



Parameter Value Range

num_wind_directions 120

num_wind_speeds 56

sample_size [50, 1000]

wake_model [park, modified_park]

num_turbines [30, 120]

c · n · nmax it 72

Table 4: Relevant project parameters (see Section 5.2) used in the case study. Square
brackets indicate the value is randomly chosen from this range.

6.2 Scenario 1: Fixed Resources

We start our case study by performing schedules only on the private computing server,
which means that we can take hold of exactly 4 simulation workers at any times. This
implies that there is a firm upper bound on the task capacity that can be processed in
a certain time period.

6.2.1 Sorted Queues

To get a baseline, we will first run scheduling simulations with the two task release
distributions and different average incoming loads of tasks. Here, for the scheduling
algorithm we will use three basic variants that are based on sorting the queued tasks
and starting the first task of the sorted list whenever there is one and a worker is idle
at the same time.

• First in first out (FIFO): Complete the tasks in the order they arrived.

• Shortest Runtime: Select the task with the lowest runtime. This tends to reduce
starving of short tasks.

• Highest Costs: Select the task that would produce the highest cost if started at
this point in time. Due to the form of our cost function this is a middle course
between the two aforementioned methods.

The concrete sorted scheduling algorithm with its three variants is shown in Listing
2.

Results for the uniform distribution already show that the FIFO algorithm is not tol-
erable, because the other two algorithms already produce significantly smaller average
costs. This is the case especially for higher loads and shown in Figure 18.

When comparing the results for the two other algorithms in detail, broken down by
task type, it emerges from Figure 19 that the costs mostly originate from simulations.
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Figure 17: Effect of a burst of task releases around 12 pm.

Listing 2: Basic sorted scheduling algorithm.

function schedule_sorted(workers, projects, tasks,
currentDate, sortBy) :
for w in workers :

if tasks[’new’] and w.idle() :

if sortBy == ’fifo’:
tasks[’new’].sort(key=’createDate’, ’ascending’)

elif sortBy == ’shortest’:
tasks[’new’].sort(key=’runtime’, ’ascending’)

elif sortBy == ’cost’:
tasks[’new’].sort(key=’cost’, ’descending’)

t = tasks[’new’].pop(0) # Select first element
tasks[’scheduled’].append(t)
t.schedule(w)
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Figure 18: Average task cost for the three basic scheduling algorithms on different
uniform load cases. A load of 1.0 means that on average one simulation
worker was busy at any point in time. The curves for highest cost and
shortest runtime algorithms are almost identical.

Ideally, the average costs would be similar for each task type, but the simulation
costs are particularly crucial because of the task type distribution from Table 3. For
a working hours task release distribution we get a similar scenario (see Figure 19b),
but scheduling by shortest tasks now clearly performs better than the cost scheduling
algorithm.

6.2.2 Dedicated Simulation Worker

In order to level average costs for different task types we will adjust the shortest runtime
scheduling algorithm so that it will dedicate one worker only to simulation tasks and
use the other three available workers for optimizations and sensitivity analyses. The
corresponding code is to be found in Listing 3.

This has one positive and one negative effect: The benefit is that simulation tasks
will mostly be executed (nearly) immediately, because the worker is reserved for them
and single simulation tasks take only 0.5 seconds to complete on average. The downside
of this, however, is that because of the very short execution times the dedicated worker
will idle in large parts and therefore prolong the waiting times of longer tasks especially
in time periods with high task ingress.

As it can be seen in Figure 21, the benefits clearly outweigh the drawbacks as the
overall average costs per task decrease greatly. While the simulation tasks produce
almost no costs at all in this case, the rise of optimization costs shows in Figure 22,
but stays in a tolerable range. The idling of the dedicated worker can be observed in
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(a) Uniform Distribution.

(b) Working hours distribution.

Figure 19: Average task costs for shortest runtime and highest cost algorithms sepa-
rated by task type. It shows that most costs are produced by the simulation
tasks for these two algorithms. While there is no significant cost difference
for the uniform distribution, the cost algorithm performs worse with higher
loads in the working hours distribution case.
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Listing 3: Scheduling algorithm with a dedicated worker for simulations.

function schedule_dedicated(workers, projects, tasks,
currentDate) :

for (i, w) in workers :
if tasks[’new’] and w.idle() :

if i == 0 :
newTasks = tasks[’new’].filter(’taskType’ == ’

simulation’)
else :

newTasks = tasks[’new’].filter(’taskType’ != ’
simulation’)

if not newTasks:
continue

newTasks.sort(key=’runtime’, ’ascending’)

t = newTasks.pop(0) # Select first element
tasks[’new’].remove(t)
tasks[’scheduled’].append(t)
t.schedule(w)

Figure 20a as there is hardly any load on that one worker.

6.2.3 Random Start

From the preceding observations it shows that our biggest source of costs are simulation
tasks waiting for long tasks to end so they can be executed. By using a dedicated worker
only for simulation tasks we have successfully tackled this problem, but are facing a
subpar utilisation of computing resources. In order to increase the utilisation we have
developed a partly randomized algorithm. As long as no more than three workers are
busy, tasks get executed immediately in order of the shortest runtime. If three of the
four workers are already executing tasks, scheduling on the fourth worker works as
follows:

• If there are simulations waiting to be scheduled, execute them immediately

• If there are no simulations waiting:

– If none of the busy workers are expected to finish their execution during the
next 15 minutes, do nothing.

– If one of the busy workers is expected to finish its execution during the next
15 minutes, randomly schedule the shortest available task to a date between
now and the expected finish date.
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(a) Dedicated simulation worker algorithm.

(b) Random start algorithm.

Figure 20: Loads of the single workers over the course of a week. Tasks are released in
a working hours distribution with an average load of 2.0.
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Figure 21: Overall average task costs of the dedicated worker and the random start
algorithm compared to the basic shortest runtime algorithm in a working
hours scenario.

(a) Uniform Distribution.

(b) Working hours distribution.

Figure 22: Average task costs broken down by task type. No significant difference can
be observed between the dedicated simulation worker algorithm and the
random start variant.
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Figure 23: The accumulated loads of all workers compared for the dedicated simula-
tion worker algorithm and the random start variant. Working hours task
distribution and average load of 2.0.

– If a shorter task arrives before the scheduled date or a worker finishes sooner
than expected, discard the scheduled execution date

As can be seen in Figure 23, the algorithm indeed manages to increase the worker
utilisations a little. But regarding the costs a positive effect cannot be observed. The
total costs are higher, but in the same range as for the dedicated worker algorithm as
shown in Figure 21. Looking at the individual average costs per task type (Figure 21)
there is no significant decrease of costs showing for the optimizations.

6.3 Scenario 2: Public Cloud Resource Scaling

Using additional cloud resources for our computations brings two benefits: We can
generally handle a higher number of tasks and we can absorb long waiting times of
tasks during temporarily increased loads. The downside obviously is that we have to
pay fees for every second a cloud machine is running.

Compared to scheduling only on the private server three additional factors have to
be considered:

• To save costs, we would want the public cloud machines not to idle unnecessarily
so the boots and shutdowns have to be managed.

• If a cloud machine is shut down it can not be used immediately. There is a delay
(21 seconds in our case, see Section 5.1.2) that has to be included in scheduling
considerations.

• Tasks take longer to finish their execution on the n1-standard-1 cloud machines
compared to the private server.
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Because we want to analyse the resource scaling particularly with regard to the
flexibility it offers and the corresponding costs, we will restrict the following analyses
to task release distributions that follow the working hours scenario.

6.3.1 Cost Threshold Estimation

Our approach is to scale resources on demand if we are suspecting that a task execution
on the current resources would exceed a defined threshold ct. When all workers on the
private server are already executing tasks and we want to schedule further ones, we
estimate based on our model when the next task on the private server will be finished.
Then, we calculate the costs that would occur, if a task would be executed after that
worker on the private server has finished its calculation. If these costs are higher
then threshold ct, we boot up a new cloud machine and schedule the task there. The
algorithm is shown in Listing 4.

By adjusting the threshold parameter ct we are able to set the“aggressiveness”of the
algorithm which again shapes the balance between scheduling costs and server fees. In
Figure 24 the utilisation of private server workers and public cloud ones is shown over
the course of a week. It can be observed how a higher cost threshold leads to a delayed
set in and an overall reduced utilisation of cloud workers. The drawback is the higher
scheduling costs because of longer task waiting times. The comparison of scheduling
costs and server fees for different load cases and cost thresholds is presented in Table
5.

A problem that emerges from Figure 24 is that this algorithm with a higher ct value
tends to delay the scaling decision unnecessarily and then produces higher scheduling
costs because of the waiting times. In particular this happens if the task load is so
high that the private workers are operating at full capacity even at night. In this case
it would be appropriate to scale resources right away as there is no chance of executing
the task on private resources in reasonable time.

This is backed up by Table 5, where it shows that the loss on the scheduling cost is
more explicit than the benefit of lower server fees. In the end however, the choice of
threshold ct is a budget decision.
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Listing 4: Cost Threshold Scaling/Scheduling

function schedule_costthreshold(workers, projects, tasks,
currentDate, costThreshold):
for w in workers[’private’]:

if tasks[’new’] and w.idle():
t = tasks[’new’].sort(key=’runtime’, ’ascending’).pop

(0)
tasks[’new’].remove(t)
tasks[’running’].append(t)
t.schedule(w)

if tasks[’new’]:
nextEndDate = tasks[’running’]

.filter(t.machineType == ’private’)

.sort(key=’endEstimate’), ’ascending’)).pop(0)

.endEstimate
nextTaskCosts = [(t, t.estimate_cost(nextEndDate)) for t

in tasks[’new’]]
.sort(’ascending’)

for t, cost in nextTaskCosts:
if cost > costThreshold:

for w in workers[’cloud’]:
if w.status == ’running’ and w.idle():

t.schedule(w)
tasks[’new’].remove(t)
tasks[’running’].append(t)
break

elif w.status != ’running’:
w.boot()
t.schedule(w)
tasks[’new’].remove(t)
tasks[’running’].append(t)
break

43



(a) ct = 5

(b) ct = 10

(c) ct = 20

Figure 24: The utilisation of workers on the private server and on the cloud server
compared for an average task load of 5.0.
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ct = 5 ct = 10 ct = 20

Avg. Task Scheduling Cost 1.15 2.35 5.08

Avg. Daily Server Fee 0.52$ 0.23$ 0.08$

(a) Load: 3.0

ct = 5 ct = 10 ct = 20

Avg. Task Scheduling Cost 1.46 3.16 6.43

Avg. Daily Server Fee 6.16$ 5.42$ 4.93$

(b) Load: 5.0

ct = 5 ct = 10 ct = 20

Avg. Task Scheduling Cost 1.71 3.57 6.89

Avg. Daily Server Fee 13.26$ 12.76$ 11.75$

(c) Load: 7.0

Table 5: Scheduling cost and server fee comparison for different task loads and cost
thresholds.

7 Conclusion

Web applications are a modern way of providing scientific computational services to
users. The user’s requested calculations are carried out by central servers and results
are returned via a web interface. As calculations may require considerable amounts of
computing capacity, the order in which requests are processed can be essential for the
user experience. In the context of this thesis, we have studied this problem extensively
for the particular case of the web applications for the Wind- and Sunflower simulation
tools.

A distinctive feature of this application is that there are three types of tasks that
are to be handled, which clearly differ in their computational efforts: simulations,
optimizations and sensitivity analyses. We therefore have thoroughly studied their
runtimes and developed a regression model that is able to estimate the runtime of a
task based on its input parameters with high accuracy.

Furthermore, we have explored options to extend the available computing capacity
by adding public cloud computing machines to our applications. Here, we found simple
single-core VMs to be the best fitting solution due to their recorded performance, cost-
performance ratio and the flexibility they offer.

To rate the performance of a scheduling and scaling algorithm we have defined a cost
function that evaluates the completion time for each task, adjusted to our scenario.
The function takes the absolute completion time into consideration as well as its ratio
to the net processing time.
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Finally, a case study was carried out to evaluate different algorithms in different
scenarios. This was done using a Monte Carlo simulation tool developed during this
thesis, which can resemble the computing architecture of the considered web applica-
tion. First, a general scenario of fixed computing resources was examined, without the
possibility of using additional cloud resources. Due to the nature and amount of the
short scheduling tasks that have to be processed, it showed to be beneficial to prioritize
the execution of these tasks. Even allocating resources for this is to be recommended,
even though this results in a lower degree of capacity utilisation during busy time
periods.

In case there is the possibility to scale up resources we have analysed the behaviour
of a reactive scaling algorithm with different settings. This provides a foundation for
estimating incurring server fees and corresponding scheduling costs.

7.1 Future Work

While the findings of this thesis provide a good baseline for task scheduling to use when
the Windflower web application gets publicly available, a number of aspects remain to
be analysed in the future.

• We have limited and adapted our studies and scheduling strategies to the Wind-
flower simulations. While Sunflower calculations have similar characteristics, the
results of this thesis should be validated for Sunflower.

• For our studies we have made assumptions regarding the behaviour of users.
During productive operation of the web application it should be monitored how
the distribution of incoming tasks is shaped and if it is dependant on other
factors, e.g. weekday or time of release. Also, our presented cost function makes
assumptions on the user’s perception of task completion times. By performing
a user study this can be evaluated further and adjustments to the cost function
can be made.

• To speed up the computationally intensive calculations, the possibility of per-
forming these on GPU hardware is worth to be evaluated. Due to their struc-
ture, GPUs perform significantly better than CPUs on certain calculations, which
could be advantageous for Sun- and Windflower.

• The scheduling and scaling strategies presented in this thesis all work in a reactive
way. If the scheduler was aware of patterns in the number and types of released
tasks, the performance could be improved.

• It is supposable that the web application at some point will have different user
categories with different expectations towards the quality of service, i.e. the
task completion times. For the scheduling this would introduce additional task
priorities that would have to be considered and analysed.
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