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1 Introduction
The climate change is one of the biggest environmental struggles in this century. The
industrial revolution has left its traces, and now it is important to counteract the cli-
matic problems with renewable energies. Big steps have already been taken to reduce
CO2 emissions, but there is still a long way to go before the whole world has switched
to renewable, so-called green energy.
Solar and wind energy are the leading forms of renewable energy production. Wind is
one of the universal forms, as it is always present compared to solar energy, which can
only be used efficiently in certain parts of the world and not at night.
Therefore wind farms have the potential to become the worlds leading energy source.
To reduce costs, the wind turbines are clustered into wind farms and are subdivided in
onshore and offshore wind farms. The difference is that onshore wind farms are built
on land, while offshore wind farms are built on underwater areas near the coast.
Onshore wind farms are characterised by lower investment and maintenance costs and
easier access to the generated energy, but environmental conditions reduce the turbine
efficiency. In addition, the noise factor of turbines is the focus of public discussions.
Offshore wind farms, on the other hand, have higher investment and maintenance costs
because they are built in the hard-to-reach sea. The energy produced is also more dis-
tant from the region in which it is needed. But in the longer term, the offshore version
has some advantages. On the sea, a much stronger wind dominates in comparison to
the wind on land, which increases the total power. There are also no hurdles through
mountains, hills, etc. that disturb the wind, which in turn leads to higher energy
production. There is also more space available on the sea so that bigger wind farms
can be build.

The topics of this thesis can be categorized into three parts. The first part deals
with the model aspects, i.e. the simulation, and the calculation of the most important
attribute of a wind farm, the energy produced over a whole year.
In the second part different methods for the investigation of uncertainties are intro-
duced. It has to be considered which uncertainties in the construction of a wind farm
can lead to a misinterpretation of the whole project. The main focus is on a stable
estimated result for the energy production with uncertainties.
The last part deals with the optimization of turbine layouts. However, the aim is not
only to achieve the best energy production with a single-objective optimizer, instead
a multi-objective optimizer is introduced which can handle several optimization goals.
The purpose is not one specific optimal result, but a set of optima from which to choose
according to need.
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2 Related Works
In this section some known approaches and recent work in the field of the wind farm
layout optimization problem (WFLOP) are mentioned. Here we focus on wake models
and optimization algorithms as the main components of this thesis.

2.1 Simulation of Wake Effect
In order to carry out an optimization, a suitable simulation must first be created,
and the choice of a suitable wake model is decisive. For this modelling of the wake
effect there were already many approaches in the last years. One of the first and most
significant publications was the Jensen model [22, 23], also known as the PARK model,
with its variant known as Modified PARK.

This model has gained in popularity and importance because it has a simple basic
principle and is available in different versions. The wake model is popular as an
engineering wind turbine wake model for simulating the reduction of the wind speed
downstream. It is also the base of the PARK model, which was developed for the
calculations of the Wind Atlas Analysis and Application Program (WAsP). WAsP is
widely used for the estimation of wind resources. However, many of today’s approaches
are based on the models of Jensen.

2.2 Optimization of Wind Farm Layouts
Already in the late eighties it was recognized that the efficiency and thus also the
profit of a wind farm can be improved by optimizing the wind turbine positions. One
of the decisive factors for this was the work of Mosetti et al. in 1994 [30]. By use of
a so-called genetic algorithm Mosetti et al. created a solid first approach to solve the
WFLOP. This method is inspired by nature and is a population-based metaheuristic
that mimics the phenomena of natural selection to produce better results over a num-
ber of iterations.

Building on this idea, is also one of the latest approaches published by Roscher
et al. in 2018 [37]. The authors use the linear Jensen model to simulate the wake
effect and an adapted financial model to be able to minimize costs by optimization.
The genetic algorithm used works with the influence of a random variable to find the
approximated global optimum instead of the local optimum. Furthermore, the authors
perform a multi-objective optimization, i.e. an optimization with several functions. A
weighted approach is used which combines the various functions into one. The aim is
to achieve one optimum value target with specific allocation of weighting parameters.
The objective functions used are the power value of the wind farm and a reduction of
costs by choosing the optimal lift height and rotor diameter.
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3 Model
In this section the different parts of an wind farm model will be described which is
largely bases on the work of Heiming [20]. At first, the wind model with related data
and the resulting wake model will be explained. Then, the power generation model will
be presented to calculate the gross annual energy production (AEP). Finally, the cost
model by Cakar [8] will be introduced to compare it with the cost model of Roscher
[37]. The cost model consists of the net annual energy production, the levelized cost of
electricity (LCOE), the net present value (NPV) and the internal rate of return (IRR).
The overall model structure is shown in Figure 1.

wind data

Ct curvewake effect

power curve

wind model wake model

surface roughness

power generation model gross AEP cost model

plant performance loss

economic parameters

NPV

IRR

LCOE

net AEP

Figure 1: General overview of the simulation model presented in this thesis introduced
by Richter [34]. Contains the input parameters (purple), the general models
used (grey) and the output functions (orange).

3.1 Wind Model
A sufficient wind model requires large amounts of measurement data. This data re-
produces the real world climate conditions for a specific area and time period. Our
wind model bases on the wind data of the FINO3 research platform 1 and consists out
of thousands of measurements over sevens years. FINO3 is located 80 kilometres west
of Sylt in the North Sea. Figure 2 shows the processed wind data divided into 12, 32
and 360 sectors which represent the probability that a wind direction from that sector
occurs.

3.1.1 Weibull Distribution

To approximate the wind speed a Weibull distribution of the raw wind data is used and
calculated with the maximum likelihood estimation as described by Heiming [20]. The
Weibull distribution is a continuous probability distribution and has the advantage
that different wind speed levels of measured wind data can be approximated very well
by only two parameters. Heiming [20] noted higher speeds are less likely and the

1http://www.fino3.de/
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1 1

Figure 2: Combined wind direction distribution at the FINO3 research platform over
the years of July 2010 to July 2018 at a measured height of 100 meter.
Clustered probabilities into 12, 32 and 360 direction sectors.

probability of negative wind speeds is equal to zero.
The estimated maximum likelihood estimation is defined as

fαi
(u) =

(
k

λ

)
·
(

u

λ

)k−1
· exp

(
− (u · λ)k

)
(1)

where the parameters λ > 0 and k > 0 are the scale- and shape parameter, so that the
probability fαi

(u) for every wind speed u can be calculated. The parameters λ and k
are related for each wind direction as representation. So each wind direction has its
own probability and its own wind speed distribution. Figure 3 shows the wind speed
distribution for the sector αi ∈ [225◦, 255◦) of FINO3.

3.2 Wake Model
An important factor at modeling a wind farm is the wake effect. Every wind turbine
has to relate the wake of neighbouring turbines while calculating their power output.
The effect occurs when wind passes a turbine and gets in a strong tumble. As a con-
sequence the wind speed behind the turbine is reduced. For this purpose the wake
model is needed.
First the wind turbine has to be defined as shown in Figure 4. D represents the ro-
tor diameter and z the hub height of a turbine. In our model there is always used a
horizontal-axis wind turbine, this is the most common type.

Here we focus on a simple model based on the PARK model which is originally
created by Jensen [22] and Katic et al. [23] in 1986 to approximate the wake effect. This
model is well suited to wind farm simulations because of its simplicity and accuracy
which was examined by Barthelmie et al. [5]. Our model approximates wind speed
reduction behind a turbine on one fixed height as function of the distance x and does
not compute a flow field for the exact wind velocity distribution as shown in Figure
5. The wake model is designed for long distances inside the wind farm and requires a
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Figure 3: Approximated wind speed distribution of Richter [34] as Weibull distribution
using the maximum likelihood estimation. The measured data is from the
FINO3 research platform over the years of July 2010 to July 2017 for the wind
direction sector αi ∈ [225◦, 255◦). The measured wind speed distribution is
illustrated as wind bins in the form of a histogram.

distance of at least three rotor diameters or more to be valid. The wake grows with a
factor k defined by Samorani et al. [38] as

k = 0.5
ln z

z0

, (2)

where z is again the hub height and z0 is called surface roughness. So, the wake
diameter Dw = Dw(x) grows linearly by 2k as shown in Figure 5. The surface roughness
is a variable to describe the condition of the site ground as the waves of the sea in our
offshore wind farm. It can be calculated via a formula as presented in [27] depending
on the sea state. However, the surface roughness z0 = 0.0002 m can also be assumed
as constant value which is typically for offshore sites [29].

For the derivation of velocity deficit Heiming [20] assumes conservation of momentum
inside the wake and start with a balance of momentum∑

mass · velocity =
∑

density · area · velocity = 0. (3)

By assuming incompressibility of the fluid it follows

− ρπ
(

D

2

)2
ur − ρπ

((
Dw

2

)2
−
(

D

2

)2)
u0 + ρπ

(
Dw

2

)2
uw = 0, (4)
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z

D

Figure 4: Construction of a horizontal-axis wind turbine and their measurements. D
represents the rotor diameter and z is standing for the hub height of the
mast. Source: Heiming [20]

where ρ is the air pressure, ur is the wind speed directly behind the rotor of the turbine
and uw is the wind speed further away from the turbine inside the wake as shown in
Figure 5. This can be simplified to

D2ur +
(
D2

w − D2
)

u0 = D2
wuw. (5)

Directly behind the turbine δur = 1 − ur

u0
the initial velocity deficit is placed in and

solved for uw

u0
, yields

uw

u0
= 1 − δur

(
D

D + 2kx

)2
. (6)

The initial velocity deficit δur will be replaced with the relative loss at the turbine

a(u0) = 1 −
√

1 − Ct(u0), (7)

where Ct is the thrust coefficient of the turbine. a(u0) provides us the final equation
for the velocity deficit at any point inside the wake of a turbine with initial velocity
u0.

δu(x) = 1 − uw(x)
u0

=
1 −

√
1 − Ct(u0)(

1 + 2kx
D

)2 . (8)

The above derivation for wind speed reduction is only applicable for the wake of
a turbine in the free stream. Now we evaluate the more likely case where turbines
are behind each other in wind direction. Considering two interacting turbines i and
j to generalize equation (8). The first turbine i that is in front with regard to the
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x

D Dw = D + 2κx

u0

u0

uw

Figure 5: Visualization of the wake effect as described above. The unperturbed free
stream u0 hits the turbine and its blades, generates the wake and the result-
ing reduced wind speed uw. The wake grows linear with the factor 2κ. D
represents the rotor diameter of the turbine, Dw is the width of the generated
wake and x stands for the distance from the turbine. Source: Heiming [20]

wind direction and the turbine j behind the first one which is affected by the wake.
Otherwise j is only partly affected by the wake of i so a shadowing factor βk ∈ [0, 1]
as described by Choi and Shan [9] needs to be implemented which is defined as

βk = AIntersection

ATurbine
, (9)

where AIntersection is the circular part of of the wake that intersects the area ATurbine of
turbine j which is shown in Figure 6. Equation (8) for velocity deficit has updated to

1 − uw

uinc,i

=
βk

(
1 −

√
1 − Ct(uinc,i)

)
(
1 + 2kx

D

)2 , (10)

where uinc,i is called the incident wind speed of turbine i. Till now the equation
depends on incident velocity uinc,i at turbine i. Now it needs to be transformed to
make it dependent on free stream velocity u0

δuij = 1 − uw,i

u0
= 1 − uinc,j

u0
= u0

uinc,i

βk

(
1 −

√
1 − Ct(uinc,i)

)
(
1 + 2kx

D

)2

 . (11)

For the case of two interacting wakes affect one turbine j the velocity deficits are added
as follows

δu2
j = δu2

1,j + δu2
2,j

⇔
(

1 − uinc,j

u0

)2
=
(

1 − uw,1

u0

)2
+
(

1 − uw,2

u0

)2
,

(12)
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Turbine i

Turbine j

Turbine j

Wake of turbine i

Figure 6: Visualization of the partial wake intersection according to the PARK model.
The wake from turbine i crosses a section of turbine j. Source: Heiming [20]

where uw,1 and uw,2 are the velocities inside the two wake instances. Extended to an
arbitrary number of interacting wakes δuj can be defined as

δuj =

√√√√ N∑
i=1

δu2
ij, (13)

where N is the number of interacting wakes and for each ij and δuij defines the velocity
deficit caused by the wake of turbine i which affects turbine j.

3.3 Power Generation Model
In this section we consider the electrical properties of a turbine. A general wind turbine
is a device that converts the kinetic energy of the wind into electrical energy. When the
hub of a turbine is directed against the wind stream, the rotor blades start to rotate
and the electrical generator of the turbine produces power. This power output can be
represented as power curve P (u). The performance descriptors depend on the wind
speed. There are different types of wind turbines. As mentioned in Section 3.2 we use
the most common type horizontal-axis wind turbine with three large rotor blades as
shown in Figure 4. A turbine is characterized by a few more attributes. Important for
our model we define for each turbine a cut-in speed ucutin and a cut-out speed ucutout
as constraints. ucutin defines the minimum wind speed that is necessary for a turbine
to accomplish and produce consistent power. Contrary ucutout defines the maximum
wind speed a turbine can handle and work properly without getting damaged. A
typically cut-in speed is about 3 to 4 m/s and the cut-out speed about 25 m/s. These
are shown in Figure 7 with regard to power production and thrust coefficient. These
curves depend on the air density. In this work we use a constant air density value of
1.225 kg/m3 which corresponds to a temperature of 15 ◦C at sea level.

3.4 Gross Annual Energy Production
In this section the calculation of the gross annual energy production AEPgross will be
presented. The mathematical model of the AEP was introduced by Heiming [20]. For

8
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Figure 7: Thrust coefficient Ct and power production of a turbine with cut-in speed of
4 m/s and cut-out speed of 25 m/s (dashed vertical lines). Source: Cakar [8]

the calculation we define as first the expected power value P for all directions by

P :=
∫ 2π

0
Pαdα

≈
Ndirections∑

i=1
wαi

· Pαi

(14)

where Ndirections describing the number of wind directions and wαi
standing for the

weight of direction αi. Pαi
defines the expected power value of a wind farm for all

wind speeds u in one wind direction αi which is given by

Pαi
:= E[Pαi

(u)]

=
∫ ∞

0
Pαi

(u) · fαi
(u)du

=
∫ ucutout

ucutin
Pαi

(u) · fαi
(u)du

≈
Nspeeds∑

j=1
wj · Pαi

(uj) · fαi
(uj)

(15)

where fαi
(uj) describes the probability density function of equation (1) of the wind

speed distribution for each sector αi. As defined in section 3.3 ucutin and ucutout are
the turbine’s cut-in and cut-out speed respectively, wj is the weight for speed j and

Pαi
(u) =

Nturbines∑
k=1

Pαi
(uinck

)

denotes the total power output of the wind farm at wind speed u and direction α.
Pαi

(u) is the power production of one turbine and uinck
is the incident wind speed at

turbine k. Then the incident wind speed is computed by

uinc = (1 − δu)u0,

where u0 is the unperturbed free stream speed and δu is the velocity deficit as defined
in section 3.2 at a turbine rotor with perturbed wind inside another turbine’s wake.
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Finally we define the most important value AEPgross for the cost models in section
3.6 with the wind speed distribution described as Weibull distribution fαi

(u) and the
power curve P (u) for each wind speed u:

AEPgross = (8760h + 6h) · P

≈ (8760h + 6h) ·
Ndirections∑

i=1
wαi

·
Nspeeds∑

j=0
wj · fαi

(uj) ·
Nturbines∑

k=1
Pαi

(uincj,k
),

(16)

where P denotes the mean power as defined in equation (14) for a given wind distri-
bution in megawatt (MW). This need to be calculated to the length of one year to get
the AEP measured in MWh. Thus we multiply P by (8760h + 6h), where 8760 is the
number of hours in one year and the additional six hours in order to take the mean
hours per year with consideration of leap years. This results in 365, 25 days per year.

3.5 Time-dependent Annual Energy Production
In this section the extension of the AEP calculation as described in section 3.4 will
be considered. The extension concerns the wind data, which is in our case the FINO3
data as mentioned in Section 3.1. So far, only the probabilities of wind direction and
wind speed with help of the Weibull function are considered. Now, different timeslots
are added, so the wind data contain the additional information of hours of the day
as subdivided into timeslots such as a twelve hour cycle. So the first slot would be
from 0:00 to 12:00 and the second slot from 12:00 to 24:00. Thus for a certain wind
directions there are also specially probabilities for the different time-dependent tariffs
as shown in Figure 8 and P of Equation 16 changes to

P ≈
Ntimeslots∑

t=1
(

Ndirectionst∑
i=1

wαi
·

Nspeedst∑
j=0

wj · fαi
(uj) ·

Nturbines∑
k=1

Pαi
(uincj,k

)), (17)

where Ndirectionst and Nspeedst
are the direction and speed probabilities with regard to the

timeslot. The individual time-dependent AEP values can also be output individually,
without adding them up, so that a time-dependent LCOE and NPV can be calculated
in the following section.

This has the advantage of including different tariff cost options for the time-dependent
AEP values. The effects will be examined in Section 3.7.

3.6 Cost Model
Based on the AEPgross value the different cost models will be introduced in this section.
These models evaluate various quantities of interest for a given wind farm and can be
used as objective functions for the layout optimization routine [40]. The quantities of
interests are the calculated different indicators that point out the economic benefit of
a wind farm as represented by Cakar [8]. In the following subsections we consider the
net AEP calculation, the levelized cost of energy and finally, the net present value and
the internal rate of return.
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1 1

Figure 8: Time-dependent wind direction probabilities. Each color represents a differ-
ent time interval for the respective wind direction. Clustered probabilities
into 12 and 36 direction sectors.

3.6.1 Net Annual Energy Production

So far we computed the gross AEP in equation (16), but this is not quite a realistic
measure for wind farm energy production. So, we introduce net AEP by reducing the
gross AEP with a constant factor ploss which includes availability losses as a result of
turbine and grid downtime of the wind farm. The plant performance lost ploss is the
summarized electrical efficiency due to line losses and curtailment. This results in the
calculation for net AEP as

AEPnet = AEPgross · (1 − ploss). (18)

3.6.2 Levelized Cost of Electricity

To represent the price of electricity per kWh over the whole lifetime of a wind park
we introduce the levelized cost of energy (LCOE). This also includes the initial costs
and costs of operation. Our cost model uses the formula of the LCOE by Lackner and
Elkintion [26] defined as

KLCOE =
Ccapital · (1 + rrate)` · rrate

(1 + rrate)` − 1 + Co&m

AEPnet
, (19)

where Ccapital is representing the total capital costs for turbines, cabling, substation,
decommission and other. Co&m are the annual costs of operation and maintenance,
and discount rate rrate including debt, taxes and insurance over the lifetime of ` years.

11



For the time-dependent LCOE, the equation changes as follows:

LCOEtariff =
Ccapital · (1 + rrate)` · rrate

(1 + rrate)` − 1 + Co&m∑Ntimeslots
t=1 AEPnett

, (20)

For the future optimization of the costs by means of LCOE, it should be mentioned
that the capital costs consist primarily of the material costs for the construction of a
wind farm. In addition to the steel for the wind turbines, these material costs also
include the cable costs that connect the individual wind turbines. As a result, the
total capital costs also depend on the length of the cables laid.

3.6.3 Net Present Value

The net present value (NPV) is an indicator for the actual financial value of a project
introduced by Gonzales [18]. It specifies the difference between the current cash inflows
and outflows of the project. Thus the higher the value the better is the project. For the
full validity of this value it needs to be compared with another project or alternative
setting of the considered project. The NPV is defined as

CNPV = CPRV − Ccapital +
∑̀
t=1

AEPnet · Kenergy − Co&m

(1 + rrate)t
, (21)

where the parameter CPRV is the present residual value of the wind farm after the
lifetime ` in years. Similar to the LCOE Ccapital includes the total capital costs for
turbines, cabling, substation, decommission and other and Co&m are the annual oper-
ation and maintenance costs with respect to the discount rate rrate. Kenergy translates
the actual price of energy on the market. Usually AEPnet, Kenergy and Co&m are time-
dependent, but because we are working with averaged values (e.g. the wind data is
aggregated from several years), we assume them to be constant in time.

For the time-dependent NPV, instead of a single average energy price, more exact
prices are used depending on the time of day, e.g. energy in the evening is worth more
than during the day. This makes the result more accurate and the equation changes
to:

NPVtariff = CPRV − Ccapital +
∑̀
t=1

∑Ntimeslots
t=1 (AEPnett · Kenergyt

) − Co&m

(1 + rrate)t
, (22)

3.6.4 Internal Rate of Return

The internal rate of return (IRR) as rIRR is similar to the NPV a measure for the
profitability of an investment of a project. rIRR is defined to be the value of rrate in
Equation (21) which results in a NPV of zero.

CNPV = CPRV − Ccapital +
l∑

t=1

AEPnet · Kenergy − Co&m

(1 + rIRR)t

!= 0 (23)
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General settings
Settings Field size (x = y) Number turbines

Horns Rev 1 1800 15
Tariff settings

Tariff 1 24h cycle 11 cent
Tariff 2 6h cycle [14, 4, 6, 20] cent

Table 1: Settings for time-dependent tariff example in Figure 9.

To reach a profitable project, the rIRR should be greater than the real discount rate
rrate and any additional risk deficits combined.

3.7 Tariff Consideration
As an example of the usefulness and influence of different tariffs, a square field with 15
turbines is created. The exact settings can be seen in Table 1. The general settings are
taken from the wind farm Horns Rev 1 and adapted, as well as the turbine type. With
these settings two optimizations are started, first with only one tariff over 24 hours,
the other with a 6 hour cycle. It is noticeable that the six-hour interval in the evening
has a considerably higher energy price. The basic Local Search algorithm is used as
optimizer, which terminates when no improvement can be achieved, as explained later
in Section 7.2.1. As optimization goal the NPV value is used, since this includes the
energy price. The resulting turbine positions are summarized in Figure 9.
It is noticeable that some turbines are in the same position after both optimizations,
while others differ. However, the largest difference between two turbines is 24 meters.
Thus it is demonstrated that it makes a distinction whether different tariffs are included
or not.
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Figure 9: Example for different turbine layouts by one or four tariffs as defined in Table
1. Blue shows the optimized layout with one average tariff and red with four
accurate tariffs.
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4 AEP of Raw Data
This section introduces a new method for calculating the AEP value. It is based on the
idea of using the raw FINO3 data of size NrawData for the calculation because these are
the most accurate values we have. The datasets introduced in Section 3 is aggregated
data to save computing time. But this aggregation by using a Weibull distribution
curve causes some inaccuracies. The Weibull function is only an approximation to the
real probabilities of wind speeds as shown in Figure 10.
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Figure 10: Weibull approximation (blue) in comparison to original FINO3 data (red)
in the relevant area of minimum 4 m/s to maximum 25 m/s. On the left
hand side for all directions at once and on the right hand side for two wind
directions out of 12 for the wind direction at 90 degrees (straight line) and
at 210 degrees (dotted line).

The original FINO3 data set has nearly 300000 data pairs, which is too much to
simulate each with their wind direction and speed.
Therefore firstly some fixed discretization for wind direction and wind speed are sim-
ulated, so that a grid is created. From this we can quickly determine the power values
for the direction and speed of the individual FINO3 raw data. The underlying grid is
more accurate depending on the number of simulated wind directions and speeds as
shown in Figure 11 as heat map. Every grid cell represents the power outcome of one
specific simulated wind direction and speed. By examine the graphic for Horns Rev 1
stands out that on specific wind directions the power outcome becomes more or less
strong, that is because of the wake effect has more impact in some directions.

So for one specific wind speed, the power outcome reaches its peak for every di-
rection. However, it becomes visible what a large influence the discretization of wind
direction and speed has. Without the exact direction resolution we would not have an
exact computation on the stronger wind directions.

Besides the power outcome we also need the raw wind data to be classified into
the same resolution. Thus we have the number of wind data sets which occur with a
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Figure 11: Heat map of simulated AEP output grid for every wind direction and speed
pair of the Horns Rev 1 wind farm. On the left side with a coarse resolution
of 12 directions and 15 speeds. In contrast to a high resolution with 48
directions and 50 speeds on the right side. The main difference can be
seen in the fact that at high resolution individual wind directions with little
power output are clearly recognizable.

0 60 120 180 240 3004

11

18

Wind direction (deg)

W
in

d
sp

ee
d

(m
/s

)

0

1,000

2,000

3,000

4,000

Amount

0 72 144 216 2884

8.2

12.4

16.6

20.8

Wind direction (deg)

W
in

d
sp

ee
d

(m
/s

)

0

100

200

300

400

Amount

Figure 12: Number of raw data pairs from FINO3 measurement at every wind direction
and speed visualized as heat map. On the left side with a discretization of
12 directions and 15 speed subdivision and on the right side with a higher
resolution of 48 directions and 50 speed subdivisions. In both figures a very
clear main wind direction becomes visible.
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specific direction and speed, as shown in Figure 12. From these the probabilities can
be calculated by dividing by the total number of wind data. By investigating Figure
12 it becomes visible from which direction and at which speed the wind arrives most
frequently.

To calculate the overall AEP we need to combine the two information sets of simu-
lated wind park power and probability of the occurrence of wind from each direction
and speed. To assign the combined power from this grids there are two different op-
tions, the nearest neighbour and the bilinear interpolation. P of equation (16) changes
to

Pinterpolation ≈ 1
NrawData

·
NrawData∑

i=1
Pinterpolation(dir,ri)(interpolation(spd, ri)), (24)

where NrawData defines the number of direction speed pairs in the raw data set which
are not invalid. interpolation() calculates the interpolation method as described below
with all directions/speeds and actual raw data direction/speed as input.

4.0.1 Nearest Neighbour Interpolation

The Nearest Neighbour (NN) interpolation [4] is a simple method of multivariate in-
terpolation useful for our two dimensional case. The NN algorithm selects briefly the
value of the nearest point with the shortest distance between that points and does not
consider any other point.
In our case, for a given wind speed and direction from the raw data set the power
needs to be approximated by the simulated points. Finally all wind elements of the
raw data set with corresponding power values of the simulation have to be added.
The combined values for every grid cell with the NN algorithm for the Horns Rev 1
wind park and FINO3 wind set is shown in Figure 13 for a weak and strong resolution.
As shown in Figure 13, this grid combines the strong cells of the simulation outcome
and frequency of certain wind pairs. The advantage of this simple NN algorithm is
that it is computational very fast.

4.0.2 Bilinear Interpolation

The Bilinear Interpolation [4] is an advanced interpolation method which is an ex-
tension of linear interpolation. This method requires a rectilinear 2D grid which is a
tessellation by rectangles or parallelepipeds that are not, in general, all congruent to
each other. This criterion is fulfilled by our two given grids, since they all consist of
square cells as shown above. The key idea of Bilinear Interpolation is to perform linear
interpolation first in one direction and then again in the other direction. Although
each step is linear in the sampled values and in the position.
In other words our unknown wind data point calculates a bilinear interpolation with
the four surrounding simulated power points. With all directions/speeds and actual
raw data direction/speed as input. The results of the Bilinear Interpolation are shown
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Figure 13: Nearest Neighbour combination of the simulated power grid of Figure 11
and the occurrences of wind direction speed pairs of Figure 12. Results in
the final power occurrence of each grid cell. The sum of these individual
grid cells results in the simulated AEP value of a wind farm.
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Figure 14: Similar combination of the simulated power and wind data pair occurrences
as in Figure 13. However, Bilinear Interpolation is applied so that the indi-
vidual grid cells merge into each other. Also for coarse and high resolution.
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in Figure 14 which in the end have to summed up. It becomes visible that in contrast
to the NN method, the boundaries between the grid cells become blurred.
However, with both both approaches it is noticeable that a too low resolution leads to
a coarse and altered appearance which then may no longer correspond to reality. An
investigation of this resolution follows below.

4.1 Results
For an investigation of the two raw data approaches the wind farm Horns Rev 1 and
the FINO3 wind data were used. The underlying wind data set for the standard cal-
culation corresponds to the Weibull model with 12 wind directions. First the wind
speed resolution will be considered. The value is specified as interval size starting by
2.0 up to a resolution of 0.01. A value of 1.0 corresponds to an interval of 1 m/s.
The quantity of simulated wind directions is made dependent on this value. Whereby
the Horns Rev 1 turbines with cut in speed of 4 and cut out speed of 25 results in a
corresponding size of 21 simulated wind speeds. The results of this investigation with
a constant wind direction number of 36 is shown in Figure 15. It stands out that the
simulated AEP power outcome changes only slightly with increasing resolution and the
resulting values become slightly less for all three approaches, so the differences do not
become larger between the individual methods. In summary, we can conclude that the
resolution of the wind speed has only a small effect on the accuracy of our simulated
results and can therefore be neglected in later optimization to achieve a good run time.

For an consideration of the wind direction resolution the same underlying data is
used as above. The number of wind directions directly indicates how many wind
directions are simulated. For example, a number of 36 means that every 10th wind
direction is simulated. The examined number corresponds here from 6 to 720 directions
and a constant wind speed resolution of 1.0. The results of this investigation for all
three approaches can be viewed in Figure 16. It quickly becomes apparent that the
resulting graph is not as uniform as at wind speeds. This can be briefly explained by
the fact that the simulated wake effect is stronger or weaker depending on whether the
selected directions are good for the wind farm or not. Basically, we can say that the
strong fluctuations in the first part of the graph are caused by too few simulated wind
directions. What follows is that the few individual wind directions have a very strong
influence on the overall result.
From a number of 30 directions it is noticeable that the normal AEP calculation
and NN slowly settle to one value and remain constantly close to each other over
the entire evaluated range. This can be explained by the fact that the calculations are
actually very similar to each other, since the 12 wind directions with Weibull are only a
summary of the FINO3 data and have small inaccuracies as mentioned at the beginning
of this section. However, this is interpolated and scaled by the OpenWind validated
calculation, whereby according to our results the overall probabilities decrease slightly.
Finally only the bilinear interpolation has even greater fluctuations in the following.
This could be explained by the fact that many wind data pairs lie at the edge of
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Figure 15: Investigation of wind speed resolution with a constant number of 48 wind
directions. This illustrates that a higher speed resolution has almost no
effect on the results. To compare the two approaches, which are examined
in this thesis, the standard approach and the original AEP value are still
available. This results from the simulation of all 300,000 FINO data.
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Figure 16: Evaluation of wind direction resolution with a constant wind speed interval
of 1.0. It becomes clear that the wind direction resolution has a significant
influence on the result and converges at a very high resolution to the original
AEP value.
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the strong power areas which have been identified above and evaluated by Bilinear
Interpolation larger values than the other two methods. Consequently, the general
power outcome grows to a maximum at 260 wind directions and then slowly returns
to normal.
In summary, we can conclude that the resolution of wind speeds can be neglected, but
great attention should be paid to the number of simulated wind directions. Overall,
we would recommend a minimum number of 36 wind directions to have comparable
results for optimization.
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5 Wind Farm Modelling with Uncertainties
In this section we will explain the fundamental characteristics of uncertainties based
on the works of Richter [34] and Cakar [8]. In this process the parameters of our
simulation presented in Section 3 are not be deterministic any more. One way to
take into account these uncertainties is to use the theory of probability, to describe
the uncertain parameters as random variables or random processes. These so called
uncertain parameters are perturbed by a Gaussian normal distribution to reach a
stochastic model [39].

5.1 Uncertain parameters
As described in Section 3 we have several input parameters which will modeled as
random variables ξ to consider the uncertain disturbance. The normally distributed
variables are centered around the original undisturbed value. This can be delineated
to a multiplication between the undisturbed value and a normal distribution N (1, σ).
Following uncertain parameters are examinated in this work:

Uncertain parameters Influencing factors
1 Wind speed ξwind Inaccurate measurements, future variability.
2 Wake Effect ξwake Model inaccuracies.

Ct Curve ξct Atmospheric stability.
Surface roughness ξrough Surface condition changes.

3 Power Curve ξpower Impacts of atmospheric stability.
4 Plant performance losses ξperformance Electrical efficiency and weather effects.

Capital costs ξcapital Fluctuating material prices.
Annual O&M costs ξo&m Technology standards.
Discount rate ξrate Economical fluctuations.
Energy price on market ξenergy Changing market prices.

Table 2: Ten uncertain input parameter which will be perturbed by a random vari-
able ξ of its corresponding normal distribution N (µ, σ) and their influencing
factors. The parameter σ is obtained by the max deviation value d. This
value indicates that in the worst case the input parameter values will be per-
turbed by ±d% which is achieved with the right determination of the normal
distribution.

5.2 Stochastic Model
These uncertain parameters are now included into our simulation model of Section 3.
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Figure 17: Fitted Weibull distribution with maximum likelihood estimation (MLE)
for wind speed distribution over seven years for one wind direction sector
αi ∈ [225◦ − 255◦) measured at the FINO3 research platform mentioned in
Section 3.1. Red and green plots representing the fitted weibull distribution
with MLE after perturbing the wind speed data with a factor of ±10%.
The random variable ξwind(u) describes the weibull distribution between
the highest red plot and the lowest green plot with a probability of 99.73%.
Source: Richter [34]

5.2.1 Uncertain Wind Model

Due to inaccurate measurements, future variability and further interferences [14] the
distribution of wind speed u is an uncertain parameter with strong influence. For this
purpose we perturb the raw wind data set explained in Section 3 of the wind speed by
a normally distributed random variable ξwind. So that perturbed probability density
functions of the weibull distribution are archived as shown in Figure 17. Cakar [8] and
Tuzuner [41] have shown that a disturbance d of the wind speed corresponds to the
perturbation d of the weibull parameter λ. This allows us to formulate the resulting
probability for each wind speed u of equation 1 as random variable:

f̃αi

(
u, ξwind

)
=
(

k

λ · ξwind

)
·
(

u

λ · ξwind

)k−1

· exp
(
− (u · λ · ξwind)k

)
(25)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the Weibull
distribution.

5.2.2 Uncertain Wake Model

The wake effect prediction is perturbed due to different model input inaccuracies and
uncertainties. So we need to include uncertainty concerning any proposed neighbouring
sites [14]. To process this effect we perturb the velocity deficit of a wake with a normally
distributed random variable ξwake. Furthermore the wake model depends on the surface
roughness z0 and the Ct curve. Due to inaccuracy measurements and atmospheric
stability, we also perturb this parameter with a normally distributed random variable
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ξct as shown in Figure 18. The value of Ct(u0) · ξct must not be greater or equal to
one, as based on equation (26). The surface roughness depends on the topography and
flora as mentioned in Section 3 [42]. It follows from this that also the parameter z0 has
to be stochastic and will be perturbed with a normally distributed random variable
ξrough. Summarized the velocity deficit behind a turbine at any point x from equation
(8) is modified to

δ̃u(x) =
1 −

√
1 − Ct(u0) · ξct

(1 + x
D·ln(z/z0·ξrough))2 · ξwake. (26)

5.2.3 Uncertain Power Generation

The turbine performance is perturbed due to material fatigue which leads to inaccu-
racy in the power curve. In addition there is an uncertainty on the performance under
site conditions for which the power curve might not be valid. There are also other
inaccuracies and losses as the impact of atmospheric stability, uncertainty associated
with icing losses and other environmental losses which need to be included. Summa-
rized we perturb the power curve by a normally distributed random variable ξpower as
shown in Figure 18. This effect results in

P̃
(
u, ξpower

)
= P (u) · ξpower. (27)

5.2.4 Uncertain Gross Annual Energy Production

The uncertain gross AEP consists of the probability density function (25) for the un-
certain wind distribution, the uncertain velocity deficit function (26) and the uncertain
power function (27). It changes equation (16) to:

ẼAEPgross ≈ (8766h) ·
Ndirections∑

i=1
wαi

·
Nspeeds∑

j=0
wj · f̃αi

(uj, ξwind)

·
Nturbines∑

k=1
P̃αi

(uincj,k,ξpower,ξct,ξrough,ξwake)
(28)
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5.2.5 Uncertain Net Annual Energy Production

Similar as for the gross AEP the net AEP changes to the uncertain net AEP by de-
pending on availability losses ploss which consider the grid and turbine downtime. Since
these influences depend on outer circumstances this parameter should also be mod-
eled stochastic. So, we perturb the availability losses (18) with a normally distributed
random variable ξperformance such that the net AEP changes to:

ẼAEPnet = ẼAEPgross · (1 − ploss · ξperformance). (29)

5.2.6 Uncertain Levelized Cost of electricity

The capital costs Ccapital mainly depend on the price of steel and cable. Since the
long planning stage of several years for a wind farm the calculation depends on long-
term predictions for those prices which is very volatile. The same applies for the
discount rate rrate which is in an early planning stage very unsure and the price of steel
based annual operation and maintenance Co&m. Thus we perturb these with normally
distributed random variables ξcapital, ξrate and ξo&m. Summarized these parameters
form the levelized cost of energy 19 as follows:

K̃LCOE =
Ccapital · ξcapital · (1 + r̃rate)` · r̃rate

(1 + r̃rate)` − 1 + Co&m · ξo&m

ẼAEPnet
, (30)

where r̃rate is the perturbed discount rate which is valid r̃rate = rrate · ξrate.

5.2.7 Uncertain Net Present Value

The net present value (21) mainly depends on the price of energy per kWh Kenergy
which is defined in many countries by political laws. Thus this value is unsure in an
early planning stage and is perturbed with a normally distributed random variable
ξenergy. This changes the equation of NPV used so far to

C̃NPV = CPRV − Ccapital · ξcapital +
∑̀
t=1

ẼAEPnet · Kenergy · ξenergy − Co&m · ξo&m

(1 + r̃rate)t
. (31)

5.2.8 Uncertain Internal Rate of Return

As in Section 3.6.4 the uncertain internal rate of return r̃IRR is the discount rate r
which makes the uncertain net present value of (31) equal to zero. For a profitable
project this value should be greater than the discount rate rrate plus risk deficits.
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6 Multilevel-Monte Carlo Methods
In the area of UQ we want to determine quantitative characterization and reduction
of uncertainties, or also fundamentally how large the influence of such uncertainties is
in the simulation of wind farms. An attempt is made to determine how likely certain
results are if some aspects of the system are not precisely known. To do this, the
model was changed in Section 5 so that a random variable can be used to influence the
simulation. Consequently, values in our model can be disturbed by random variables.
So, to compute the propagation of uncertainties of the random parameters through
the model, we need the different so-called Monte Carlo methods. This technique
generates several realizations, named samples, of the random parameters according to
their distributions.
In this section the Multilevel-Monte Carlo (MLMC) and the advanced quasi-MLMC
method from the field of Uncertain Quantification (UQ) are introduced. To do this,
we consider the fundamental techniques of the classical Monte Carlo method and the
random variable generation based on Richter [34] and Cakar [8] first. The approaches
has the advantage to delimit risks beforehand in order to prevent losses because of
misconceptions or other sources as mentioned before [21].
By using these methods, we can investigate the influence of individual uncertainties
in input parameters, as mentioned in Section 5, onto the model outputs. Therefore,
we introduce methods which allow us to quantify the input parameter influence on a
certain quantity of interest. For this purpose a combination of probability theory and
statistical practice is used. This mathematical models represent scenarios from the
real world and investigates uncertainties for those simulation inputs.
To investigate the influence of uncertain parameters on the input parameters of the
different models, we have to perturb them like explained in Section 5 with use of
different sampling methods. Then we use this perturbed parameters in our simulation
model to get an individual outcome. With help of the law of large numbers and the
central limit theorem we can predict an overall estimated outcome. To realize this
sampling methods are necessary which calculate random variables from probability
distributions to perturb the input parameter. For this purpose every input parameter
has its own specific distribution as defined before. It is important to note that the
size of samples highly affect the accuracy of the results so that with a larger number
of samples more accurate results will be computed. In contrast to the classic Monte
Carlo methods, the MLMC approaches in particular try to find this ideal number of
samples for a sufficiently good result.

6.1 Monte Carlo
The classical Monte Carlo (MC) sampling method is simplified the repetition of ran-
dom sampling and statistical analysis of the outcomes [33]. This sampling method
generates random values with help of a random number generator and transforms
them to random variables of a probability distribution to perform the perturbation.
By this perturbation in every sample step we get the input parameters according to
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Figure 19: Random number (left) and Sobel generator (right) on a 2D graph with 1000

samples. The normal random number generator creates larger gaps between
the samples, whereas the Sobel generator produces equally distributed sam-
ples. Source: Cakar [8]

their specific distributions. After repeating this procedure for a sufficient number of
samples the resulting distribution can be analysed. For our purpose the mean value
has the greatest interest defined by

µ = E[QN ], (32)
where QN is the set of results of N samples with perturbed data as described before
and

E[QN ] = 1
N

N∑
i=1

Qi. (33)

The mean value is also the estimated result of a Monte Carlo run with N samples.
In order to define the variance, the standard deviation is needed first.

σ =
√√√√ 1

n − 1

n∑
i=1

(xi − µ)2 (34)

This is a measure for the spread of the entries of the data set. A big value indicates
that most of the entries are far away from the mean µ.
The variance σ2 is the square of the standard deviation σ and states different to the
standard deviation not the wideness of the spread but the strength of the spread
referred to the data set as defined in the following:

σ2 = 1
n − 1

n∑
i=1

(xi − µ)2 (35)

If one input parameter is considered it is easy to fill the whole probability space but
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for a multidimensional case it is difficult to achieve an even distribution without gaps
as shown in Figure 19. Thus an even lager number of samples is required to consider
the empty spaces and reach a sufficient accurate estimation value. Nevertheless, with
the classic Monte Carlo method, it is not possible to ensure that a sufficient number
of samples has been selected. This is due to the fact that the number of samples must
be selected each time as an input parameter. Above all, the correct number of samples
is not known and is different for each simulation case. This problem is countered by
MLMC’s approach.
Also the generation of random numbers for this process is a difficult task in practice
as computers are deterministic machines. Here we use the pseudo random numbers
generator from the C++ standard library.

6.2 Quasi-Monte Carlo
The quasi-Monte Carlo (QMC) sampling method is an improvement of the classical
MC method from before. The procedure is similar to the one of MC which generates
the random variables with the help of a low discrepancy sequences. These sequence
values then will be transformed to random variables of a probability distribution. For
the MC method a random number generator produces independent and identically
distributed random numbers. The problem of this random number generator as men-
tioned before is a significant discrepancy of the generated numbers which results in a
not evenly distribution. Thus a large number of samples is needed to reach an sufficient
result.
For this purpose the quasi-Monte Carlo method uses an approach of Morokoff and
Caflisch [28] to reduce the discrepancy of the generated numbers and also reduce the
size of samples. The authors investigated different approaches of low discrepancy se-
quences for this issue. One characteristic of these sequences is that they are infinite. So
for every number of samples the generated values of the sequence stays uniformly dis-
tributed. Morokoff and Caflisch investigated thee different low discrepancy sequences
named Halton, Sobel and Faure sequence. It turns out that Halton sequences are the
best for up to around six dimensions and for higher dimensions the Sobel sequence
generator is better. Thus we consider the Sobel sequence because we want to be able
to perturb more than six input parameters.
The Sobel sequence is simplified an infinite sequence of uniformly distributed values
in [0, 1) and generates new values by filling the empty spaces, as shown in Figure 19
for the two dimensional case with 1000 points. These points are spread more evenly
and with a certain scheme, so that there are less an smaller areas that not filled. In
comparison with the classic Monte Carlo random generator the values are significantly
better distributed. For detailed explanation of the Sobel generation of the sequences
see Bratley and Fox [31].
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Figure 20: Convergence study of the MLMC method over 100 repetitions and an epsilon
value of 0.005%. There is a clear approximation of the relative AEP values
to the optimum with rising levels.

6.3 Multilevel-Monte Carlo
The multilevel-Monte Carlo (MLMC) method extends the classical Monte Carlo method
on different level with increasing accuracy. The MLMC method used in this thesis
based on the work of [17] and Pisaroni [32]. The generation of random values and per-
turbing the input parameters of the different models works similar to the MC method.
As mentioned before the sampling method results in an non-regular distribution which
requires a large number of samples. However, this does not verify what a sufficiently
large number of samples is to achieve an acceptable estimation.
For this purpose the MLMC method generates a new level of samples when the result-
ing estimation value is not acceptable. At this new level of samples the accuracy of
the set will be increased by increasing the number of samples and also the number of
wind directions and wind speeds that are simulated. The samples from the previous
level are also included in the newly created set. This results for the mean µ of the
specific level L in

µL = E[QL
N ], (36)
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Figure 21: Convergence study of the QMLMC method with different epsilon values.
With greater accuracy epsilon, the number of levels also increases to fulfill
the criteria.

where QL
N is the set of results of N samples of LevelL with perturbed parameters and

E[QL
N ] = E[Q0

N0 ] +
L∑

l=1
E[Ql

N l − Ql−1
N l−1 ]. (37)

Each of the estimations E[Ql
N l −Ql−1

N l−1 ] is then approximated by a Monte Carlo method
of the specific level. Thus, the results of the previous levels are not lost but are in-
cluded in the current level.

The criteria for an acceptable estimation result is a convergence criteria which checks
the last levels for differences between a certain value ε depending on the normally sim-
ulated result. It starts with a fixed number of samples in the first level and increases
with each level at a constant growth rate. The algorithm terminates when convergence
is reached and the results of the last levels lie within the accuracy criterion epsilon ε.
Used the multilevel-Monte Carlo method hundred times on a wind farm, the increasing
accuracy with growing level and an estimation value which converges for every run in
the orange area of ε, as shown in Figure 20. The strength of the convergence depends
on the growth parameters, which increase the accuracy of the samples from level to
level. However, the values of the growth parameters are not relevant for the accuracy
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of the estimated result, since convergence always takes place. Only the running time
varies, depending on whether the selected parameters perform effectively with the ac-
curacy criterion ε.

The advantage of the MLMC method, compared to the previously explained meth-
ods, is that it is not necessary to know what a sufficient number of samples is to
get a satisfying result. Thus a reusable estimated result is generated for each input
parameter.

6.4 Quasi-Multilevel-Monte Carlo
The quasi-Multilevel-Monte Carlo (QMLMC) method is a combination of MLMC and
the quasi-MC method. The estimation is achieved over several levels, but instead of
a normal random generator, the Sobel generator of QMC is used. The same input
parameters for growth and convergence criteria are used as for the MLMC method. A
history of estimated results across levels with different ε values can be seen in Figure
21. It is noticeable that with a larger ε value, fewer levels are required to achieve this
accuracy.
The advantage here, similar to the MLMC method, is that a converging, sufficient
result is achieved faster, because the created samples are better distributed in each
level, like at the quasi-MC method. And this works independently of the growth
parameters and a certain sample size.
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7 Multi-Objective Optimization
The multi-objective (MO) optimization is nowadays one of the most important topics
in the field of optimization and has an immense practical importance, since almost
all real-world optimization problems, as our wind farm layout turbine positioning, are
ideally suited to be modeled using multiple conflicting objectives. Thereby multi-
objective optimization is an area of multiple criteria decision making that is concerned
with mathematical optimization problems to optimize more than one objective function
simultaneously. Before the introduction of multi-objective optimizations such problem
were solved by scalarizing multiple objectives into a single objective and then execute
an optimization algorithm [10].
The main difference to a single objective problem, in addition to the property of at
least two distinct goals instead of one, is that there is not exactly one maximum opti-
mized result rather a rise of trade-off optimal solutions named Pareto-optimal solutions
which will be explained in detail further below. To find these sets of optimal solutions
is the major difficulty of multi-objective optimizations. Thus, it becomes important
to find not just one Pareto-optimal solution but as many of them as possible. Two
of these solutions represent a compromise between the objectives, and users will be
better able to make a decision when presenting such compromise solutions.
These trade-off solutions can now be examined for several properties. If among all
Pareto-optimal solutions some variables assume identical values this development sig-
nifies that the solution is an optimal solution. However, if other decision variables
have different values, so the solutions is a compromise of their objective values. Fur-
ther goals of multi-objective optimization are the convergence of the Pareto-optimum
which is a continuous front without larger gaps. As well as a broad diversification of
the Pareto-optimal solutions. These qualities are discussed in more detail in section
7.2 [13].

The multi-objective Optimizer worked out in this thesis is inspired by the ideas of
Rodrigues [36], Bauer [6] and Kwong [25]. In order to present the working method
of this algorithm as understandable as possible, we will first explain the different
objective functions of which we need at least two in order to be able to perform a
multi-objective Optimization. Thereby we pursue several approaches. Next we define
the Pareto frontier and the corresponding Pareto optimum. Then we introduce the
single-Objective Optimizer which we will use for our multi-objective Optimization.
Finally we present some results and the application of our optimizer to the three real
wind farms for which we have the related data sets.

7.1 Objective Functions
An objective function is the definition of the goal which an optimizer want to maxi-
mize or minimize. We define all functions as maximization problems to guarantee a
constant working method in the optimizer. We also measure an object function as a
relative value so that the different object functions are easier to compare for the opti-
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mizer. In addition, an object function is evaluated as a percentage value so that the
different object functions are easier to compare for the optimizer. We have investigated
four different object functions in the context of this thesis which are presented in the
following. The AEP efficiency, UQ variance, LCOE with cable and noise effect.

7.1.1 Annual Energy Production Efficiency

The most commonly used objective function in the development of wind parks is the
resulting energy outcome, which is also the main indicator of the subsequent financial
income. As explained in Section 3, this is implemented as AEP output. The AEP is the
generated energy with wake effect divided by the power without any wind turbulence,
i.e. the theoretical maximum power each turbine could reach at the given wind data,
if no other turbine was placed around it.

7.1.2 UQ Variance

The first idea for a second objective function is to include the uncertainty quantifica-
tion from Section 5. This reduces the variance in the result that we simulate using
different Monte Carlo methods. As described before, the variance is an important
value to examine a sample set for its scattering measure. So it measures how far a set
of perturbed results are spread out from their average value. With a lower variance it
could be achieved that the general result of our perturbed simulation is more reliable.
In order to obtain comparable variance values for different turbine layouts we use the
quasi Monte Carlo method. This method uses, as explained above, an equally dis-
tributed random sample set to perturb the input variables. As a result, the variance
for a specific position layout does not change during multiple applications and thus
remains traceable.

To get a first impression with the handling of variances on different turbine layouts
we will create some test cases. It is analysed, what the change of the layout affects
the variance and if there is a correlation with the AEP. Since a direct correlation has
no usability for multi-objective optimization. As these are then considered basically
as one function.
A similar situation as for the offshore wind farm Horn Rev 1 is generated for the inves-
tigation. 80 turbines are placed at a fixed distance from each other as shown in Figure
22. The quasi-Monte Carlo method is applied to the given layout and the variance is
evaluated. Then the distance is changed and re-evaluated. The distance is first set to
300 meters and then increased by 50 meters after each run up to a maximum distance
of 1000 meters. The AEP value increases continuously as the distance increases and
the wake effect has less influence on the turbines.

For the evaluation, the AEP power output and the variance were documented. The
result can be seen in Figure 22 (right). It can be noted that the variance decreases
with increasing AEP power on the x-axis.It can be seen, that the AEP power and the
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Figure 22: Investigation of variance using different turbine layouts by scaling the dis-
tances between the turbines. The left turbine layout was created with a
distance of 650 meters between the turbines, while the left layout was cre-
ated with a distance of only 450 meters. The resulting AEP and variance
values can be viewed in Table 3.

Test number 1 2 3 4 5 6
Distance 300 450 600 750 900 1000

AEP value 510653 570361 600885 617033 627224 631927
Variance 1.0468125 1.04144375 1.0320875 1.024825 1.019175 1.01645625

Table 3: AEP and variance results evaluation at different turbine layouts. The dis-
tances between the turbines were increased with each test. While the AEP
values naturally increase with distance, the variance values continuously de-
crease. This allows us to conclude that there is a connection between the two
values.

variance value do not have a complete linear relationship, but after this test it can be
concluded that the general relationship between AEP and variance continues in this
manner as visible in Table 3. Consequently, when optimizing for minimum variance
as an objective function, the AEP value is increased at the same time. However, this
type of optimization is already performed by our first objective function. The result
would be the same and thus no multi-objective optimization is possible, because no
different optima could be generated.

7.1.3 LCOE with Cabling

This section will provide the details of the LCOE with cable objective function for
optimizing and is inspired by the work of Bauer [6] and Cremerius [11]. It is based
on the idea of saving costs in the form of cable routing for the transport of electricity
between the turbines and integrates these into the LCOE. As explained in Section
3.6.2 the LCOE is the price of electricity per MWh over the lifetime of a wind farm.
The initial costs are also integrated, which include, among other things, the costs for
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Figure 23: Overview of the different cable distributor stations on- and off-shore. The
Offshore Substation is relevant for the optimization of the cable lengths
in this thesis, as it connects the cable network to the individual turbines.
Source: [1].

the cables.
For cabling of offshore wind farms, it is fundamental to note that the entire system is

connected to an onshore substation, which allows electricity to feed into the country’s
electricity circuit. This is then connected via export cables to an offshore converter,
which carries out the high-voltage direct current transmission to the offshore substa-
tion. There is not much that can be changed about this previous system, because the
electricity has to be transported from the offshore substation to the shore anyway, and
the shortest route is simply used for this. Finally, cables are laid from the offshore
substation to the individual turbine foundations and at this point the turbine layout
has an impact on how much cable needs to be laid. An overview of the different sta-
tions can be seen in Figure 23. Thereby not every single turbine foundation has to be
connected directly to the substation, instead one cable can connect several turbines to
it. This saves installation costs, but the more turbines are connected at the same time,
the more power the cable needs to transport. Therefore, in this paper we assume that
every cable laid is a comparably strong model.

Clearly, the closer the turbines are placed to the offshore substation, the more the
cost of the cable itself and the installation of the cable will decrease. However, it
should also be noted that smart positioning of the turbines saves cable length, since,
for example, turbine foundations placed in a series require less cable length than tur-
bines positioned in a mixed-up order. And exactly this saving is the focus of this
objective function and can be viewed in Figure 24. Since the efficiency of the turbines
is in the focus, this optimization function can still save some fundamental costs in the
end. In the figure this becomes clear by the left turbine grid in which the turbines
are not extended to the entire available area, but are placed closer to the offshore sub-
station. This is also due to the fact that a further distance would only bring about a
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Figure 24: Example of the effect of cable optimization on a real world offshore wind
farm. In the left half of the wind farm, not the entire usable area (red) is
used to place the turbines (black) as far apart as possible. The turbines
are located closer to the offshore substation to save cable material. Source:
[35][2].

minimal increase in efficiency while the saving of the cable network has a strong impact.

As you can recognize in the work of Cremerius [11], the topic of cabling and espe-
cially the cost-reduced placement of these cables is quite complex. Therefore, with
this work we use a simplified strategy to quickly lay a cable network. For this pur-
pose the Minimum Spanning Tree (MST) algorithm connects all positions together,
without any cycles and with the minimum possible total length. The root of the MST
is the offshore substation from where the MST extends over all turbine foundations.
The minimum overall length is now taken as the reference for the cost function. As
mentioned before we use a robust cable everywhere which can be priced with about
300000 Euro per kilometre [3]. In addition, there is about 550000 Euro per kilometre
for the transport and installation of the cables [11]. That’s a total of 850000 euros for
every kilometre of cable, which turns out to be a factor not to be underestimated with
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Cable cost (e/km) Installation cost (e/km) Total (e/km)
300000 550000 850000

Table 4: Breakdown of the various costs of installing cables in an offshore wind farm.
Source: [3] [11]

a larger number of turbines as summarized in Table 4.

The combined value of total cable costs and the minimum overall length of the MST
is now integrated into the LCOE as defined in Section 3.6.2. For this, only the capital
costs, which previously included the total construction costs, are being split. Thus, the
formula of the LCOE does not need to be further adapted. Finally, the previous LCOE
minimization problem is turned into a maximization problem, which can be specified
as a percentage. For this purpose, a layout with a minimum distance between the
turbines and the substation is selected as the lower bound. The upper barrier, on the
other hand, is a very wide-ranging layout, which depends on the rotor diameter. Thus
for a new layout always an LCOE value between the two bounds is calculated, which
is inverted to maximize the problem during optimization.

7.1.4 Noise Model

The most common complaint about onshore wind turbines is that they are noisy, which
leads to a main focus of public society and a negative view of wind farms. The noises
produced are mainly due to modulation associated with the blade passage past the
tower and turbulence in the air. The nearest distance that a wind turbine is typically
placed to a home is 300 meters or more. At that distance, a turbine will have a sound
pressure level of about 43 decibels (dB) [19]. Noise generation is also important for
offshore wind farms, as it affects animals and wind farms are also built close to the
coast. In addition, that natural ambient noise levels in the ocean are generally much
greater than in air. With this background some simple noise calculations have been
implemented so that they can be taken into account in multi-objective optimization
based on the idea of Kwong [25].

The calculation refers to a specific point and depends on wind speed, observation
position, distance and produced sound of the certain turbine type. These parameters
are examined in the following. The average noise level over an entire year is of particular
interest. The produced noise level of a certain turbine type is fixed throughout the
entire calculation and therefore does not need any further investigation. However, the
position of the measurement in relation to the turbine is important. Since here, as
was made clear in the explanation of the wind model in Section 3.1, the probabilities
for the occurrence of a certain direction must be considered. Just like the intensity of
the wind speed, as summarized in Figure 25a. It is noticeable that this development
is very similar to the wake effect.
The second important parameter is the distance to a wind turbine. However, the noise
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(a) Effects of distance on the noise level of the individual wind directions.
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(b) Effects of distance on the probabilities of noise level.

Figure 25: Effects of distance on noise level observed over a whole year. The graph on
the left shows the noise development at a short distance to the wind farm,
while the graph on the right simulates a distant position. As the distance
to the wind farm increases, the noise level reduces.
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level decreases with further distance as becomes visible for both cases in Figure 25.
As well as the probability development for the individual noise intervals in Figure 25b
are considered.

7.2 Pareto Frontier
This section defines the Pareto Frontier, also known as Pareto Front or Pareto set.
Named after the Italian engineer, sociologist and economist Vilfredo Pareto (1848-
1923), this mathematical optimization technique generates a collection of layout sam-
ples that provide an optimized result on all given objective functions. A layout sample
corresponds to a certain set of turbine positions which are then evaluated with our sim-
ulation for the different objective functions. These samples are generated by a local
search algorithm, which is described below in Section 7.2.1. So when a new sample is
created, it is compared to all other elements from the Pareto Front. The new sample is
first added to the set, then all elements are checked for being completely dominated by
another sample. In this case, the dominated sample is removed from the Pareto Front.
Total dominance is defined such that another sample exceeds the currently evaluated
one in all objective functions. Through this filtering process, Pareto Frontier keeps
only the best samples of a set, which form the Pareto optimum upon optimization.

To generate such a Pareto optimum there are several optimization algorithms. In
this thesis, a property of the neighbourhood optimization of the Local Search is used.
Since the layout is fundamentally changed only minimally in each optimization step,
it can be assumed that the result of an objective function also changes only minimally
compared the previous one.
To achieve this, a tracing approach is applied. The first step is to perform an opti-
mization after each individual objective function. The result of these individual opti-
mizations are the edges of the future Pareto optimum, since it can be supposed that no
better individual result can be achieved. Afterwards, an optimization in the direction
of every other objective function is carried out with the layout of the edge samples.
During these optimizations, the generated sample is checked for total dominance by
the Pareto Frontier after each Local Search step. These traces leads gradually to an
efficient creation of the Pareto optimum.

In the context of this thesis also a weighted approach was examined. Each objective
function is assigned a weight. These weights can change in the course of optimization,
but always sum up to one. An iteration step now corresponds to the optimization
with the Local Search and all objective functions with a fixed weight which form a
connected target function. Now the weights change for the next iteration. Thereby
each iteration creates a new element from the Pareto optimum, except if the same
weighting is selected twice. This generates a Pareto optimum with strong solutions
and has the advantage that it is not necessary to check in every iteration step whether
dominated elements exist.
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A comparison of the two approaches reveals a fundamental difference in the gener-
ation of a Pareto Frontier. With the tracing method, many solutions are generated,
some of which are then inserted into the Pareto optimum and others are dominated and
discarded. In contrast, the weighted method only generates individual high-quality so-
lutions, which are then all sorted into the Pareto optimum. Thus, the tracing approach
generates a dense Pareto optimum in a short time, whereas the weighted approach gen-
erates only a small number of results and has a long runtime. In this thesis the tracing
approach is further pursued, since a dense Pareto optimum leads to a larger selection of
solutions and the running time is a factor not to be underestimated when investigating
wind farms with a large number of turbines.

7.2.1 Local Search

At the lowest level of our multi-objective optimization is the Local Search, which gener-
ates the different layout samples, that are then examined and compared by the Pareto
Frontier explained above. A different type of optimization algorithm could also be
used. The Local Search algorithm is a heuristic method for solving computationally
hard problems. The algorithm can be applied to any problem that requires a max-
imum solution as a criterion. Therefore, the declared objective functions have been
defined all as maximization problems. Local Search goes step by step through possi-
ble solutions and maintains the best one for the next step. A new possible solution
is generated by local changes, also known as neighbourhood changes. The algorithm
iterates over all turbine positions and moves them minimally around the old position.
Then the turbine set is evaluated again and the best solution of both is kept for the
next iteration step. The probing of new positions of a certain turbine does not happen
randomly, but according to a certain pattern. Circular iteration is performed around
the old position in different distances and directions as shown in Figure 26 for 12 wind
directions and 5 distances. It becomes clear that the result of an iteration can improve
more if a higher number of directions and distances is chosen. However, the complexity
of the runtime increases strongly, because a simulation has to be performed for each
tested position. The algorithm ends when a certain number of runs has been reached
or the result no longer improves significantly.

In this thesis the Local Search variant Simulated Annealing (SA) by Kirkpatrick
[24] is used. SA is inspired by the cooling of hot metal. During the annealing the
metal changes from liquid to a solid state. The outcome of the annealing process
differs with the speed of the cooling. With a slow and controlled cooling a crystalline
structure can be achieved. The higher the temperature the faster the atoms move and
therefore it is easier to change the structure. The more the temperature decreases the
slower the atoms become and it is higher probable that it stays in its current form.
Similar to this behaviour in the simulated annealing algorithm it is more likely that a
solution will get accepted if the temperature is high. While the temperature decreases
the solution space gets more restricted. For our optimization problem it means that
solutions can also be accepted which are not significantly better than others, but are
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Figure 26: Simulated turbine positions (orange) of the local search for one iteration
step and one specific turbine (red). Here with the setting for five different
distances and 12 wind directions. At the end, the local search only retains
the position with the largest optimum of the entire turbine layout.

still within a certain tolerance range. Especially, for multi-objective optimization this is
an important feature, because more solutions are supported where one of the objective
functions returns lower scores. As a result, more elements are added to the Pareto
Front and the Pareto optimum is given a denser shape [10].

7.3 Results
We run our introduced multi-objective Optimization Algroithm on different test fields
and examine them. In our investigation, we proceed in three parts, mainly distinguish-
ing which of the introduced objective functions are included in the multi-objective op-
timization as target functions. Since the AEP power outcome has a very high priority
in the evaluation of every wind farm, this function is always considered. The first two
analyses refer to optimizations with two objective functions each, the AEP power and
the noise effect or the LCOE with cable. The third analysis will then finally contain
all three objective functions at once and demonstrate that the algorithm works with
numerous objective functions. The test cases are each executed on a square field with
different numbers of turbines. This covers a wide range of different possibilities and
it can be assumed that the multi-objective optimization will also be effective in larger
fields with a growing number of turbines.

The first test case corresponds to a multi-objective optimization with the AEP power
outcome and the noise effect. The field grows proportionally with the number of tur-
bines and the measurement point for the noise effect remains constant at point (0, 0)
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Test case 1 2 3 4
Turbine number 25 35 45 55

AEP power/Noise test
Field size (x = y) 1400 1800 2200 2600

Noise position (0, 0) (0, 0) (0, 0) (0, 0)
AEP power/LCOE test

Field size (x = y) - 2600 3000 3400
Substation position - (1100, 1100) (1300, 1300) (1500, 1500)

Table 5: Information for the different test cases to evaluate the multi-objective opti-
mizer. Each test case has a certain number of turbines, a field size, a simulated
measuring point for the noise effect and a position for the cable substation.
Care is taken to ensure that parameters adapt to the number of turbines, so
that the results are comparable despite the different number of turbines.

to ensure comparability, as shown in detail in Table 5. The generated Pareto optima
for the different number of turbines can be seen in Figure 27. First of all, it is clear
that all four test cases have a similar course. This is also intended and verified that the
optimization can also handle other inputs such as turbines, number and size of the field
and will still have a comparable curve. The AEP power fluctuates in a strong range in
contrast to the noise effect, which is due simply to the fact that the AEP value depends
significantly on the number of turbines and also the maximum achievable AEP differs
in the various test cases. If the graph were not displayed with the final power values
but with the percentage values, as in Figure 29 for example, the four curves would lie
slightly above each other.
In contrast to the AEP, the noise value for all test cases is in a similar range. This
is because we have chosen the measuring point constant and this provides the same
values when the turbines are positioned nearby. However, it is also noticeable that the
45 turbines with the largest field can achieve the lowest noise value, which is due to
the fact that the turbines can be positioned further away from the measuring point
on a larger field. On the other hand, it can be observed that the highest noise value
fluctuates strongly and only increases with larger gaps as the AEP power grows. This
occurs to varying intensities in the test cases, since the abort criterion of local search
declares the algorithm complete if the efficiency growth is too low.
In summary, the resulting Pareto optima are all in a rather strong curved form, which

suggests that the two objective functions do not work completely against each other,
but that good coexistent solutions exist. Which ensures a good AEP efficiency of the
turbines, but can still keep the noise factor low.

The second test case corresponds to a multi-objective optimization with AEP power
efficiency and the lowest possible LCOE. The field again grows proportionally to the
number of turbines. However, the position of the offshore substation changes, so that
in relation to the field size it is approximately at the same position in the lower left
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Figure 27: Evaluation of Pareto optima with AEP value and noise effect for different
numbers of turbines. The result is curve-like for all evaluations, which
indicates a relatively good interaction between the two objective functions
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Figure 28: Evaluation of Pareto optima with AEP value and LCOE for different num-
bers of turbines. The result has a relatively linear form in all evaluations,
which indicates that the two objective functions do not interact so well.
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AEP power/Noise/LCOE test
Turbine number Field size (x = y) Noise position Cable Substation

50 2000 (1200, 0) (400, 400)

Table 6: Settings for the investigation of the multi-objective optimizer with three target
functions. The number of turbines and the field size were selected for the
general settings. For the LCOE a specific position of the substation was
chosen and for the Noise Effect a measuring point.

quarter. The exact data can be found in Table 5. Since economic values of a wind
farm are required for the calculation of the LCOE, the data of the offshore wind farm
Horns Rev is used and scaled to the number of turbines. As a result, the calculated
LCOE is in the same range for all test cases. The resulting Pareto optima can be seen
in Figure 28. During the evaluation, similar characteristics as in the first test case can
be observed. The AEP power value differs significantly due to the different number of
turbines.
For the LCOE it can be observed that the value itself only changes in a minor range.
This is because the cable costs are only considered as part of the initial construction
costs of a wind farm in the LCOE. As a consequence, the results due to changes in
cable costs are minimal. Nevertheless, these small fluctuations should not be under-
estimated in the extrapolation. In addition, it is noticeable that the improvement of
the LCOE is consistent, which is due to the fact that the given field is quadratic and
therefore the cable network is not faced with any exceptional cases.
Overall, it is remarkable that in contrast to the first test case, the Pareto optima is not
curved rather linear. This suggests that the two objective functions act more strongly
against each other to achieve good results. On closer inspection, it is due to the char-
acteristic that a good LCOE is largely based on the fact that the turbines are close
to each other, thereby reducing the overall cable length. In contrast, the AEP power
outcome is dependent on the turbines being further apart, thus weakening the wake
effect. Therefore, when selecting an element from the Pareto optimum, it should be
noted that it comes from the upper part of the AEP efficiency, since there the desired
effect of a high AEP occurs with a slightly cable network oriented layout, as explained
in Section 7.1.3.

The third test case now contains all three introduced objective functions at once.
This time a specific number of turbines and a field size will be investigated. The exact
information can be found in Table 6. The resulting Pareto optimum can be seen in
Figure 29. In the graph, the first two objective functions are plotted as usual on the
x and y axis, while the third function is represented as a color with the corresponding
colorbar on the right side. In addition, this graph does not convert the percentage
value of the target functions to the real values. Which does not change the shape of
the Pareto front and gives an idea of the percentage scaling of the objective functions.
In contrast to the other two test cases, this Pareto optimum has no uniform shape,
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Figure 29: Examination of the Pareto optimum with three objective functions at once
plotted in a 2D graph. The evaluation of the target functions is given in
percent as for the multi-objective optimizer for a 50 turbines layout. The
colors represent the LCOE value of the respective turbine layout according
to the right color scheme.

neither curved nor linear. Since the three objective functions expand in a certain
direction, it becomes clear how the AEP expands to the top left and the noise effect to
the bottom right. However, the LCOE expands downwards in the middle of the graph
by two ropes, which are illustrated by the red dots. This is due to the fact that both
the AEP and the noise effect decrease as the LCOE improves. The two ropes clearly
show how each was optimized from one direction.
On closer inspection, the previously made findings will be confirmed once again. The
AEP value and the noise effect form a curved line in the Pareto optimum and a good
AEP value in the upper left corner gets bad LCOE results. However, the noise effect
and the LCOE with cable can coexist well, as shown by the orange dots in the lower
right corner. In addition, some peaks can be detected compared to the multi-objective
optimization with two functions.

7.4 Performance on Real World Wind Farms
In the last part of this section the multi-objective Optimizer is applied to the real wind
farm scenarios of Horns Rev 1, Sandbank and DanTysk. This means that the same
field boundaries, turbine types, economic values and basic settings are used. Each wind
farm once with AEP and noise effect as object functions as well as AEP and LCOE.
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Wind farm AEP power (MWh) Efficiency (%) LCOE (cent/kWh) NPV
Horns Rev 1 578362 88.5119 12.1475 −100.749

Sandbank 1290810 92.6519 8.06855 948.31
DanTysk 1251560 94.2726 9.20149 521.498

Table 7: Simulation results of different cost models with original turbine layouts for
the three real-world wind farms.

Graphically the dots of the Pareto optimum are colored and the dominated elements
are shown in grey. To compare the results, the simulated values of the original turbine
positions can be found in Table 7.

7.4.1 Horns Rev 1

The offshore wind farm Horns Rev is placed in the North Sea and was build in three
phases. Here we look at the first built part, the Horns Rev 1. This was the first large
scale offshore wind farm of the world, build in 2002. The wind farm has a total of 80
Vestas V80-2.0 MW turbine units installed. Originally the turbines are laid out as an
oblique rectangle of 5km × 3.8km and the distance between the turbines is constant
560 m in both directions.

In the first multi-objective optimization the objective functions AEP efficiency and
noise were used, the resulting Pareto optimum can be examined in Figure 30 (left).
The measurement position for the noise level was set to (6000, 0), which is the lowest
right corner of the field. At closer inspection a well consistent Pareto optimum (blue
dots) curve can be seen. Thereby the edges of the front range from a noise minimum
of 25 dB to an AEP maximum of just over 600 MWh. The dominated elements (gray)
are most near the Pareto optima, which suggests that most of the steps in the opti-
mization were sensible and in the right direction. Only a few elements are offside and
correspond to redundant iteration steps.
The optimization of AEP efficiency and LCOE, on the other hand, forms a wider spec-
trum of dominated elements as visible in Figure 30 (right). This indicates that in this
case it was much more difficult for the algorithm to find a solution that matches both
objective functions. The similar nature of the Pareto optimum to the previously gen-
erated test cases also indicates this. Here a quite linear Pareto optimum with a very
slight curvature is recognizable. However, the jump in the upper left corner, which
increases the AEP again by 10000, and the large number of dominated elements in this
area is conspicuous.

In summary, the optimizer delivers a strong Pareto optimum in both cases, which are
characterized by a dense behavior. Consequently, from a large number of new layout
solutions for Horns Rev 1 can be chosen, which consider two objective functions.
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Figure 30: Evaluation of the multi-objective optimization for Horns Rev 1. On the left
side for AEP and noise and on the right side for AEP and LCOE as objective
functions. The colored elements correspond to the Pareto optimum and the
grey points to the dominated turbine layouts, whose simulated values were
superior during the optimization.

7.4.2 Sandbank

Sandbank is an offshore wind farm which is located about 90 kilometres west of the
island of Sylt and covers an area of 59km2. In this thesis we consider the first de-
velopment stage with 72 wind turbines of the type Siemens SWT-4.0-130. The field
corresponds to an elongated parallelogram with a width of about 3.5km and a length
of 19km. The noise measuring point was set to (6500, 0) at the lowest point of the
usable area and the offshore substation was set to (3500, 9500) by estimation of the
original Sandbank turbine map.
The results of the multi-objective optimization are visible in Figure 31 (left). In the
first optimization case it can be observed that the Pareto optimum has a gap at the
top where a strong loss of the noise effect results from the slightly increasing AEP. On
its other side it also becomes visible that only by strong restrictions of the AEP value
small improvements of the noise are achieved. Consequently, there can be spoken of a
hard curve of the Pareto optimum, where the sides run straight and the actual curve
takes place in a small area. Also noticeable is a small jump in the middle of the Pareto
optimum, in which the dominated elements show how the iterations have proceeded
in the optimization. Overall, the dominated elements are all very close to the optima,
which speaks for an effective optimization process.
The second optimization with LCOE in Figure 31 (right) has a similarly good conver-
gence of the dominated elements to the Pareto optimum with the exception of a series
in the lower field area. Overall, the Pareto optimum is very densely distributed and
has no gaps.
In summary, the optimizer worked very efficiently in both cases with barely any un-
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Figure 31: Evaluation of the multi-objective optimization for Sandbank. On the left
side for AEP and noise and on the right side for AEP and LCOE as objective
functions. The colored elements correspond to the Pareto optimum and the
grey points to the dominated turbine layouts, whose simulated values were
superior during the optimization.

necessary samples.

7.4.3 DanTysk

The offshore wind farm DanTysk, which is located about 70 km west of the island
of Sylt and covers an area of 71 km2, has been producing electricity for the German
power network since 2014. 80 Siemens SWT-3.6-120 turbines are installed on a long
triangular shaped field with a width of 5 km and a length of 19 km. The field is more
challenging than the previous two, as there is still a restricted area in the upper part
of the area. The noise measuring point was set to (5000, 0) into the lower right corner
of the field and the offshore substation was set to (4000, 7000) by estimation of the
original DanTysk turbine layout.

During the evaluation of the first multi-objective optimization in Figure 32(left) it is
noticeable that there are many dominated elements in the upper half of the AEP peak.
Also a gap is to be discovered in the Pareto optimum in the upper part. This indicates
that many samples were created to achieve a high AEP power value. In contrast, on
the noise side a very linear sequence of optima can be seen, similar to the optimization
of the sandbank. This makes the fluctuation of the AEP value, seen in the overall
evaluation, very strong. For this reason a solution from the upper quarter should be
chosen for a final selection from the Pareto optimum.
In the second optimization, as shown in Figure 32(right), the distribution of the dom-
inated elements is stronger than in the sandbank analysis, but still in a good range,
as only one row in the lower part is noticeable again. The Pareto optimum is densely
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Figure 32: Evaluation of the multi-objective optimization for DanTysk. On the left side
for AEP and noise and on the right side for AEP and LCOE as objective
functions. The colored elements correspond to the Pareto optimum and the
grey points to the dominated turbine layouts, whose simulated values were
superior during the optimization.

distributed without large gaps.

A general comparison of all three wind farms shows that the AEP value for opti-
mization with noise effect always fluctuates much more strongly than for LCOE opti-
mization. Thus, the final selection should always be made from the solutions of the
upper quarter. Furthermore, the LCOE Pareto optima is denser and without jumps
at the Sandbank and DanTysk wind farms, where the offshore substation position is
close to the real position. In contrast to Horns Rev 1, where the substation position
was chosen more randomly. In summary, the multi-objective Optimizer provides a set
of good solutions for the real-world wind farms, with even better results then for the
original layouts by the combination of two objective functions.
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8 Conclusion and Future Works
In this thesis both the model side and the optimizer side of offshore and onshore wind
farms are covered. First the simulation is considered and a time-dependent power
production is introduced to consider the effects of different energy prices. The inves-
tigation has shown that optimization with time-dependent prices has an influence on
the layout of the turbines. In order to distinguish the individual time intervals, the
raw data were examined more closely and used more accurately. A future expansion
would be the additional differentiation into months or seasons, since the influence of
Solar Energy on the energy price in winter is smaller.

These more accurate raw data measurements are also used for the new method of
AEP calculation. It was analysed how exactly the FINO3 measurement data are struc-
tured and from which wind directions and wind speeds most energy follows. For the
implemented calculations, it is possible to choose between Nearest Neighbour and Bi-
linear Interpolation. The comparison with the standard method has shown that the
new calculation comes much closer to the exact result. In addition, the investigation
turned out that a more exact resolution of the simulated wind speeds has hardly any ef-
fect. However, the resolution of the wind directions has a very large effect on the result.

As next topic uncertainties were discovered and the multi-level Monte Carlo as well
as the quasi-MLMC method were introduced for a more accurate evaluation of per-
turbed input variables. Compared to the classic Monte Carlo methods, the two new
algorithms have the advantage that no exact input parameters, such as the sample
size, are required and a satisfactorily accurate result is always achieved. In the future,
an investigation of the influence of each individual input parameter on the final result
can be performed with the MLMC methods.

Last but not least, a multi-objective optimizer is introduced which generates a set
of optimal solutions with several target functions and is applied to the real-world wind
farms Horns Rev 1, Sandbank and DanTysk. The target functions used in this thesis
are power generation, LCOE costs and noise generation. The result of our multi-
objective optimizer is a continuous Pareto front with only few gaps, regardless of the
selected target functions. This allows an exact result to be chosen according to one’s
own wishes.
Further work in this topic area would be the inclusion of new objective functions,
such as CO2 emission [7][15] or the consideration of the cable power loss [16], as well
as an extension of the single optimizer used. An evolutionary approach, such as the
NSGA-II algorithm, would be suitable for this, since it already achieves verifiably good
results by an efficient simultaneous calculation of several Pareto optima at once [12].
Especially since this topic has recently been properly explored, there are still some
extensions and investigations that can be done.

50



References
[1] Grid connection. https://www.nordseeone.com/wind-farm/

power-connection.html. Accessed: 2019-01-23.

[2] Emperor cable cleats chosen for gwynt y môr offshore
wind farm. https://www.etscablecomponents.com/2013/07/
emperor-cable-cleats-chosen-gwynt-y-mor-offshore-wind-farm/. Ac-
cessed: 2019-01-23.

[3] Submarine power cables. http://www.nexans.no/Germany/2013/
SubmPowCablesFINAL10jun13engl.pdf. Accessed: 2019-01-26.

[4] M. Abramowitz and I. Stegun. Handbook of mathematical functions: with formu-
las, graphs, and mathematical tables, volume 55. Courier Corporation, 1965.

[5] R. J. Barthelmie, G. C. Larsen, S. T. Frandsen, L. Folkerts, K. Rados, S. C.
Pryor, B. Lange, and G. Schepers. Comparison of wake model simulations with
offshore wind turbine wake profiles measured by sodar. Journal of Atmospheric
and Oceanic Technology, 23(7):888–901, 2006. doi: 10.1175/JTECH1886.1.

[6] J. Bauer and J. Lysgaard. The offshore wind farm array cable layout problem: a
planar open vehicle routing problem. Journal of the Operational Research Society,
66(3):360–368, 2015.

[7] B Ould Bilal, V Sambou, CMF Kébé, PA Ndiaye, and M Ndongo. Methodol-
ogy to size an optimal stand-alone pv/wind/diesel/battery system minimizing the
levelized cost of energy and the co2 emissions. Energy Procedia, 14:1636–1647,
2012.

[8] R. Cakar. Uncertainty quantification of wind farm models. Bachelor thesis, RWTH
Aachen University, 2017.

[9] J. Choi and M. Shan. Advancement of jensen (park) wake model. In Proceedings
of the European Wind Energy Conference and Exhibition, pages 1–8, 2013.

[10] Y. Collette and P. Siarry. Multiobjective optimization: principles and case studies.
Springer Science & Business Media, 2013.

[11] P. Cremerius. Optimal cable layout for offshore wind farms by integer linear
optimization. page 71, 2016.

[12] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In Inter-
national Conference on Parallel Problem Solving From Nature, pages 849–858.
Springer, 2000.

51

https://www.nordseeone.com/wind-farm/power-connection.html
https://www.nordseeone.com/wind-farm/power-connection.html
https://www.etscablecomponents.com/2013/07/emperor-cable-cleats-chosen-gwynt-y-mor-offshore-wind-farm/
https://www.etscablecomponents.com/2013/07/emperor-cable-cleats-chosen-gwynt-y-mor-offshore-wind-farm/
http://www.nexans.no/Germany/2013/ SubmPowCables FINAL 10jun13 engl.pdf
http://www.nexans.no/Germany/2013/ SubmPowCables FINAL 10jun13 engl.pdf


[13] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages
403–449. Springer, 2014.

[14] DNV. Framework for the categorisation of losses and uncertainty for wind energy
assessments. Technical report, KEMA, 2013.

[15] R. Dufo-López and J. L. Bernal-Agustín. Multi-objective design of pv–
wind–diesel–hydrogen–battery systems. Renewable energy, 33(12):2559–2572,
2008.

[16] M. Fischetti and D. Pisinger. Optimizing wind farm cable routing considering
power losses. European Journal of Operational Research, 08 2017. doi: 10.1016/
j.ejor.2017.07.061.

[17] M. B. Giles. Multilevel monte carlo methods. In Monte Carlo and Quasi-Monte
Carlo Methods 2012, pages 83–103. Springer, 2013.

[18] D. Guirguis, D. A. Romero, and C. H. Amon. Toward efficient optimization of
wind farm layouts: Utilizing exact gradient information. Applied Energy, 179:110
– 123, 2016. ISSN 0306-2619.

[19] J. P. Harrison. Wind turbine noise. Bulletin of Science, Technology & Society, 31
(4):256–261, 2011.

[20] G. Heiming. Modeling and simulation of offshore wind farms. Bachelor thesis,
RWTH Aachen University, 2015.

[21] T. J. Sullivan. Introduction to Uncertainty Quantification. Springer, Heidelberg,
New York, Dordrecht, 2015.

[22] N. O. Jensen. A Note on Wind Generator Interaction. Number 2411 in Risø-M.
Risø National Laboratory, Rosklide, 1983.

[23] I. Katic, J. Højstrup, and N. O. Jensen. A simple model for cluster efficiency. In
European wind energy association conference and exhibition, pages 407–410, 1986.

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. science, 220(4598):671–680, 1983.

[25] W. Y. Kwong, P. Y. Zhang, D. Romero, J. Moran, M. Morgenroth, and C. Amon.
Wind farm layout optimization considering energy generation and noise propaga-
tion. In ASME 2012 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pages 323–332. American
Society of Mechanical Engineers, 2012.

[26] M. A. Lackner and C. N. Elkinton. An analytical framework for offshore wind
farm layout optimization. Wind Engineering, 31(1):17–31, 2007. doi: 10.1260/
030952407780811401. URL https://doi.org/10.1260/030952407780811401.
Accessed: 02.05.2018.

52

https://doi.org/10.1260/030952407780811401


[27] B. Lange, H.-P. Waldl, A. G. Guerrero, D. Heinemann, and E. J. Barthelmie.
Modelling of offshore wind turbine wakes with the wind farm program flap. Wind
Energy: An International Journal for Progress and Applications in Wind Power
Conversion Technology, 6(1):87–104, 2003.

[28] W. J. Morokoff and R. E. Caflisch. Quasi-monte carlo integration. Journal of
Computational Physics, 122(2):218 – 230, 1995.

[29] N. G. Mortensen, D.N. Heathfield, O. Rathmann, and M. Nielsen. Wind atlas
analysis and application program: Wasp 11 help facility, 2014.

[30] G. Mosetti, C. Poloni, and B. Diviacco. Optimization of wind turbine positioning
in large windfarms by means of a genetic algorithm. Journal of Wind Engineering
and Industrial Aerodynamics, 51(1):105–116, 1994.

[31] p. Bratley and B. L. Fox. Algorithm 659: Implementing sobol’s quasirandom
sequence generator. ACM Trans. Math. Softw., 14(1):88–100, March 1988.

[32] M. Pisaroni, S. Krumscheid, and F. Nobile. Quantifying uncertain system out-
puts via the multilevel monte carlo method–part i: Central moment estimation.
Technical report, 2017.

[33] S. Raychaudhuri. Introduction to monte carlo simulation. In Proceedings of the
40th Conference on Winter Simulation, WSC ’08, pages 91–100. Winter Simula-
tion Conference, 2008.

[34] P. Richter, J. Wolters, R. Cakar, A. Verhoeven-Mrosek, and M. Frank. Uncer-
tainty quantification of offshore wind farms. John Wiley & Sons, 2017.

[35] S. Rodrigues, C. Restrepo, E. Kontos, R. Teixeira Pinto, and P. Bauer. Trends
of offshore wind projects. Renewable and Sustainable Energy Reviews, 49:
1114 – 1135, 2015. ISSN 1364-0321. doi: https://doi.org/10.1016/j.rser.
2015.04.092. URL http://www.sciencedirect.com/science/article/pii/
S1364032115003627.

[36] S. Rodrigues, P. Bauer, and P. A. Bosman. Multi-objective optimization of wind
farm layouts–complexity, constraint handling and scalability. Renewable and Sus-
tainable Energy Reviews, 65:587–609, 2016.

[37] B. Roscher, F. Harzendorf, R. Schelenz, and G. Jacobs. Reduced levelized cost
ofenergythrough optimization of tower height, rotor diameter and\wind farm lay-
out. American Journal of Engineering Research (AJER), 7(4):130–138, 2018.
ISSN 2320-0847.

[38] M. Samorani. The wind farm layout optimization problem. In Handbook of Wind
Power Systems, pages 21–38. Springer, 2013.

53

http://www.sciencedirect.com/science/article/pii/S1364032115003627
http://www.sciencedirect.com/science/article/pii/S1364032115003627


[39] R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applica-
tions. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2013.

[40] A. Tesauro, P.-E. Réthoré, and G. C. Larsen. State of the art of wind farm
optimization, chapter 0, page 11. European Wind Energy Association (EWEA),
2012.

[41] A. Tuzuner and Z. Yu. A theoretical analysis on parameter estimation for the
weibull wind speed distribution. In Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE,
pages 1–6. IEEE, 2008.

[42] J. Wiernga. Representative roughness parameters for homogeneous terrain.
Boundary-Layer Meteorology, 63(4):323–363, 1993.

54


	List of Figures
	List of Tables
	Introduction
	Related Works
	Simulation of Wake Effect
	Optimization of Wind Farm Layouts

	Model
	Wind Model
	Weibull Distribution

	Wake Model
	Power Generation Model
	Gross Annual Energy Production
	Time-dependent Annual Energy Production
	Cost Model
	Net Annual Energy Production
	Levelized Cost of Electricity
	Net Present Value
	Internal Rate of Return

	Tariff Consideration

	AEP of Raw Data
	Nearest Neighbour Interpolation
	Bilinear Interpolation

	Results

	Wind Farm Modelling with Uncertainties
	Uncertain parameters
	Stochastic Model
	Uncertain Wind Model
	Uncertain Wake Model
	Uncertain Power Generation
	Uncertain Gross Annual Energy Production
	Uncertain Net Annual Energy Production
	Uncertain Levelized Cost of electricity
	Uncertain Net Present Value
	Uncertain Internal Rate of Return


	Multilevel-Monte Carlo Methods
	Monte Carlo
	Quasi-Monte Carlo
	Multilevel-Monte Carlo
	Quasi-Multilevel-Monte Carlo

	Multi-Objective Optimization
	Objective Functions
	Annual Energy Production Efficiency
	UQ Variance
	LCOE with Cabling
	Noise Model

	Pareto Frontier
	Local Search

	Results
	Performance on Real World Wind Farms
	Horns Rev 1
	Sandbank
	DanTysk


	Conclusion and Future Works
	References

