
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Accelerated Raytracer for Solar Tower Power Plants
Beschleunigte Raytracer für Solarturmkraftwerke

Bachelorarbeit
Informatik

September 2019

Vorgelegt von Florian Hövelmann
Presented by Stephanstraße 43

52064 Aachen
Matrikelnummer: 369069
florian.hoevelmann@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Software Modelierung und

Verifikation (MOVES)
RWTH Aachen University

Externer Betreuer Dr. rer. nat. Pascal Richter
External supervisor Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat in dieser oder einer
ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.

Aachen, im September 2019

Florian Hövelmann

II

Contents

List of Figures IV

List of Tables V

1 Introduction 1
1.1 State of the art . 2
1.2 Outline . 2

2 Optical model 4
2.1 Environment . 4
2.2 Heliostats . 4
2.3 Receiver . 5
2.4 Optical losses . 7
2.5 Generation of representative solar rays 11
2.6 Blocking and shading computations . 14
2.7 Discretization of the receiver . 15
2.8 Ray tracing pipeline . 15

3 Monte Carlo ray tracing methods 17
3.1 Classical-Monte Carlo method . 17
3.2 Multi-Monte Carlo method . 19
3.3 Quasi-Monte Carlo method . 20
3.4 Tower blocking . 21

4 Convolution methods 23
4.1 Analytic image method HFLCAL . 23
4.2 Gaussian convolution method . 29

4.2.1 Computation of a region representing a receiver piece 29
4.2.2 Integration of the bivariate Gaussian distribution over a polygon 36
4.2.3 Tower blocking . 47

4.3 Integrated convolution method . 50
4.3.1 Approximating the integrated Gaussian distribution 55
4.3.2 Use of the approximation . 59

5 Case study 61
5.1 Validation . 61

5.1.1 Fluxmap comparison . 64
5.1.2 Validation of the new integrated convolution method 64

5.2 Optimal setting for quasi- and multi-Monte Carlo 66
5.3 Accuracy vs runtime . 69
5.4 Characteristics of the convolution methods 72
5.5 Acceleration of the ray tracers . 74

5.5.1 Preselection . 74

III

5.5.2 CPU parallelization . 74

6 Conclusion and Outlook 76
6.1 Conclusion . 76
6.2 Outlook . 76

6.2.1 Distant dependent heliostat discretization 76
6.2.2 Combined receiver cells . 77
6.2.3 Reversed convolution methods 77
6.2.4 GPU Parallelization . 78
6.2.5 Other distributions . 79

References 80

IV

List of Figures

1 Solar tower power plant Planta Solar 10 (PS10) in Spain [29]. The figure
is derived from Richter et al. [34, p. 2] 1

2 Different tower types with different receiver types. The Figure is derived
from Richter [33, p. 11] . 6

3 Regular polygon with nine edges, an edge length of e and a circumscribed
circle of diameter d which is drawn in gray. 7

4 Horizontal shape of a cavity receiver with four panels. It is based on a
regular polygon with nine edges as illustrated in gray. 7

5 Illustration of our cylindrical receiver types 8
6 Error cones representing the optical errors [33, p. 17]. 10
7 Two dimensional perturbation for horizontal deviations. The lengths of

the deviation vectors illustrate the amount of perturbation. 12
8 Illustration of the required rotation to obtain the convoluted deviation

directions. The shortened deviation vectors are actually of unit length. 13
9 Discretization of a heliostat facet into 5 by 5 cells. From each cell a

representative ray originates, which intensity is weighted by its area [18,
p. 16]. 14

10 Simplified pipeline for the evaluation of the solar radiation at the receiver. 16
11 Problem of evaluating a representative ray traveling in the direction of

~r with a deviation direction of ~r hor. The Gaussian function defining the
deviation is shown in black, the heliostat cell in blue, the receiver cell
in green and the thin red lines illustrate the error cone. 17

12 Basic principle of the classical-Monte Carlo method. The generated
perturbed ray is shown in red. 18

13 Transformation from angle of horizontal deviation to length. 18
14 Basic principle of the multi-Monte Carlo method. Here, multiple sam-

ples, shown in red, are taken from the error cone. 19
15 Basic principle of the quasi-Monte Carlo method. Here, the generated

samples are more uniform and thus better represent the error cone with
few samples. 20

16 Blockage of the cavity receiver. The horizontal and vertical blocking
edges are drawn in thick red and the rest of the receiver window in thick
black. Here, l is the lifting height of the receiver to its lower window
edge and bvis a definitely visible point. 21

17 Transformation of the one dimensional Gaussian distribution of Sec-
tion 2.4 from angle to spanned region. 25

18 Bivariate Gaussian distribution of Equation (4.2) on the ray image plane
with the distance δ and standard deviations σver

beam, σhor
beam being exem-

plary set such that σver
span = σhor

span ≈ 1 m [33]. D marks a possible region
to integrate over. 25

19 Simplified example where the receiver pieces marked in green lies in the
ray image plane. 26

V

20 Illustration of the required calculations to compute the local coordinate
m′y of the midpoint m of a receiver piece marked in green. Analogously
the local coordinate m′x can be computed. 27

21 Basic principle of the Gaussian convolution method. The shaded red
region illustrates an exact evaluation of the error cone for the current
receiver piece. 29

22 Two dimensional version of the angular region Dang defined by the angles
α1 and α2. 30

23 Required projection to obtain the angles α1 and β1 of a 31
24 Example to illustrate the need of signed angles as the angles α1 and α2

are equal even though they refer to different corners. 32
25 Exemplary representative region Dspan illustrated in light green on the

ray image plane of a receiver piece shown in green. 32
26 Example of the perspective projection problem with the center of pro-

jection lying in the origin. The vector ~n is the normal of the image plane
onto which the point q1 and q2 are to be projected. 33

27 Problem of calculating local coordinates of the receiver corners on the
ray image plane. The coordinate system is defined by mray, ~r hor and ~r ver. 35

28 Angular regions of a polygon with four vertices. The figure is derived
from [1]. 37

29 Example of a general angular region before the rotation derived from [1]. 39
30 Rotated angular region which is defined by the length R and the angles

θ1 and θ2 derived from [1]. 39
31 Illustration for the calculation of the angles θ1 and θ2. 40
32 Calculation of angular regions including the cases where the constraints

of Equation (4.46) are not given. The figure is derived from [1]. 45
33 Simplified example of the cutting process for the cavity receiver to obtain

its visible pieces. The currently checked receiver piece is shown in dark
blue and the checked corners are marked with a dot. 48

34 Illustration of all possible cases when cutting a receiver piece horizon-
tally. Not visible corners are marked with a cycle and visible ones with
a dot. 49

35 Basic principle of our integrated convolution method. Here, the whole
heliostat cell of the representative ray is taken into account which re-
quires a different probability density function, shown in black, for eval-
uation. 50

36 Simplified two dimensional examples to illustrate the process of evalu-
ating more than one ray per heliostat cell. 51

37 Probability density function of the integrated Gaussian distribution from
a heliostat cell of length lcell = 1 m at different distances with standard
derivations σspan as in Equation (4.3) from σbeam = 3 mrad. 53

VI

38 Integrated two dimensional Gaussian distribution for a cell of width
wcell = 2 m and length lcell = 2 m at a distance δ = 50 m and standard
deviations σver

beam = σhor
beam = 3 mrad resulting in σver

span = σhor
span ≈ 0.15

m [18]. 54
39 The integrated Gaussian distribution of Figure 37(b) approximated by

a Gaussian distribution. 55
40 Values of gnew and the approximation gapprox. 57
41 RMSE between the integrated Gaussian distribution and the optimal

Gaussian approximation g as well as the approximation using the sigma
function gapprox. 58

42 RMSE heatmaps for the approximation steps at a distance of 100 m. . 59
43 Adapted heliostat cell drawn in blue of the original cell drawn in black. 60
44 Heliostat field layout of the PS10 plant 61
45 Normalized results of SunFlower and SolTrace for all test cases. 63
46 Interpolated fluxmaps of both tools for test case two with a total power

difference of less than 0.05 %. 63
47 Relative difference between both fluxmaps. 65
48 Old results of the convolution methods [18]. 66
49 Results of the renewed convolution methods. 66
50 Fluctuations of the classical-Monte Carlo ray tracer and the multi-Monte

Carlo ray tracer taking five samples per ray illustrated by the shaded
region. 67

51 Average results of different Monte Carlo based ray tracers with respect
to the total number of samples. 68

52 Fluctuations, illustrated by the shaded regions, of the classical- and
quasi-Monte Carlo method using one sample per ray. 68

53 Average results of the different ray tracing methods for the PS10 test
cases of Section 5.1 with the correct number of facets. 69

54 Average results of different ray tracing techniques for test case 2∗ in
dependence on the total number of rays. 70

55 Average results of different ray tracing techniques for test case 2∗ in
dependence on the total runtime. 71

56 Average results of different ray tracing techniques for test case 6∗ in
dependence on the total number of rays. 71

57 Average results of different ray tracing techniques for test case 6∗ in
dependence on the runtime. 72

58 Positions of the close and far heliostats. 73
59 Normalized results of both convolution methods for the far and close

heliostat. 73
60 Average results of the multi-Monte Carlo method using thousand sam-

ples per ray and the Gaussian convolution method. 74
61 Acceleration of a Monte Carlo and a convolution based ray tracer using

the two preselection techniques on test case 2∗. 75

VII

62 Acceleration of a Monte Carlo and a convolution based ray tracer using
a CPU parallelization with a minimal critical section on test case 2∗. . 75

63 Illustration of the required cell length such that the a-sigma regions of
two neighboring cells intersect. 77

64 Illustration of a reversed ray and its correlation to the original ray. The
reversed ray originates from the receiver piece and travels in −~r direction. 78

VIII

List of Tables

1 Coefficients of the sigma multiplier function gapprox from Equation (4.62). 57
2 Parameters for the flat tilted receiver 62
3 Parameters for the cylindrical cavity receiver 62
4 Basic setup for the six validation test cases. The settings are inspired

by the PS10 plant and derived from a similar test case [18]. 62
5 Unique settings for each test case. 63
6 Exact results of SunFlower for each test case. 64
7 Exact results of SolTrace for each test case. 64
8 Overview over the test cases in [18]. 65

IX

X

1 Introduction

In times of global warming, the need for renewable energy is greater than ever. It
is indisputable that most of the CO2 emissions are caused by fossil fuel burning for
power generation and the transport sector [5]. For this reason, a lot of countries
are mandating the use of renewable energy which is predicted to deliver 30 % of the
electricity by 2035 [5]. In particular, the development of concentrating solar power
(CSP) technology is growing faster than any other renewable technology [5].
This work concentrates on central receiver systems (CRS) which are one of the four
types of CSP systems. They consist of movable mirrors, called heliostats, reflecting
and concentrating the sun light onto a solar receiver mounted at the top of a tower as
shown in Figure 1.

Figure 1: Solar tower power plant Planta Solar 10 (PS10) in Spain [29]. The figure is
derived from Richter et al. [34, p. 2]

The receiver absorbs the solar radiation and transfers the resulting heat via a heat
transfer fluid (HTF) to a power conversion system. Here, the heat is used to turn
water into steam which powers a steam turbine to obtain electricity.

In order to increase the performance of a CRS, the annual energy production (AEP)
needs to be maximized. A big factor of the AEP is the heliostat field layout, i.e., the
positioning of the heliostats. However, as with any optimization process, a measure of
its current performance is needed. This is where the optical model comes in. It tries
to predict the collected solar power at the receiver for a given setting. A major part of
the optical model is the ray tracer which traces the light from the sun to the heliostat
onto the receiver.

1

1.1 State of the art

There is a variety of tools available for the simulation and optimization of solar tower
power plants. A short overview which mainly focus on the used ray tracing technique is
given below. It is inspired by the work of Garcia et al. [19], Richter [33] and Franke [18].

The most commonly used ray tracing method is the Monte Carlo method. However,
there are different implementations of it that vary on how the solar rays are generated.
In tools such as Tonatiuh, MIRVAL and SolTrace the rays originate on a plane above
the heliostats [9, 22, 44]. To increase computational efficiency, STRAL and TieSol gen-
erate rays on the heliostat surface itself [3, 11]. By this, no rays are wasted onto the
ground and the first intersection calculation is omitted. Moreover, TieSol parallelizes
the ray tracing process on the graphic processing unit (GPU), making it extremely
fast [19].

The other categories of ray tracers are using analytical approaches. They generally
represent the reflected solar flux, i.e., the sun light energy per area, of a heliostat by
some mathematical function. For example, HFLCAL expresses the flux with a circular
Gaussian distribution [41]. The solar power at the receiver is then calculated by nu-
merically integrating over the receiver area. UNIZAR describes the solar flux with the
error function and relies on a similar numerical integration method as HFLCAL [37].
DELSOL is using a truncated expansion in Hermite polynomials as a solar flux distri-
bution [21]. Here, the two dimensional integral is solved analytically in one dimension
and numerically in the other [21]. Another analytical ray tracing tool is HELIOS. It
is capable of describing each disturbance of the ray by a different two dimensional
distribution. The resulting total disturbance is then approximated with a numerical
convolution of the two dimensional distributions using the fast Fourier transform [8]. A
weighting scheme is used to evaluate the integral needed for the solar power calculation.

1.2 Outline

In this thesis, different ray tracing methods will be discussed, accelerated and validated.
Our optical model is presented in Section 2. Moreover, a detailed definition of the
problems for which ray tracers are used is given. In Section 3, the widely used Monte
Carlo ray tracing method as well as two extensions are introduced. Afterwards, a well
known analytical ray tracer called HFLCAL [41] will be discussed. Extending on the
ideas of HFLCAL, our Gaussian convolution method which evaluates the perturbation
of each ray accurately, is presented in Section 4.2. In addition to this, Section 4.3
provides a new ray tracing technique called the integrated convolution method. It
reduces the error of taking one ray to represent photon interaction of a complete cell
without the need of simulating more rays. Section 5 gives a cross validation of our
optical model and investigates different aspects of our newly developed ray tracers.
Furthermore, acceleration strategies of all ray tracers are reviewed. Finally, future
improvements are listed in Section 6.

2

2 Optical model

With the optical model the radiation on a solar tower receiver for a given day and time
can be calculated. The presented model is expanding on the works of Franke [18] and
Richter et al. [33, 35] with a more detailed focus on ray tracing techniques.

In the following, a short overview of this model is given. Section 2.1 describes envi-
ronmental aspects such as the site area or how the sun is modeled. In Section 2.2 and
Section 2.3 the heliostat model as well as different receiver types are being introduced.
Optical losses due to effects such as blocking and shading or atmospheric attenuation
are presented in Section 2.4, the required calculations in Section 2.5 and 2.6. After
introducing the two main options of evaluating the solar flux in Section 2.7 all relevant
information for the ray tracing techniques is as a final point summarized in Section 2.8.

2.1 Environment

In our model a Cartesian coordinate system is used where the x axis points towards
East, the y axis towards North and the z axis into the sky. The site area is defined
by a polygon where its boundary points can be given in Cartesian or geographic coor-
dinates. Every object placed into the model including its expansion is checked to be
inside the site polygon but outside the expansion of all other already included objects.

Information about the relative position of the sun is defined by the time-dependent
azimuth γsolar and altitude θsolar. Moreover, the direct normal irradiation IDNI expresses
the amount of incoming radiation per area. From this the direction vector ~τsolar of the
sun is calculated using Equation (2.1) from [25] as displayed below.

~τsolar =

sin (−γsolar) · − cos (θsolar)
cos (−γsolar) · cos (θsolar)

sin (θsolar)

 (2.1)

2.2 Heliostats

A solar field consist of N heliostats Hi aiming to concentrate the sunlight at a tower
mounted receiver by tracking the position of the sun. Each heliostat mirror consists of
small mirrors, called facets. Therefore, the whole mirror area Ai of heliostat Hi can be
depicted by the sum of all facet areas. Their positions and alignments are described
with a local heliostat coordinate system having the mirror center-position pi of the
heliostat as origin. The x-axis ~xi is parallel to the horizontal edge of the heliostat Hi

and the y-axis ~yi is parallel to the vertical edge. The normal vector ~ni of the heliostat
scaffold defines the z-axis. This representation has the benefit that only the orientation
of the local coordinate system changes for different sun positions and not the alignment
of the facets, as they are fixed on the heliostat scaffold.

3

Since all heliostats are aiming towards the receiver aiming point paim,i the normalized
reflective vector ~ri is defined by

~ri =
paim,i − pi
|paim,i − pi|

. (2.2)

Furthermore, the normal vector ~ni can be computed with the law of reflection as the
incoming vector ~τsolar and outgoing vector ~ri are known

~ni =
~ri + ~τsolar

|~ri + ~τsolar|
. (2.3)

With all that the local coordinate system is given by

~xi =
~ni × (0, 0, 1)T

|~ni × (0, 0, 1)T | , ~yi = ~ni × ~xi, ~zi = ~ni. (2.4)

However, when ~ni is close to (0, 0, 1)T the cross product ~ni × (0, 0, 1)T results in the
zero vector. In this case the local coordinate system is calculated as follows,

~yi =

−pi,x−pi,y
0

 ~xi = ~ni × ~yi, ~zi = ~ni, (2.5)

with pi,x, pi,y as the global x and y coordinates of heliostat Hi, respectively.

We differentiate two ways to position and align facets on the heliostat scaffold which
is called canting. With on-axis canting, the ideal focusing alignment of all facets for
the case that the sunlight emerges from the receiver is used. This results in the facets
being positioned around a paraboloid with a focus at the receiver.

In off-axis canting for a fixed sun vector ~τsolar the facets are aligned to focus the
light at the receiver. However, since the sun, heliostat and receiver are not on one
common axis, the facets are positioned at the side of a paraboloid.

2.3 Receiver

We consider the tower to be either a cylinder or a cuboid at position ptower. The
receiver collecting the reflected sun light is transforming their radiation into heat and
is mounted just below the towers top. In our model, three types of receivers can be
represented, see Figure 2.

� Flat tilted receiver
It has a tilted rectangular receiver area to whose center all heliostats are aiming.
The receiver is defined by its width, height, tilt angle and orientation angle.

4

x
y

z

(a) Flat tilted cavity receiver

x
y

z

(b) Cylindric cavity receiver

x
y

z

(c) Cylindric external receiver

Figure 2: Different tower types with different receiver types. The Figure is derived
from Richter [33, p. 11]

The following two cylindrical receivers are inspired by the solar tower power plants
Planta Solar 10 (PS10) [29] and Gemasolar [12] both operating in Spain.

Both of them are predicated on the definition of regular polygons, i.e. polygons
having equal angles at every vertex and all edges have the same length [2]. Given the
edge length e and the number of edges n the diameter d of the circumscribed circle
around the polygon is calculated as follows [2]

d =
e

sin (π
n
)
. (2.6)

A regular polygon with nine edges and its circumscribed circle is shown in Figure 3.

� Cylindric external receiver
The horizontal shape of our external receiver is described using a regular polygon
which is lifted to a certain height h in order to obtain a receiver as in Figure 5(b).
A comparable receiver is found in the Gemasolar plant [12]. Here, the edges are
referred to as panels. Thus, the receiver is defined by the number of panels as
well as the panel width and height. Heliostats are now assumed to aim towards
the closest point at the horizontal center line of the aperture.

5

e

d

Figure 3: Regular polygon with nine
edges, an edge length of e and a
circumscribed circle of diameter
d which is drawn in gray.

e

Figure 4: Horizontal shape of a cavity re-
ceiver with four panels. It is
based on a regular polygon with
nine edges as illustrated in gray.

� Cylindric cavity receiver
Our cavity receiver is also defined by the number of panels n, each’s width e and
height h. However, now the circumscribed circle of a polygon with 2n+ 1 edges
and an edge length of e is used. Therefore, n edges of such a polygon describe
the horizontal shape of our cavity receiver. Additionally, the cavity receiver is
also lifted by the height l to the lower edge of its entrance. This is important for
blocking calculations which will be discussed in Section 3.4. By this definition
the receiver is similar to the one used in the PS10 plant. Its horizontal shape is
shown in Figure 4 and the resulting receiver in Figure 5(a). Again, all heliostats
are assumed to focus the light on its center of aperture.

2.4 Optical losses

Sun rays have to be traced from the sun to the heliostat onto the receiver in order to
calculate the amount of radiation at the receiver. There are different losses influencing
the rays which will be discussed in the following.

Blocking and shading effects appear due to the fact that heliostats as well as
the tower are casting a shadow and some heliostats might block the reflected rays
of other heliostats. Instead of checking every ray against every heliostat, a set of
potentially shading or blocking heliostats is precomputed for each heliostat. Only
for those heliostats, a possible blocking or shading will be evaluated. The sets are
computed as follows.

6

h

e

(a) Cylindric cavity receiver with four
panels

h

e

(b) Cylindric external receiver with nine
panels

Figure 5: Illustration of our cylindrical receiver types

� Tower shading
A simplified shadow of the tower is used to compute the set of potentially tower
shaded heliostats. To do so, the minimal distance between the line of the sun ray
hitting the heliostat’s center pi and a line from the tower position ptower straight
into the sky has to be calculated. Now, a heliostat is potentially tower shaded
if the minimal distance between two lines is less or equal to half of the heliostat
expansion plus half of the tower expansion.

� Heliostat shading
For heliostat shading a similar approach can be applied. However, now the
minimal distance between the line of the sun ray hitting pi and the center pj of
a neighbouring heliostat Hj is used. A distance smaller than the expansion of a
heliostat implies that Hi is potentially shaded by Hj.

� Heliostat blocking
The computation of potentially blocked heliostats is almost the same as for he-
liostat shading. The only difference is that the line of the sun ray is replaced by
a line going through the aiming point paim of the heliostat and its center point
pi.

In Section 2.6 we will discuss shading and blocking computation more in detail.

With cylindrical cavity receivers another blocking type is introduced, called tower
blocking. It occurs due to the fact that some solar rays potentially hitting the receiver
would first intersect with the tower. As shown in Figure 2(b), some rays might not

7

go through the rectangular entrance of the receiver which is referred to as the receiver
window. This is the only blocking and shading type that has to be handled differently
depending on the ray tracer used.

Cosine effects describe the reduced projected area of the facets due to their tilted
alignment. The reflected area is reduced by the cosine of the angle of incidence [28], i.e.,
the angle between the heliostat surface normal and the incoming sun rays. Therefore,
the loss is modeled by

ηcos,i = 〈~τsolar, ~ni〉, (2.7)

where 〈·, ·〉 is the scalar product of two vectors.

Heliostat reflectivity tries to model the losses due to the mirrors not perfectly
reflecting the sun rays, i.e., they scatter the light and also absorb parts of it. In our
model a constant value ηref encounters this effect as it is often used [31].

Atmospheric attenuation efficiency considers the power losses as the light trav-
els through the atmosphere. It depends on the distance di from the position pi of the
heliostat and the aiming point paim,i and can be computed with the formula derived
by Schmitz et al. [39]

ηaa,i =

{
0.99321− 1.176 · 10−4di + 1.97 · 10−8d2

i , di ≤ 1000m

exp(−1.106 · 10−4di) , di > 1000m
. (2.8)

Optical errors encounter deviations of the computed reflection ray to an actual
solar ray. The direction of a ray hitting the surface of a heliostat can deviate since the
sun is a sphere. Based on the idea of Rabl [32] we model this error as a Gaussian dis-
tribution with a standard deviation σsun. Moreover, most of the time the heliostat will
slightly differ from the intended alignment which leads to a tracking error. Since the
heliostat mirror has a certain roughness it is reflecting a small outgoing cone instead of
an exact ray which is referred to as error cone, see Figure 6. This slope error as well as
the tracking error can again be described using Gaussian distributions. As heliostats
have a vertical and a horizontal tracking axis, two Gaussian distributions with stan-
dard deviations σver

tracking and σhor
tracking are required for accurate modeling. Moreover, the

slope error is also not always equal in horizontal and vertical direction and deviates
for different positions (x, y) on the mirror surface. Thus, two matrices σhor

slope(x, y) and
σver

slope(x, y) are used to express the slope error. With the Central Limit Theorem [40],
stating that the convolution of two or more distribution functions converge to a Gaus-
sian distribution, the optical errors are modeled with one Gaussian distribution for
each direction by combining the standard deviations to

σhor
beam =

√
(σsun)2 + (σhor

tracking)
2

+ (σhor
slope(x, y))

2
,

σver
beam =

√
(σsun)2 + (σver

tracking)2 + (σver
slope(x, y))2.

(2.9)

8

x
y

z

☼

Figure 6: Error cones representing the optical errors [33, p. 17].

The values of these Gaussian distributions can be interpreted as the relative likeli-
hood of certain angles between the perfect reflected ray and an actual ray. Thus, the
standard deviations σhor

beam and σver
beam are given in milliradian.

As two separate Gaussian distributions are used to describe horizontal and vertical
deviation of the perfect reflected ray, the error cone is actually of elliptical shape in-
stead of being circular.

The handling of optical errors is the main difference between the ray tracing tech-
niques that will be discussed shortly. Prior to that, the generation of representative
solar rays as well as blocking and shading calculations will be discussed as most of
them are handled similarly for each ray tracer.

9

2.5 Generation of representative solar rays

To generate solar rays each heliostat facet is uniformly discretized into smaller cells as
shown in Figure 9. Cells of a curved facet are assumed to be flat. The perfect reflected
rays originate at the center s of their corresponding heliostat cell and their directions
~r can be computed with the facet piece normal ~n and sun direction ~τsolar by the law of
reflection.

~r = ~τsolar − 2 〈~τsolar, ~n〉 ~n. (2.10)

Indices to determine the currently viewed heliostat cell are omitted to simplify nota-
tions in the following.

For each heliostat cell a representative ray is created. Therefore, in contrast to other
tools such as Tonatiuh, MIRVAL and SolTrace, the rays are generated directly on the
heliostats mirror surface instead of on a plane above them as described in [7]. This
saves computing the first intersection and no rays are wasted due to ground impacts.
In our model the incoming radiation IDNI is assumed to spread evenly among each
facet so the power of the ray can be computed with their cell area Acell. In respect
to the optical losses discussed in Section 2.4 the representative ray power Pray of the
current heliostat cell is given by

Pray = IDNI · Acell · ηcos · ηref · ηaa. (2.11)

Now that the perfect reflected ray is specified, a more detailed description on how
to perturb it is needed. In particular the horizontal and vertical direction of devia-
tion must be specified. The deviation directions on the heliostat normal and the sun
direction are assumed to be orthogonal to ~n and ~τsolar, respectively. Due to the law
of reflection the resulting convoluted deviation directions are orthogonal to the ray
direction. For a two dimensional perturbation this already fully specifies the deviation
direction, see Figure 7. Note that as the Gaussian distribution describing the deviation
is axis-symmetric, any of the two orthogonal directions may be used. However, in three
dimensions there are two deviation directions thus requiring more information to be
able to determine them correctly.

First, the horizontal and vertical deviation directions of the mirror normal corre-
sponding to the tracking and slope error need to be defined. This is done using the
edges of the heliostat mirror where the horizontal edges corresponds to the horizon-
tal deviation direction. The definition is not arbitrary but rather chosen due to the
direction of the horizontal tracking axis. Similarly the vertical deviation direction is
given by the vertical tracking axis. However, the directions of the slope errors usually
do not match the directions of the tracking errors. But they can always be expressed
as a combination of the horizontal and vertical tracking directions as they all lie on

10

~n

~n hor

s

Tracking and
Slope error

~τsolar

~τ hor
solar

Sun error

~r

~r hor

Convoluted
error

Figure 7: Two dimensional perturbation for horizontal deviations. The lengths of the
deviation vectors illustrate the amount of perturbation.

the same plane. Thus, the slope errors in σhor
slope(x, y) and σver

slope(x, y) are assumed to be
transformed such that their direction matches the ones of the corresponding tracking
errors.

With the horizontal and vertical deviation directions of the mirror normal, the re-
sulting deviation directions of the ray can be calculated. One way to do this is by
projecting the ray onto the plane spanned by the mirror normal and one deviation
direction. Afterwards, the argument for a two dimensional deviation can be applied
meaning the resulting deviation direction is given by an orthogonal direction to the
ray on the plane. The cross product of this deviation direction and the ray direction
then determines the remaining deviation.

However, one can also apply the same rotation needed to obtain the ray direction
from the mirror normal to the deviation directions of the mirror normal, in order to get
the resulting deviation directions of the ray. Figure 8 illustrates the required rotation.
The rotation matrix R~a,β for rotating a vector around an arbitrary axis ~a by an angle
β is defined as [38]

R~a,β = cos (β) · I + (1− cos (β)) · (~a⊗ ~a) + sin (β) ·R~a,

R~a =

 0 −az ay
az 0 −ax
−ay ax 0

 ,
(2.12)

11

~a

~n

~n hor

~n
ver

~r

~rh
or

~r
ve
r

β

~τsolar

Figure 8: Illustration of the required rotation to obtain the convoluted deviation direc-
tions. The shortened deviation vectors are actually of unit length.

with ~a =

axay
az

, I as the identity matrix and (· ⊗ ·) as the outer dot product.

In our case the rotation axis ~a as well as the angle β are calculated by

~a = ~n× ~r,
β = arccos (〈~n,~r〉), (2.13)

with ~n as the normal of the mirror and ~r the normalized ray vector.

The order of ~n and ~r is important when computing ~a as R~a,β performs a counter-
clockwise rotation in the direction of a ~a [38]. Therefore, switching the order and
applying R~a,β on ~n would no longer result in ~r as intended. Finally, the normalized
vectors ~r hor and ~r ver defining the deviation directions of the ray are given by

~r hor =
R~a,β~n

hor

|Ra,β~nhor| ,

~r ver =
R~a,β~n

ver

|Ra,β~n ver| ,
(2.14)

with ~nhor and ~n ver as the horizontal and vertical deviation of the mirror normal, re-
spectively.

12

The discretization of the heliostat facet into cells as well as the deviation of the cor-
responding representative ray lead to the two main sources of errors for each ray tracer.
Firstly, the fact that one ray is used to represent photon interactions of a heliostat cell
and secondly the evaluation of the error cone of each representative ray.

How both of these errors are handled differentiates between the ray tracing tech-
niques. However, they all have in common that the error of using one representative
ray per cell area can effectively be reduced by increasing the number of discretization
points leading to smaller cell areas.

Figure 9: Discretization of a heliostat facet into 5 by 5 cells. From each cell a repre-
sentative ray originates, which intensity is weighted by its area [18, p. 16].

2.6 Blocking and shading computations

As already mentioned, blocking and shading calculations are almost equally for each
ray tracer with the only difference being the tested ray. For the Monte Carlo methods,
a perturbed version of the representative ray is evaluated whereas in convolution based
methods the representative ray itself is used. The ray is then traced, i.e., it is checked
for intersections with potential blocking heliostats. Moreover, to encounter shading
effects, intersections of the incoming sun ray with potential shading heliostats as well
as the tower are evaluated. The sets of potentially blocking or shading heliostats were
precomputed as described in Section 2.4. Algorithm 1 illustrates the required steps.

13

Algorithm 1 Blocking and Shading

1: function notBlockedOrShaded(H, s, ~r)
2: for each heliostat Hj in H.potentialBlockingHeliostats do
3: if Hj.blocks(s, ~r) then
4: return False

5: for each heliostat Hj in H.potentialShadingHeliostats do
6: if Hj.shades(s, ~τsolar) then
7: return False

8: if H.potentialTowerShaded() then
9: if tower.shades(s, ~τsolar) then

10: return False

11: return True

2.7 Discretization of the receiver

Now, there are basically two options to evaluate the flux at the receiver. When only
the total sum of solar power is of interest, the receiver is used as it is. On the other
hand, to get an understanding of how well the solar flux is focused, a so called flux map
is needed [24]. Here, the receiver surface is discretized into smaller pieces. An evalu-
ation of a discretized receiver, however, generally requires more processing time. The
discretization itself is described by the number of desired receiver pieces in horizon-
tal and vertical direction. For our flat receiver the rectangular receiver surface is then
discretized accordingly and in the case of a cylindrical receiver each panel is discretized.

2.8 Ray tracing pipeline

Since our optical model is introduced and the required background information dis-
cussed we can set up our ray tracing pipeline, see Figure 10. Besides the steps that
are part of the ray tracers this pipeline also sums up the necessary steps before using
a ray tracer to evaluate the solar radiation at the receiver. Therefore, it can also be
understood as a short summary of our optical model.

� Setup
In this step all relevant data is loaded, the heliostat field generated and each
heliostat is checked whether it intersects with another nearby heliostat. Fur-
thermore, the tower is placed and the receiver build. This also includes the
discretization of the receiver and each heliostat into smaller receiver pieces and
heliostat cells. Afterwards, information about the sun is processed, the heliostats
are aligned accordingly and the sets of potential blocking and shading heliostats
are computed.

14

Setup

Generate a representative ray for each heliostat cell

Test each ray for shading and blocking effects

Evaluate each representative ray with a ray tracer

Figure 10: Simplified pipeline for the evaluation of the solar radiation at the receiver.

� Generation of representative rays
For every heliostat cell a representative ray is generated. The ray originates in
its cell center s and has the direction ~r of the perfect reflected ray.

� Testing rays for shading and blocking effects
Depending on which ray tracing method is used either the perfect reflected ray or
a perturbed ray is tested for shading an blocking effects. In the case of a Monte
Carlo ray tracer the perturbed ray is tested and for a convolution ray tracer
the perfect reflected ray is tested. Only rays that are not blocked or shaded are
evaluated in the next step.

� Evaluating the representative ray
Finally, the main part of a ray tracer being the evaluation of each representative
ray is utilized. The evaluation process of each ray tracer will be discussed in the
following sections.

Before getting into details on how a representative ray is evaluated a quick recap
of the relevant information is given. The current representative ray originates at the
point s, travels in the direction of the normalized vector ~r and has the power Pray. Its
perturbation is given by the normalized vectors ~r hor, ~r ver for horizontal and vertical
deviation, respectively. In addition, the deviation itself is described by two Gaussian
functions for either direction with standard deviations σhor

beam and σver
beam. Figure 11

shows a simplified version of the problem of evaluating a representative ray in the
horizontal deviation plane which is later used to illustrate the principle of each ray
tracing method.

15

s

~r

~r hor

Figure 11: Problem of evaluating a representative ray traveling in the direction of ~r with
a deviation direction of ~r hor. The Gaussian function defining the deviation
is shown in black, the heliostat cell in blue, the receiver cell in green and
the thin red lines illustrate the error cone.

3 Monte Carlo ray tracing methods

The Monte Carlo ray tracing methods are straightforward techniques to compute the
concentrated solar flux distribution on a receiver. They rely on the law of large num-
bers, meaning a large number of randomized rays are simulated to approximate optical
errors. In general, Monte Carlo methods have been used to solve mathematical and
physical problems by repeated random sampling [26]. Since these ray tracing tech-
niques replicate real interactions of photons, they tend to be more accurate then ana-
lytical methods when enough rays are generated [44]. Furthermore, as ray intersections
can easily be calculated for different geometry, Monte Carlo ray tracing methods are
suitable for complex cases where analytical techniques are not applicable anymore [24].
However, considering the computational effort involved in simulating a vast number of
rays, these methods have a comparatively long processing time.

The Monte Carlo ray tracing methods discussed in the following sections mainly
differentiate in how the perturbed rays are generated.

3.1 Classical-Monte Carlo method

In classical-Monte Carlo ray tracing the perfect reflected ray gets perturbed with Gaus-
sian noise based on the distributions in Section 2.4, see Figure 12. Currently they refer

16

Figure 12: Basic principle of the classical-Monte Carlo method. The generated per-
turbed ray is shown in red.

to certain angles of deviation in either of the deviation directions ~r hor and ~r ver. To
simplify calculations, the Gaussian distributions are transformed to relate to the re-
sulting lengths of deviation, see Figure 13. In particular, their standard deviations are
converted to

σhor’
beam = 1 · tan (σhor

beam),

σver’
beam = 1 · tan (σver

beam). (3.1)

~r

~r hor

s

σhor
beam

σhor’
beam

Figure 13: Transformation from angle of horizontal deviation to length.

Then two random deviation lengths dhor and dver from each of the two Gaussian
distributions are generated and added to the ray vector ~r as follows

~rdev = ~r + dhor~r hor + dver~r ver. (3.2)

17

The resulting ray is checked for blocking and shading effects as described in Sec-
tion 2.6. Only if no shading or blocking is affecting the ray, it is traced against the
receiver. Algorithm 2 shows the basic steps of this method for calculating the total
solar power.

Algorithm 2 Classical-Monte Carlo ray tracer

1: function classicalMonteCarlo(s, ~r, ~r hor, ~r ver, σhor
beam, σ

ver
beam)

2: solarPower ← 0
3: ~rdev ← perfectReflection(s, ~τsolar)
4: σhor’

beam ← tan (σhor
beam)

5: σver’
beam ← tan (σver

beam)
6: dhor ← generateRandomValueFromGaussian(σhor’

beam)
7: dver ← generateRandomValueFromGaussian(σver’

beam)
8: ~rdev ← ~r + dhor~r hor + dver~r ver

9: if notBlockedOrShaded(H, s, ~rdev) then
10: if intersect(Ray(s, ~rdev), Receiver) then
11: Pray ← IDNI · Acell · ηcos · ηref · ηaa
12: solarPower ← solarPower + Pray

13: return solarPower

3.2 Multi-Monte Carlo method

Figure 14: Basic principle of the multi-Monte Carlo method. Here, multiple samples,
shown in red, are taken from the error cone.

In the classical-Monte Carlo method one ray is used to evaluate the error cone of a

18

representative ray and therefore photon interactions of a whole cell area. To further
improve the accuracy, a multi-Monte Carlo ray tracer takes multiple samples of the
error cone for each representative ray, as shown in Figure 14. Therefore, the power
Pray of Equation (2.11) has to be split equally among all samples.

3.3 Quasi-Monte Carlo method

Figure 15: Basic principle of the quasi-Monte Carlo method. Here, the generated sam-
ples are more uniform and thus better represent the error cone with few
samples.

As a refinement of the multi-Monte Carlo method, a quasi-Monte Carlo ray tracer
enhances convergence to the actual solar power by using a different sequence to gener-
ate deviation lengths from the Gaussian distributions. The idea is that fewer samples
are needed in order to represent the error cone, as illustrated in Figure 15. Here,
quasi-random sequences are used instead of pseudo-random sequences as in multi- and
classical-Monte Carlo. However, the name is misleading since these sequences do not
attempt to imitate the behavior of random sequences but rather aim to produce more
uniform elements [13]. Uniformity of a sequence is measured in discrepancy where a low
discrepancy indicates better uniformity. For this reason and as this causes the improve-
ment in convergence, quasi-random sequences are also referred to as low-discrepancy
sequences. In numerical integration, the quasi-Monte Carlo method converges at a rate
O(N−1 logNk) for some constant k, compared to O(N−

1
2) for classical-Monte Carlo in-

tegration [13].
Our quasi-Monte Carlo ray tracer uses the well known sobol sequence as quasi-random
sequence because of its efficient implementation [15].

19

3.4 Tower blocking

As stated in Section 2.4 besides the blocking and shading effects tested by Algorithm 1
there also exists tower blocking in the case of a cavity receiver. Here, all rays first
have to go through the receiver window. Due to the receiver window being a rect-
angle, at most two of its edges can cause the rays of one heliostat cell to be blocked
against meaning that the rays would not go through the window. First, there is a
vertical blockage because of the closest vertical edge of the receiver window to the ray
origin. Second, the lower horizontal edge causes a horizontal blockage. Both of these
blockages are determined by using two planes Bhor and Bver each corresponding to one
blockage. Figure 16 illustrates the blockage with l as the lifting height of the receiver,
as discussed in Section 2.3.

l

bvis

Figure 16: Blockage of the cavity receiver. The horizontal and vertical blocking edges
are drawn in thick red and the rest of the receiver window in thick black.
Here, l is the lifting height of the receiver to its lower window edge and bvis

a definitely visible point.

Each plane is defined by the two endpoints b1 and b2 of the corresponding blocking
edge as well as the ray source s. From this the normals ~nhor

B , ~n ver
B of each plane can be

calculated leading to

~nhor
B =

bhor
1 − bhor

2 × s− bhor
2

|bhor
1 − bhor

2 × s− bhor
2 |
⇒ Bhor = {p ∈ R3|〈p, ~n hor

B 〉 − 〈s, ~n hor
B 〉 = 0},

~n ver
B =

bver
1 − bver

2 × s− bver
2

|bver
1 − bver

2 × s− bver
2 |
⇒ Bver = {p ∈ R3|〈p, ~n ver

B 〉 − 〈s, ~n ver
B 〉 = 0},

(3.3)

20

with bhor
1 , bhor

2 as the endpoints of the lower horizontal edge and bver
1 , bver

2 as the end-
points of the closest vertical edge to the ray origin s.

Depending on which side of the planes a ray lies it is either blocked or not which is
referred to as the visibility of a ray. The side of the plane on which a point p lies is
determined by the sign of 〈p, ~n〉− 〈s, ~n〉 being the plane equation with ~n as the normal
of the plane. If the expression is zero the point lies on the plane, see Equation (3.3).
However, if the sign is positive or negative the point lies on the positive or negative
side of the plane, respectively. Therefore, a point which is definitely visible is needed
and any point having the same sign as the visible point for both plane equations of
Bhor and Bver is also visible.
The corner bvis of the receiver window rectangle not included in any of the two blocking
edges is such a point, see Figure 16. With this the visibility of a point p for each plane
can be determined as follows

sign(〈p, ~n hor
B 〉 − 〈s, ~n hor

B 〉) == sign(〈bvis, ~n
hor
B 〉 − 〈s, ~n hor

B 〉)⇒ p is horizontally visible,

sign(〈p, ~n ver
B 〉 − 〈s, ~n ver

B 〉) == sign(〈bvis, ~n
ver
B 〉 − 〈s, ~n ver

B 〉)⇒ p is vertically visible.

(3.4)

If p is horizontally and vertically visible it is considered visible.
Now the visibility of a perturbed ray is determined by the visibility of any point on
the perturbed ray except for its source as it lies on both blocking planes. Therefore,
the point s + ~rdev is tested in our Monte Carlo ray tracers and if it is not visible the
ray is considered to be blocked. This needs to be done for every generated ray in order
to correctly account for tower blocking.

21

4 Convolution methods

In contrast to the Monte Carlo ray tracing methods, convolution based methods are
using an analytical approach to compute the flux distribution on the receiver. This
makes them deterministic meaning simulations with the same configuration will always
produce the exact same result which is a crucial part when they are used for optimiza-
tion purposes. Moreover, they require less rays to be evaluated for achieving the same
accuracy as Monte Carlo based methods [16].

The idea behind convolution based ray tracing methods is to describe the flux density
produced by a cell of a heliostat using a mathematical function. The resulting solar
power at a receiver piece is then calculated by integrating the flux density function
over a specific area representing the receiver piece [16]. Which flux density function is
used and how the integral is evaluated is the main difference between the convolution
based methods.

In the following, HFLCAL [41] a well known analytical flux density model and our
adaptation will be discussed. However, even with the descriptions in [16, 41] the exact
calculation steps of the model are not known. Therefore, the specified steps partly
originate from our interpretation of the model. After that our Gaussian convolution
ray tracer will be introduced which evaluates the integral far more accurately. Finally,
our integrated convolution ray tracer is presented in Section 4.3.

4.1 Analytic image method HFLCAL

The general principle of HFLCAL as well as our Gaussian convolution method is to
determine the probability Phit that the current perfect reflected ray will be perturbed
in such a way that it hits the current receiver piece. Indices to specify the current
receiver piece are omitted to simplify notations, however, the evaluation process is
done for every receiver piece. Once Phit is known the incoming power Prec at the
receiver piece from the current heliostat can be calculated by

Prec = Phit · Pray, (4.1)

where Pray is the power of the perfect reflected ray, see Section 2.5.

Calculating Prec for every receiver piece effectively reduces one main error source of
every ray tracer being the evaluation of the error cone of a representative ray.

To determine the probability Phit a more detailed look on how the perfect reflected
ray gets perturbed is needed which is given in the following. Afterwards the represen-
tation of a receiver piece as well as the corresponding integration of the flux density

22

function will be discussed.

As described in Section 2.5, the perfect reflected ray gets disturbed in horizontal and
vertical direction in means of two independent Gaussian distributions. Therefore, the
deviation in both direction can be described by multiplying the two distributions lead-
ing to a bivariate Gaussian distribution with no correlation between the two directions.
This results in the following probability density function

f(x, y) = fhor(x) · fver(y)

=
1

2πσhor
beamσ

ver
beam

· exp

(
−1

2

((
x

σhor
beam

)2

+

(
y

σver
beam

)2
))

,
(4.2)

where x and y are the angles in horizontal and vertical direction between the perfect
reflected ray and an perturbed ray.

Multiplying the probability density function of Equation (4.2) with the ray power
Pray gives the desired flux density function. The flux density function can be under-
stood as a mathematical description of the error cone. HFLCAL originally uses a
circular Gaussian distribution to describe the flux density so σhor

beam = σver
beam but as our

model uses different deviations for both directions we adapted the definition [41].
Instead of describing the disturbance in angular space, i.e., with the angles x and y one
can also refer to the resulting spanned region on a plane orthogonal to the ray direction
at a certain distance δ to the ray origin. This plane is referred to as the ray image
plane in the following. Figure 17 illustrates the transformation for a one dimensional
Gaussian distribution and Equation (4.3) gives the required calculation.

σver
span = δ · tan (σver

beam)

σhor
span = δ · tan (σhor

beam)
(4.3)

Technically, the ray image plane as well as the probability density function on that
plane is infinite leading to an infinite error space rather than an error cone. However,
Gaussian distributions have the property that 99.7% of their values lie within a 3σ
region around their mean [2]. In case of the probability density function in Equa-
tion (4.2), this means that the chance for the representative ray to be perturbed in
such a way that it intersects a 9 · σhor

spanσ
ver
span region around its unperturbed intersection

with the ray image plane, is 99.4%. When referring to that region the error space is
cut to an elliptical shaped error cone.

23

δ tanσbeam

δ

σbeam

Figure 17: Transformation of the one dimensional Gaussian distribution of Section 2.4
from angle to spanned region.

−4

−2

0

2

4

−4
−2

0
2

4
0

0.1

0.2

D

Figure 18: Bivariate Gaussian distribution of Equation (4.2) on the ray image plane
with the distance δ and standard deviations σver

beam, σhor
beam being exemplary

set such that σver
span = σhor

span ≈ 1 m [33]. D marks a possible region to
integrate over.

24

The bivariate Gaussian distribution on the ray image plane at an exemplary distance
of δ = 500 m with standard deviations σver

beam = σhor
beam = 2 mrad resulting in σver

span =
σhor

span ≈ 1 m is shown in Figure 18. The integral over a region like D marked in gray
then gives the probability Pint(D) that the representative ray will be perturbed so that
it intersects this region leading to

Pint(D) =
x

D

f(x, y) dA, (4.4)

with f(x, y) as in Equation (4.2).

Now there are two steps left in order to compute Phit. First the region D for which
rays intersecting this region would hit the currently viewed receiver piece has to be
computed. Afterwards, an evaluation of the integral in Equation (4.4) is needed since
it holds that Phit = Pint(D).
To get a better understanding of how HFLCAL solves these issues a simplified example
where the receiver piece lies in the ray image plane is introduced as shown in Figure 19.

Ray image
plane

s

~r

δ

m

Figure 19: Simplified example where the receiver pieces marked in green lies in the ray
image plane.

In this example the region D is already well defined by the area Arec of the receiver
piece. To simplify the integral calculation a numerical approach is utilized by HFLCAL.
Instead of an exact integration the bivariate normal distribution is evaluated at the
midpoint m of the receiver piece which gives the relative likelihood Lhit to intersect that
point. By assuming D to have the same likelihood over its whole area the calculation
of Phit is reduced to

Phit =
x

D

f(x, y) dA ≈
x

D

f(m′x,m
′
y) dA =

x

D

Lhit dA = Lhit · Arec, (4.5)

25

where (m′x,m
′
y)
T are the local coordinates of the midpoint m on the ray image plane.

More formally, the integral is evaluated using a two dimensional midpoint quadrature
rule [20]. In order to reduce the error introduced by the assumption in Equation (4.5),
HFLCAL relies on a fine discretization of the receiver leading to small areas for each
receiver piece [16].

So for this example, a problem remaining is to compute the local coordinates
(m′x,m

′
y)
T . Figure 20 illustrates the situation from the side view, i.e., the viewing

direction is parallel to the horizontal direction of the ray image plane. However, an
analog figure can be used when viewing parallel to the vertical direction. As shown the
local coordinates can be calculated by projecting the vector from the ray origin s to
the midpoint m on either of the orthonormal vectors ~r ver, ~r hor defining the coordinate
system of the ray image plane leading to

m′x = 〈~r hor,m− s〉, m′y = 〈~r ver,m− s〉. (4.6)

s
~r

Ray image

plane

m

m− s

~r ver

〈~r ver,m− s〉~r ver

m′
y

Figure 20: Illustration of the required calculations to compute the local coordinate m′y
of the midpoint m of a receiver piece marked in green. Analogously the
local coordinate m′x can be computed.

As mentioned earlier the transformation in Equation (4.3) which is needed to eval-
uate f(m′x,m

′
y) also involves the distance δ from ray source to the ray image plane.

But as the local coordinates m′x, m
′
y are already known δ can be calculated using the

Pythagoras theorem

26

δ =

(√
|m− s|2 + |(m′x,m′y)T |2

)2

(4.7)

=

(√
|m− s|2 +m′x

2 +m′y
2

)2

. (4.8)

With all that the probability Phit and thus the incoming solar power at the current
receiver piece for the simplified example can be calculated. But in the general case the
receiver piece does not perfectly lie in the ray image plane. HFLCAL addresses this
issue by adapting the standard deviation of the flux density function to

σspan’ =
σspan√

cos (θrec)
, (4.9)

with θrec as the angle between the vector of the representative ray and the normal of
the receiver piece.

The idea behind this approach is that for large incidence angles the flux density
gets stretched over the receiver piece area. Therefore, the standard deviation has to
increase with the angle of incidence. A larger angle results in a smaller cosine of that
angle and therefore in an increased standard deviation. Thus, the flux density function
FD(x, y) of HFLCAL for a heliostat cell is

FD(x, y) = Pray · f(x, y)

=
Pray

2π(σspan’)
2 · exp

(
− x2 + y2

2 · (σspan’)
2

)
,

(4.10)

with σspan’ as in Equation (4.9).

In our adaptation of the HFLCAL model the general case is handled a bit differently.
As we already assume the same relative likelihood and therefore the same flux density
over the receiver cell area, a slanted incidence can be modeled by reducing the receiver
cell area with a cosine effect as in Section 2.4. Therefore, the calculation of Phit in
Equation (4.5) is adapted to the effective area by

Phit ≈ Lhit · Arec · cos (θrec). (4.11)

Doing this keeps the probability density function on the ray image plane unchanged.

However, as already mentioned HFLCAL requires small receiver pieces in order to
obtain accurate results. Therefore, the flux density function needs to be evaluated a lot

27

of times even for a single representative ray. To reduce the introduced computational
effort, our Gaussian convolution method calculates an exact representation of a receiver
piece and utilizes a far more accurate integration method. By doing this the accuracy
of the results is independent from the number of receiver pieces.

4.2 Gaussian convolution method

Figure 21: Basic principle of the Gaussian convolution method. The shaded red region
illustrates an exact evaluation of the error cone for the current receiver
piece.

In extend to the HFLCAL model our Gaussian convolution method aims to evaluate
the probability Phit as described in the last section with higher precision. For this,
the two steps of computing the region representing a receiver piece and evaluating the
integral of Equation (4.4) need to be done in more detail. When both steps are per-
formed accurately the evaluation of the error cone is exact. Figure 21 shows the basic
idea of the Gaussian convolution method.

4.2.1 Computation of a region representing a receiver piece

As a reminder, the region representing a receiver piece can be in either the angular
space or on the ray image plane referred to as Dang and Dspan, respectively. In the
angular space this region gives the required combinations of angles in horizontal and
in vertical direction to the perfect reflected vector ~r for which rays having any of these
combinations would hit the receiver piece.

28

Since the corners coordinates c1, c2, c3 and c4 of the receiver piece are known, a
straight forward approach would be to compute the horizontal and vertical angles αl
and βl for each corner and use them as vertex coordinates of a polygon to describe
Dang. The angles are obtained by first projecting the vector from the ray origin s to
the corresponding corner cl onto the horizontal and vertical deviation planes which are
orthogonal to ~r ver and ~r hor, respectively. An exemplary angular region in two dimen-
sions reaching from α1 to α2 is shown Figure 22.

s

~r

c1

c2

α1

α2

Dang

Figure 22: Two dimensional version of the angular region Dang defined by the angles
α1 and α2.

Figure 23 illustrates the required projection for the corner c1. The necessary calcu-
lations to obtain the projected points cver

l and chor
l on the planes orthogonal to either

~r hor or ~r ver are as follows

cver
l = cl − ~r hor〈cl − s, ~r hor〉, chor

l = cl − ~r ver〈cl − s, ~r ver〉, l ∈ {1, 2, 3, 4}. (4.12)

With this the angles αl and βl for the corner cl are given by

αl = arccos 〈 c
hor
l − s
|chor
l − s|

, ~r〉, βl = arccos 〈 c
ver
l − s
|cver
l − s|

, ~r〉, (4.13)

where ~r is assumed to be normalized.

However, there is still one problem left for special cases. Figure 24 shows such a case
with the viewing direction being parallel to the vertical direction ~rver. As one can see

29

s

~r

~r hor~r ver

c1
〈c1−

s, ~r
ver 〉

〈c1 − s, ~r hor〉cver1

chor1

β1
α1

Figure 23: Required projection to obtain the angles α1 and β1 of a

the angles α1 and α2 are equal. Therefore, an integral from α1 to α2 over any function
would always be zero. To solve this issue the angles need to receive a sign. Any angle
of a projected point differing in the direction of ~r hor or ~r ver gets a positive sign and
otherwise a negative one. Note that the definition of positive and negative angles can
also be switched as the Gaussian distributions are axis-symmetric but we decided to
stick to the more intuitive definition. In the example, the sign of the angle is the same
as the sign of 〈cl − s, ~r hor〉 with l ∈ {1, 2}. Thus, Equation (4.13) is adapted to

αl = sign(〈cl − s, ~r hor〉) · arccos 〈 c
hor
l − s
|chor
l − s|

, ~r〉,

βl = sign(〈cl − s, ~r ver〉) · arccos 〈 c
ver
l − s
|cver
l − s|

, ~r〉,
(4.14)

with sign(·) as the signum function.

The dot products used to determine the sign of the angles αl and βl have already
been computed in the calculation of cver

l and chor
l . By reusing the results, the main

computational costs to determine the angles αl and βl can be reduced to four dot
products and two normalizations. The angles αl and βl of each corner are then used
as vertex coordinates to define the region Dang

Dang = (V,E), V = {a, b, c, d} =

{(
α1

β1

)
,

(
α2

β2

)
,

(
α3

β3

)
,

(
α4

β4

)}
,

E = {{a, b}, {b, c}, {c, d}, {d, a}}.
(4.15)

However, the computational expense can be reduced even further by computing the
region Dspan on the ray image plane using concepts from the field of computer graphics.

30

~r hor

s

~r

mc1 c2

c2 − sc1 − s

βα

〈c2 − s, ~r hor〉 > 0

Figure 24: Example to illustrate the need of signed angles as the angles α1 and α2 are
equal even though they refer to different corners.

In contrast to the calculations in Section 4.1 to compute the local coordinates (m′xm
′
y)
T

of m where the distance to the ray image plane varies between different midpoints, now
every corner of every receiver piece has to be projected onto the same ray image plane.
An illustration of a region Dspan is shown in Figure 25.

Figure 25: Exemplary representative region Dspan illustrated in light green on the ray
image plane of a receiver piece shown in green.

Another way to think of the region Dspan is as the image of the receiver piece one
would see when looking from the ray source in the direction of the representative ray.

31

In computer graphics the human eye would be replaced by a conceptional camera with
some focal distance δ being equal to the distance to the image plane [38].

~n

q1

q2

q′1 q′2

~q2

Image
Plane

δ

〈~n, ~q2〉

Figure 26: Example of the perspective projection problem with the center of projection
lying in the origin. The vector ~n is the normal of the image plane onto which
the point q1 and q2 are to be projected.

The problem in computer graphics is to compute the projected points q′1 and q′2 of q1

and q2 on the image plane orthogonal to ~n at a distance δ as illustrated in Figure 26.
This conceptional equality between our problem and the problem in computer graphics
is the reason why we refer to the plane orthogonal to the representative ray as the ray
image plane. Using the intercept theorem [38], the projection q′ of point q can be
calculated by

q′ =
δ

〈~n, ~q〉q, (4.16)

with ~q as the vector from the origin to point q. This projection assumes the camera
position, also referred to as the center of projection, to lie in the origin.

The required transformation to obtain the projected points is called perspective
projection [38]. To accelerate the computation of transformations in general, a goal in
computer graphics is to be able to express them using a matrix [38]. By doing this any
combination of transformations can be described as a multiplication of the transfor-
mation matrices leading to a single matrix. However, projective transformations like
the perspective projection in Equation (4.16) require perspective division [38], i.e., the
divisor depends on the point that has to be projected. This operation is non-linear and
therefore not expressible by a matrix. But there is a workaround for the problem by
using the convention of homogeneous coordinates [38]. The idea is to extend into four

32

dimensions and use the additional dimension to express perspective division. A point
phom in homogeneous coordinates is transfered to Cartesian coordinates in a process
called de-homogenization which divides the first three components by the fourth.

phom =

px
py
pz
w

 de-hom−−−−→

px
w
py
w
pz
w

 = pcart (4.17)

With this convention the perspective projection in Equation (4.16) can be written as

q′hom =

1 0 0 0
0 1 0 0
0 0 1 0
nx
δ

ny
δ

nz
δ

0

 ·

qx
qy
qz
1

 = Mproj · qhom. (4.18)

As stated earlier, the projection is only correct if the camera lies in the origin. Getting
back to our problem, this is generally not the case for the ray source. Therefore, the
points need to be translated such that the ray source s is equal to the origin and after
the projection back again. The following two matrices describe such translations

Mt1 =

1 0 0 −sx
0 1 0 −sy
0 0 1 −sz
0 0 0 1

 , Mt2 =

1 0 0 sx
0 1 0 sy
0 0 1 sz
0 0 0 1

 . (4.19)

With these transformations the complete projection of a corner cl onto the ray image
plane is given by

c′l = M1 · cl = Mt2 Mproj Mt1 · cl (4.20)

Thus, a single matrix multiplication is needed to project the corners. A question
remaining for our problem is at which distance the ray image plane should be placed.
If σhor

span and σver
span are adapted to the distance, the placement can be chosen arbitrary

since for all distances a valid representative region of the receiver piece exists. To
reduce computational effort we use a distance of δ = 1 in our Gaussian convolution
method.

Unfortunately, the projected corners are still given in global coordinates and not in
local coordinates on the ray image plane as required. As origin of the local coordinate
system the intersection point mray of the representative ray with the ray image plane is
used. In computer graphics this problem is solved by the viewport transformation [38].

33

c′3
c′4

c′1

c′2

~r

~r ver

~r hor

mray

Figure 27: Problem of calculating local coordinates of the receiver corners on the ray
image plane. The coordinate system is defined by mray, ~r hor and ~r ver.

An example of this adapted to our problem is shown in Figure 27.

So the task is to find xl and yl with c′l = mray + xl · ~r hor + yl · ~r ver. As the vectors
~r hor and ~r ver are orthonormal, the coordinates can be calculated as follows

〈~r hor, c′l〉 = 〈~r hor,mray〉+ xl · 1 + 0 ⇒ xl = 〈~r hor, c′l〉 − 〈~r hor,mray〉,
〈~r ver, c′l〉 = 〈~r ver,mray〉+ 0 + yl · 1 ⇒ yl = 〈~r ver, c′l〉 − 〈~r ver,mray〉.

(4.21)

The corresponding matrix for this transformation is [38]

Mview =

~r hor
x ~r hor

y ~r hor
z −〈~r hor,mray〉

~r ver
x ~r ver

y ~r ver
z −〈~r ver,mray〉

0 0 0 1

 . (4.22)

Therefore, the computation of the local coordinates xl and yl of the projected corner
cl can be summarized to

Mview Mt2 Mproj Mt1 · cl = M · cl =

xlwylw
w

 de−hom−−−−→
(
xl
yl

)
. (4.23)

Note that M can be precomputed and reused for every corner of every receiver piece
when evaluating a representative ray. After precomputing M , the coordinates xl and
yl can be calculated with a single matrix multiplication which comes down to the eval-
uation of three dot products.

34

Similar to the definition of the region Dang in Equation (4.15), the coordinates xl
and yl are computed for every corner cl and used as vertex coordinates of a polygon

Dspan = (V,E), V = {a, b, c, d} =

{(
x1

y1

)
,

(
x2

y2

)
,

(
x3

y3

)
,

(
x4

y4

)}
,

E = {{a, b}, {b, c}, {c, d}, {d, a}}.
(4.24)

Summing up, two methods have been introduced to calculate either of the regions
Dang and Dspan. But by using concepts from the field of computer graphics the derived
method to compute Dspan has shown to be less computationally expensive than the
method to compute Dang. For this reason our Gaussian convolution ray tracer uses
Dspan as a representative region of a receiver piece. However, both methods can be
used to compute a valid representation of a receiver piece.

Now that the representative region is well defined by a polygon the next problem is
to evaluate the integral of the bivariate Gaussian distribution in Equation (4.4) over
that polygon.

4.2.2 Integration of the bivariate Gaussian distribution over a polygon

Before getting into details on how to calculate the integral of the bivariate Gaussian
distribution over a polygon the problem is recapped. Given a polygon D representing
a receiver piece, the problem is to evaluate the following integral

Pint(D) =
x

D

f(x, y) dA

=
x

D

1

2πσxσy

· exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

))
dxdy,

(σx, σy) =

{
(σhor

beam, σ
ver
beam), if D = Dang

(σhor
span, σ

ver
span), if D = Dspan.

(4.25)

The probability Pint(D) is equal to the probability Phit that the representative ray
will be perturbed in such a way that it hits the receiver piece represented by D. To
solve the integral in Equation (4.25) a method [1] developed in the late 70s is used,
a time where computational efficiency was even more important. Their main goal
was to derive an efficient algorithm that is also accurate up to a desired degree. The
described method works for convex polygons and was extend by [17] to also handle
arbitrary polygons efficiently. It utilizes a numerical approach to solve the integral
with a proven [1] accuracy of up to 12 decimal digits. In the following, the method
in [1] adapted to our problem will be described. Most of the derivations and ideas are
from [1] and for further details we refer to the original paper.

35

Instead of evaluating the integral over the region D the algorithm evaluates the
integral over the complementary region D, i.e., over the outer region of the polygon.
As the bivariate Gaussian distribution f(x, y) is a probability density function it holds
that ∫ ∞

−∞

∫ ∞
−∞

f(x, y) dxdy = 1⇒ Pint(D) = 1− Pint(D). (4.26)

To compute Pint(D) the algorithm divides the region D into angular regions Ai as
illustrated in Figure 28 and relies on a fast method to evaluate the integral over those
regions. For each vertex Vi of the Polygon a corresponding angular region Ai is intro-
duced.

V1

V2

V3
V4

D

A1

A2

A3

A4

Figure 28: Angular regions of a polygon with four vertices. The figure is derived
from [1].

The angular regions Ai are defined as the semi-infinite part bounded by two in-
tersecting lines [1] as shown in Figure 28. Before calculating the integral over these
regions the integrand in Equation (4.25) is reduced by substitution to

Pint(D) = P ′int(D
′) =

1

2π

x

D′

exp

(
−u

2 + v2

2

)
dudv, u =

x

σx
, v =

y

σy
. (4.27)

Note that the polygon D′ also has to be given in coordinates of u and v and thus is
obtained by using the substitution in Equation (4.27). This transformation can be
described by the following matrix

36

Msub =

 1
σx

0 0

0 1
σy

0

0 0 1

 . (4.28)

If D was calculated on the ray image plane, as described earlier, Msub can be multiplied
to the matrix M of Equation (4.23) and the resulting matrix used to directly calculate
the polygon D′ in coordinates of u and v.

After the substitution the bivariate Gaussian distribution in Equation (4.27) is cir-
cular symmetric. This property is required in order to calculate the integral over an
angular region Ai. Using the integration, Equation (4.27) can be written as

P ′int(D
′
) =

n∑
i=1

P ′(A′i) =
n∑
i=1

1

2π

x

A′i

exp

(
−u

2 + v2

2

)
dudv. (4.29)

Due to the circular symmetry, a rotation of the axes can be performed without
changing the result. Therefore, the axes can be rotated such that the line L of an
angular Region as shown in Figure 29 coincide with the positive u-Axis [1]. The line
L is defined by the Vertex V and the origin. Its corresponding angular region is de-
scribed using the distance R from the origin to the vertex V and the angles θ1 and θ2.
Figure 30 illustrates the resulting angular region. From now on the axes are assumed
to be rotated but are still referred to as u and v. Note that these rotations are not ac-
tually required when evaluating P ′(A′i) but rather used to simplify the steps necessary
to solve the integral.

By introducing polar coordinates centered at the vertex Vi = (0, R) the integral
limits in Equation (4.29) can be defined with the angles θ1 and θ2. The required
transformations are

u = R + r cos θ, v = r sin θ, dudv = rdrdθ, −π ≤ θ ≤ π. (4.30)

Using this transformation in Equation (4.29) results in the following

P ′(A′i) =
1

2π

∫ θ2

θ1

∫ ∞
0

exp

[
−1

2

(
R2 + 2rR cos θ + r2

)]
rdrdθ

=
1

2π
e−

R2

2

∫ θ2

θ1

∫ ∞
0

re−
r2

2 e−pr drdθ, p = R cos θ.

(4.31)

In our code the angles θ1 and θ2 are calculated from the Line L which intersects the
origin and the vertex Vi and are positive in counter-clockwise direction. Thus, angle

37

V

L

u

v
θ2

θ1

Figure 29: Example of a general angular
region before the rotation de-
rived from [1].

u

v

V
L

θ2

θ1

Figure 30: Rotated angular region which
is defined by the length R and
the angles θ1 and θ2 derived
from [1].

θ2 in Figure 30 would have a positive sign and θ1 a negative one. The sign is deter-
mined by the sign of the corresponding determinant. Therefore, the angles are given by

θ1 = sign(det(~v1,~l))
arccos 〈~v1,~l〉
|~v1| · |~l|

,

θ2 = sign(det(~v2,~l))
arccos 〈~v2,~l〉
|~v2| · |~l|

,

(4.32)

with ~v1 as the vector from the predecessor of vertex Vi to Vi, ~v2 as the vector from Vi to
the successor of Vi, ~l as the vector from the origin to Vi and det(·, ·) as the determinant
of two vectors.

Figure 31 illustrates the situation for an arbitrary vertex Vi. By this definition the
polygon is required to be given in counter-clockwise order.

38

Vi

~l

L

Vi−1 ~v1

Vi+1

~v2

u

v
θ2

θ1

Figure 31: Illustration for the calculation of the angles θ1 and θ2.

To solve the integral in Equation (4.31) an integration by parts on the inner integral
as well as a substitution is used

∫ ∞
0

re−
r2

2 e−pr dr =
[
−e− r

2

2 e−pr
]∞

0
−
∫ ∞

0

−e− r
2

2 · −pe−pr dr

= 0 + 1− p
∫ ∞

0

e−
r2

2 e−pr dr

= 1− p
∫ ∞

0

e−
1
2

(r2+2pr+p2−p2) dr

= 1− pe 1
2
p2
∫ ∞

0

e−
1
2

(r+p)2 dr

= 1− pe 1
2
p2
∫ ∞

0

e
−(r√

2
+ p√

2
)2 1√

2

√
2 dr

= 1− pe 1
2
p2
√

2

∫ ∞
p√
2

e−t
2

dt, t =
r + p√

2
.

(4.33)

The remaining integral in Equation (4.33) correlates with the complementary error
function being defined as

erfc(x) =
2√
π

∫ ∞
x

et
2

dt. (4.34)

Inserting this into the equation leads to

39

∫ ∞
0

re−
r2

2 e−pr dr = 1− pe 1
2
p2
√

2

√
π

2

2√
π

∫ ∞
p√
2

e−t
2

dt

= 1− pe 1
2
p2
√

2

√
π

2
erfc

(
p√
2

)
= 1− p

√
2

1

e−
1
2
p2 2√

π

erfc

(
p√
2

)
= 1− 2w

erfc(w)

z(w)
, w =

p√
2

=
R√

2
cos θ, z(w) =

2√
π
e−w

2

.

(4.35)

This reduces the integral in Equation (4.31) to

P ′(A′i) =
1

2π
e−

R2

2

∫ θ2

θ1

∫ ∞
0

re−
r2

2 e−pr drdθ

=
1

2π
e−

R2

2

(
(θ2 − θ1)−

∫ θ2

θ1

2w
erfc(w)

z(w)
dθ

)
= e−

R2

2

(
θ2 − θ1

2π
− 1

π

∫ θ2

θ1

w
erfc(w)

z(w)
dθ

)
.

(4.36)

The issue of evaluating the integral in Equation (4.36) is resolved by using a minmax

polynomial fit to erfc(w)
z(w)

, i.e. finding a polynomial of certain degree which has the
smallest maximal deviation to the original function. In particular this means to find a
set of real numbers ak for a given δ>0 and a least positive integer K such that∣∣∣∣∣erfc(w)

z(w)
−

K∑
k=1

akw
k

∣∣∣∣∣ ≤ δ, 0 ≤ w ≤ c(δ)

⇒
∣∣∣∣∣erfc(w)− z(w)

K∑
k=1

akw
k

∣∣∣∣∣ ≤ 2√
π
e−w

2

δ ≤
e−w2≤1

2√
π
δ, 0 ≤ w ≤ c(δ).

(4.37)

In [1] it is proven that if the inequality in Equation (4.37) holds then

∣∣∣∣∣e−R2

2

∫ θ2

θ1

(
w

erfc(w)

z(w)
−

K∑
k=1

akw
k+1dθ

)∣∣∣∣∣ ≤ δ√
π

= ε. (4.38)

The coefficients ak as well as K and c(δ) can be found in [1] for accuracies of P ′(A′i)
of 3, 6, 9 and 12 decimal-digits. However, the accuracy of Pint(D) can be worse than
the accuracy of P ′(A′i) used to calculate Pint(D) when the errors sum up in an unlucky
way. But in our use case for polygons with a small number of vertices an accuracy loss

40

of more than one digit is unlikely. With this P ′(A′i) is given within ±ε by [17]

P ′(A′i) =
e−

R2

2

π

(
θ2 − θ1

2
−
∫ θ2

θ1

K∑
k=1

akw
k+1dθ

)
, |θ1| ≤

π

2
, |θ2| ≤

π

2

=
e−

R2

2

π

(
θ2 − θ1

2
−

K∑
k=1

akJk+1

)
,

(4.39)

where

Jk =

∫ θ2

θ1

wkdθ =

(
R√

2

)k ∫ θ2

θ1

cosk θdθ. (4.40)

The constraints on θ1 and θ2 in Equation (4.39) are explained shortly.

Recurrence relations in the integral of Equation (4.40) let us solve it by using a
reduction formula [36], i.e., the integral in Jk is reduced to an integral of Jk−2 for
k ≥ 2. As J0 and J1 are given by

J0 = 1[θ]θ2θ1 = θ2 − θ1,

J1 =
R√

2
[sin θ]θ2θ1 =

R√
2

(sin θ2 − sin θ1),
(4.41)

an inductive procedure can be used to solve Jk once the reduction to Jk−2 is known.
Therefore, a reduction formula for the following integral is needed

Ik =

∫ θ2

θ1

cosk θdθ, k ≥ 2. (4.42)

An integration by parts, the chain rule and the Pythagorean trigonometric identity
yield [36]

41

Ik =

∫ θ2

θ1

cosk θdθ

=

∫ θ2

θ1

cosk−1 θ cos θdθ

= [cosk−1 θ sin θ]θ2θ1 −
∫ θ2

θ1

(cosk−1 θ
d

dθ
) sin θdθ

= [cosk−1 θ sin θ]θ2θ1 +

∫ θ2

θ1

(k − 1) cosk−2 θ sin θ sin θdθ

= [cosk−1 θ sin θ]θ2θ1 + (k − 1)

∫ θ2

θ1

cosk−2 θ sin2 θdθ

= [cosk−1 θ sin θ]θ2θ1 + (k − 1)

∫ θ2

θ1

cosk−2 θ(1− cos2 θ)dθ

= [cosk−1 θ sin θ]θ2θ1 + (k − 1)

(∫ θ2

θ1

cosk−2 θdθ −
∫ θ2

θ1

cos2 θdθ

)
= [cosk−1 θ sin θ]θ2θ1 + (k − 1)(Ik−2 − Ik).

(4.43)

Thus, the reduction formula for Equation (4.42) is

Ik = [cosk−1 θ sin θ]θ2θ1 + (k − 1)(Ik−2 − Ik)
⇔ kIk = [cosk−1 θ sin θ]θ2θ1 + (k − 1)Ik−2

⇔ Ik =
1

k
[cosk−1 θ sin θ]θ2θ1 +

k − 1

k
Ik−2.

(4.44)

Inserting this into Equation (4.40) gives

Jk =

(
R√

2

)k ∫ θ2

θ1

cosk θdθ

=

(
R√

2

)k (
1

k
[cosk−1 θ sin θ]θ2θ1 +

k − 1

k

∫ θ2

θ1

cosk−2 θdθ

)
=

1

k

((
R√

2

)k
[cosk−1 θ sin θ]θ2θ1 + (k − 1)

(
R√

2

)2(
R√

2

)k−2 ∫ θ2

θ1

cosk−2 θdθ

)

=
1

k

((
R√

2

)k
[cosk−1 θ sin θ]θ2θ1 + (k − 1)

R2

2
Jk−2

)
.

(4.45)

Finally from Equation (4.39) and 4.45 a procedure to calculate P ′int(A
′
i) can be given

as follows

42

P ′(A′i) =
e−

R2

2

π

(
θ2 − θ1

2
−

K∑
k=1

akJk+1

)
, |θ1| ≤

π

2
, |θ2| ≤

π

2
, (4.46)

with

J0 = θ2 − θ1

J1 = R√
2
(sin θ2 − sin θ1)

Jk+1 = 1
k+1

((
R√
2

)k+1

[cosk θ sin θ]θ2θ1 + kR
2

2
Jk−1

)
= 1

k+1

[
(h2g

k
2 − h1g

k
1) + kR

2

2
Jk−1

]
, k ≥ 2

(4.47)

where

gi =
R√

2
cos θi, hi =

R√
2

sin θi, i = 1, 2. (4.48)

Equation (4.37) holds only if 0 ≤ w and therefore requires cos θ ≥ 0 as R ≥ 0 which
is the reason for the constraints |θ1| ≤ π

2
and |θ2| ≤ π

2
in Equation (4.39) and 4.46. For

angles outside of the range |θ| ≤ π
2

the following relation [1] is used

P ′(a(V, 0, θ)) =
1

2
erfc

(
R√

2
sin θ

)
− P ′(a(R, 0, π − θ)), |θ| ≤ π, (4.49)

with a(R, 0, θ) as the angular Region at vertex V and angles θ1 = 0, θ2 = θ. Thus,
there are different cases when evaluating P ′(A′i) in which Equation (4.49) is needed as
shown in Figure 32.

With all this P ′(A′i) can be evaluated and thus the desired probability Pint(D) as
well as Phit calculated. The basic required steps for the computation of Pint(D) are
summarized in Algorithm 3 and 4.

43

g1 ≥ 0, g2 ≥ 0

{
|θ1| ≤ π

2

|θ2| ≤ π
2

A∗ = a(V, θ1, θ2)

P ′(A′) = P ′(A∗)

L

g1 ≥ 0, g2 < 0⇒ |θ2| > π
2

{
|θ1| ≤ π

2

θ2 > 0

A∗ = a(V, θ1, θ2 − π)

L

{
|θ1| ≤ π

2

θ2 < 0

A∗ = a(V, θ1, θ2 + π)

L

P ′(A) = 1
2
erfc(h2)− P ′(A∗)

g1 < 0⇒ |θ1| > π
2
, g2 ≥ 0

{
θ1 < 0

|θ2| ≤ π
2

A∗ = a(V, θ1 + π, θ2)

L

{
θ1 > 0

|θ2| ≤ π
2

A∗ = a(V, θ1 − π, θ2)

L

P ′(A) = 1
2
erfc(−h1)− P ′(A∗)

g1 < 0⇒ |θ1| > π
2
, g2 < 0⇒ |θ2| > π

2

{
θ1 > 0

θ2 > 0

A∗ = a(V, θ1 − π, θ2 − π)

L

{
θ1 < 0

θ2 < 0

A∗ = a(V, θ1 + π, θ2 + π)

L

{
θ1 > 0

θ2 < 0

A∗ = a(V, θ1 − π, θ2 + π)

L

P ′(A) = 1
2
erfc(h2)− 1

2
erfc(h1) + P ′(A∗)

Figure 32: Calculation of angular regions including the cases where the constraints of
Equation (4.46) are not given. The figure is derived from [1].

44

Algorithm 3 Bivariate Polygon Integration

1: function bivariatePolygonIntegration(D, σx, σy)
2: D′ ← scaleToCircular(D, σx, σy)
3: result← 0
4: for each vertex Vi in D′ do
5: R← distance(R, (0, 0))
6: v1 ← vector(predecessor(Vi), Vi)
7: v2 ← vector(Vi, successor(Vi))
8: if R == 0 then
9: result← result+ arccos 〈v1, v2〉/(2π)

10: continue
11: l← vector((0, 0), Vi)

12: θ1 ← sign(det(~v1,~l))
arccos 〈~v1,~l〉
|~v1|·|~l|

13: θ1 ← sign(det(~v2,~l))
arccos 〈~v2,~l〉
|~v2|·|~l|

14: h2 ← sin θ2R/
√

2
15: h1 ← sin θ1R/

√
2

16: g2 ← cos θ2R/
√

2
17: g1 ← cos θ1R/

√
2

18: if g1 ≥ 0 and g2 ≥ 0 then
19: result← result+ integrateAngularRegion(R, θ1, θ2, g1, g2, h1, h2)
20: else
21: if g1 < 0 then
22: if θ1 > 0 then
23: θ1 ← θ1 − π
24: else
25: θ1 ← θ1 + π

26: if g2 < 0 then
27: if θ2 > 0 then
28: θ2 ← θ2 − π
29: else
30: θ2 ← θ2 + π

31: h′2 ← sin θ2R/
√

2
32: h′1 ← sin θ1R/

√
2

33: g′2 ← cos θ2R/
√

2
34: g′1 ← cos θ1R/

√
2

35: if g1 ≥ 0 and g2 < 0 then
36: result← result+ erfc(h2)/2

− integrateAngularRegion(R, θ2, θ1, g
′
2, g
′
1, h
′
2, h
′
1)

37: else if g1 < 0 and g2 ≥ 0 then
38: result← result+ erfc(−h1)/2

− integrateAngularRegion(R, θ2, θ1, g
′
2, g
′
1, h
′
2, h
′
1)

39: else
40: result← result+ (erfc(h2)− erfc(h1))/2

− integrateAngularRegion(R, θ1, θ2, g
′
1, g
′
2, h
′
1, h
′
2)

41: return 1− result
45

Algorithm 4 Angular Region Integration

1: function integrateAngularRegion(R, θ1, θ2, g1, g2, h1, h2)
2: result← 0
3: jl ← θ2 − θ1

4: j ← h2 − h1

5: for k = 0, k ≤ K, k += 1 do
6: result← result+ akj
7: copy ← j
8: j ← (h2g

k+1
2 − h1g

k+1
1 + jl(k + 1)R2/2)/(k + 2)

9: jl ← copy

10: return e−R
2/2((θ2 − θ1)/2− result)/π

To conclude, an accurate and fast method [1] to evaluate the integral of the bivariate
Gaussian distribution over a polygon has been discussed. Furthermore, in the beginning
of this section the computation of a representative region for which rays intersecting
this region would hit the current receiver piece was given. By combining the two,
the probability of the representative ray to be perturbed such that it hits the current
receiver piece can be calculated which is the main part of our Gaussian convolution ray
tracer. Algorithm 5 sketches the required steps for the total solar power calculation.

Algorithm 5 Gaussian convolution ray tracer

1: function gaussianConvolution(s, ~r, ~r hor, ~r ver, σhor
beam, σ

ver
beam)

2: solarPower ← 0
3: σx ← tanσhor

beam . distance to ray image plane δ = 1
4: σy ← tanσver

beam

5: M ← getPerspectiveProjectionMatrix(s, ~r, ~r hor, ~r ver, 1)
6: for each receiver piece P in receiver pieces do
7: projectedCorners← []
8: for each corner ci in P do
9: projectedCorners.add(Mci)

10: Dspan ← polygon(projectedCorners)
11: solarPower ← solarPower+

bivariatePolygonIntegration(Dspan, σx, σy)

12: return solarPower

4.2.3 Tower blocking

As described in Section 2.4 it is crucial to be aware of tower blocking in the case of
a cavity receiver. Any ray hitting the receiver first has to go through the receiver
window. To exclude the rays that would hit the tower before hitting the receiver the
receiver pieces have to be cut in such a way that only the visible part remains. The
visibility of a point is determined by Equation (3.4) using the two blocking planes of

46

Equation (3.3), see Section 3.4. Depending on which side of the planes a receiver cor-
ner lies it is either visible or blocked. Therefore, a whole receiver piece can be visible,
blocked or partly visible which means it has to be cut.

In our Gaussian convolution ray tracer the receiver pieces are first traversed in hori-
zontal direction starting from the topmost receiver piece at the vertical blocking edge.
As a reminder, this is the edge used to define the vertical blocking plane Bver, see
Equation (3.3). By doing this most of the not visible receiver pieces can directly be
excluded from further evaluation. When the right vertical edge of the receiver window
is closer to the ray origin, the upper left corner of each receiver piece is checked for
vertical visibility otherwise the upper right corner is checked. Figure 33(a) illustrates
the first step of a horizontal traverse.

As soon as the checked corner is visible a vertical cut is needed since the other upper
corner was not visible or lied on the plane itself. This cut can be omitted if the checked
corner of the first receiver piece is visible since the other upper corner lied on the plane
itself which implies all receiver pieces to be vertically visible.

(a) First step (b) Vertically cut (c) Fully cut

Figure 33: Simplified example of the cutting process for the cavity receiver to obtain
its visible pieces. The currently checked receiver piece is shown in dark blue
and the checked corners are marked with a dot.

In order to correctly cut a receiver piece, an intersection of the vertical blocking
plane with the line between the two upper corners of the receiver piece is evaluated.
The vertically not visible corner is then replaced by the resulting intersection point i.
Instead of calculating the same intersection for the line between the two lower corners
one can make use of the fact that the receiver pieces are vertically aligned with the ver-
tical blocking plane. The reason for this is the definition of the vertical blocking plane
and the fact that all receiver pieces have the same vertical alignment. Therefore, the
intersection point of the line between the two lower corners and the vertical blocking
plane is the same as the point i plus the vector from one upper corner to the lower one,

47

see Figure 33(b). By this, the correct vertical cut for all receiver pieces below can also
be calculated. Thus, the receiver pieces are now also traversed in vertical direction,
vertically cut and the remaining receiver pieces are assumed to be vertically visible.
The resulting receiver pieces are shown in Figure 33(b).

After each vertical cut, both lower corners are checked for horizontal visibility. If at
least one is not visible another cut is required. As the receiver pieces are not horizon-
tally aligned there are a lot more different cases which require a cut. Figure 34 shows
these cases and the resulting receiver piece.

⇒
◦ ◦

⇒
◦

⇒
◦

⇒
◦

◦

◦
⇒

◦

◦

◦

⇒
◦

◦
⇒

◦

◦

Figure 34: Illustration of all possible cases when cutting a receiver piece horizontally.
Not visible corners are marked with a cycle and visible ones with a dot.

When both lower corners are not visible all receiver pieces below are skipped as
they are also not visible. Afterwards, the highest receiver piece of the next column
is checked in the same way until all receiver pieces are correctly cut. Note that at
most one column requires a vertical cut, thus any column after the vertically cut one
is only checked for horizontal visibility. An exemplary visible part of a cavity receiver
is illustrated in Figure 33(c).

In the case of calculating the representative region Dspan on the ray image plane this
process may also be done on the ray image plane itself. The necessary steps are similar,
but the two blocking planes can now be represented by two lines which are defined as
the intersection of the ray image plane with either of the blocking plane. Therefore,
the intersection points needed in the cutting process are now evaluated by intersecting

48

two lines in two dimensions instead of a line and a plane in three dimensions.

Finally, all parts of our Gaussian convolution ray tracer are fully specified and we
can come to our last ray tracing technique being the integrated convolution method.

4.3 Integrated convolution method

Figure 35: Basic principle of our integrated convolution method. Here, the whole he-
liostat cell of the representative ray is taken into account which requires a
different probability density function, shown in black, for evaluation.

So far, the ray tracing methods have mainly concentrated on the evaluation of the
error cone which is one main error source for each ray tracer. However, as discussed in
Section 2.5 there is yet another source of error being the fact that one ray is used to
represent photon interactions of a whole cell. Previously, this error has been reduced
by increasing the number of rays leading to smaller cell areas for each ray. But in-
creasing the number of rays effectively increases the computational costs. Therefore,
our integrated convolution ray tracer aims to reduce the error of using one ray for each
heliostat cell in a different way, see Figure 35. The method is based on ideas described
in Richter et. al [33, 35]. To understand the underlying concept a deeper look into
what it means to take more than one ray for a cell is needed. For this, a simplified
two dimensional version is introduced before getting to the general case, see Figure 36.
When evaluating only the representative ray as in Figure 36(a), the probability Phit

that this ray will be perturbed in such a way that it hits the receiver is of interest. In
combination with the power of the ray Pray, the solar power Prec at the receiver emitted
from the current heliostat cell can be calculated by

49

Prec = PrayPhit = Pray

∫ b

a

f(x) dx, (4.50)

with f(x) as the Gaussian distribution on the ray image line and a and b as the co-
ordinates of the receiver endpoints on that line. Here, the ray image line is the two
dimensional equivalent to the ray image plane.

s

~r

a b

∆µ

(a) Evaluating only the representative ray.

s

~r

a b

µ1 µ2µmin µmax

∆µ

(b) Evaluting two rays per cell.

Figure 36: Simplified two dimensional examples to illustrate the process of evaluating
more than one ray per heliostat cell.

However, when taken two rays for a heliostat cell as in Figure 36(b) the power at
the receiver cell for both rays is calculated as follows

Prec = Prec,1 + Prec,2 =
1

2
PrayPhit,1 +

1

2
PrayPhit,2

= Pray
1

2

(∫ b

a

f(x− µ1) dx+

∫ b

a

f(x− µ2) dx

)
= Pray

∫ b

a

1

2
(f(x− µ1) + f(x− µ2)) dx

= PrayP
avg
hit ,

(4.51)

with µ1 and µ2 as the origin of the two rays and P avg
hit as the average probability of a

ray to be perturbed such that it hits the receiver.

50

Comparing Equation (4.51) with Equation (4.50) one can see that evaluating two
rays can be modeled by using a different probability density function. In the same way
the evaluation of n rays can be modeled which changes P avg

hit to

P avg
hit =

∫ b

a

1

n

n∑
i=1

f(x− µi) dx =

∫ b

a

F (x) dx, µi ∈ [µmin, µmax], (4.52)

with F (x) as the new probability density function, lcell as the length of the cell and
µmin and µmax as the endpoints, see Figure 36(b).

Before further evaluation an exact description of µi is required. By definition when
n = 1 then µ1 = 0, see Figure 36(a). For n = 2, µ1 and µ2 should be defined as
illustrated in Figure 36(b). Therefore, µ1 = µmin + ∆µ

2
and µ2 = µmin + ∆µ

2
+ ∆µ with

∆µ = µmax−µmin

2
. The pattern continues leading to

µi = µmin +
∆µ

2
+ ∆µ(i− 1), ∆µ =

µmax − µmin

n
. (4.53)

By letting n go to infinity in F (x) meaning that an infinite amount of rays will
be evaluated, a Riemann sum [36] is reached. In combination with f(x) being axis-
symmetric, this leads to the following integral

F (x) =
1

n

1

∆µ

n∑
i=1

f(x− µi)∆µ =
1

µmax − µmin

n∑
i=1

f(x− µi)∆µ

n→∞
=

1

lcell

lim
n→∞

n∑
i=1

f(x− µi)∆µ =
1

lcell

lim
∆µ→0

n∑
i=1

f(x− µi)∆µ

=
1

lcell

∫ µmax

µmin

f(x− µ)dµ =
1

lcell

∫ µmax

µmin

f(µ− x)dµ.

(4.54)

The integral is solved by using the error function which is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (4.55)

resulting in

51

F (x) =
1

lcell

∫ µmax

µmin

f(µ− x)dµ

=
1

lcell

1√
2πσ

∫ µmax

µmin

e
−
(
µ−x√

2σ

)2 1√
2σ

√
2σdµ

=
1

lcell

1√
π

∫ µmax−x√
2σ

µmin−x√
2σ

e−t
2

dt, t =
µ− x√

2σ

=
1

lcell

1

2

(
2√
π

∫ µmax−x√
2σ

0

e−t
2

dt− 2√
π

∫ µmin−x√
2σ

0

e−t
2

dt

)

=
1

2lcell

(
erf

(
µmax − x√

2σ

)
− erf

(
µmin − x√

2σ

))
.

(4.56)

An illustration of this probability density function from a heliostat cell of length
lcell = 1 m for a distance δ = 20 m and angular standard derivation σbeam = 3 mrad
resulting in σ = σspan ≈ 0.06 m is shown in Figure 37(a). From now on, F (x) is referred
to as the integrated Gaussian distribution.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(a) 20 m distance.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(b) 100 m distance.

Figure 37: Probability density function of the integrated Gaussian distribution from
a heliostat cell of length lcell = 1 m at different distances with standard
derivations σspan as in Equation (4.3) from σbeam = 3 mrad.

Similarly to the definition of the bivariate Gaussian distribution in Section 4.1, the
two dimensional equivalent to the integrated Gaussian distribution is defined as the
multiplication of two independent integrated Gaussian distributions to

52

F (x, y) = F (x)horF (y)ver

=
1

4lcellwcell

(
erf

(
µhor

max − x√
2σhor

span

)
− erf

(
µhor

min − x√
2σhor

span

))
(

erf

(
µver

max − y√
2σver

span

)
− erf

(
µver

min − y√
2σver

span

))
,

(4.57)

with wcell as the width of the cell. Note that this is only correct when the ray direction
is orthogonal to the heliostat cell.

Figure 38 shows the two dimensional integrated Gaussian distribution for a cell of
width wcell = 2 m and length lcell = 2 m where the distance δ and standard deviations
σver

beam and σhor
beam were exemplary set such that σver

span = σhor
span ≈ 0.15 m.

−2

0

2

−2
−1

0
1

2
0

0.1

0.2

Figure 38: Integrated two dimensional Gaussian distribution for a cell of width wcell = 2
m and length lcell = 2 m at a distance δ = 50 m and standard deviations
σver

beam = σhor
beam = 3 mrad resulting in σver

span = σhor
span ≈ 0.15 m [18].

To calculate the desired average probability P avg
hit of a ray to be perturbed such that it

hits the receiver for the three dimensional case the following integral must be evaluated

P avg
hit =

x

D

F (x, y) dA, (4.58)

53

with D as a representative region of the receiver cell on the ray image plane.

However, even for our two dimensional example the integral is hard to calculate.
Moreover, no method to integrate the two dimensional integrated Gaussian distribu-
tion over a polygon has been found. The tool UNIZAR describes the flux distribution
of a cell with a similar function as the two dimensional integrated Gaussian distri-
bution [37]. It solves the integral using a numerical integration similar to the one of
HFLCAL. Thus, it depends on a fine discretization of the receiver which we want to
avoid in order to decrease the computing time.
Therefore, there are two problems left in order to make use of the integrated Gaussian
distribution. Firstly, a way to solve the integral in Equation (4.58) is required. Sec-
ondly, in the case of the ray direction being non-orthogonal to its cell, a definition of
the width and height used in the integrand needs to be given.

4.3.1 Approximating the integrated Gaussian distribution

Again, the simplified case of an orthogonal ray is viewed before getting to the general
situation. As already illustrated in Figure 37(b) the integrated Gaussian distribution at
a distance has a similar shape as a Gaussian distribution. Thus, the same holds for their
two dimensional equivalents. As an integration of the bivariate Gaussian distribution
over a polygon has already been given in the last section, the first problem can be solved
by approximating the integrated Gaussian distribution with a Gaussian distribution
for both deviation directions. Figure 39 shows the result of such an approximation.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

Gaussian Approximation
Integrated Gaussian

Figure 39: The integrated Gaussian distribution of Figure 37(b) approximated by a
Gaussian distribution.

The optimization problem used to obtain an accurate approximation is defined as
follows. For a given cell length lcell, distance δ and standard deviation σbeam find a

54

sigma multiplier σmul such that

σmul = arg min
σmul∈R

n∑
i=1

(F (xi| δ tanσbeam, lcell)− f(xi| δ tan (σbeamσmul)))
2 , xi ∈ [−b, b].

(4.59)

The points xi are evenly spaced on the interval [−b, b] which is chosen to include
most of the values drawn by both distribution functions, thus b = 3σspan + lcell

2
. In

Equation (4.59) a sigma multiplier is used instead of directly trying to find the optimal
sigma, due to its high dependency to the distance. The optimizations were done in
python using the scipy libraries1. Since this takes too much time to do during the ray
tracing process, a function g(δ, σbeam, lcell) that calculates σmul is needed. Therefore,
the integrated Gaussian distribution is approximated by

F (xi| σspan, lcell) ≈ f(xi| σspan · g(d, σbeam, lcell)). (4.60)

During the analysis of the function g, two important properties were noticed.

1. g(δ, a · σbeam, lcell) ≈ g(δ, σbeam,
lcell
a

), a ∈ R

2. g(δ, σbeam, a · lcell) ≈ g(δ
a
, σbeam, lcell), a ∈ R

By using these properties, the dependencies of g can be reduced to

g(δ, σbeam, lcell) = g(δ,
σbeam

σbeam,std

σbeam,std,
lcell

lcell,std

lcell,std)

1≈ g(δ, σbeam,std,
σbeam,std

σbeam

lcell

lcell,std

lcell,std)

2≈ g(α, σbeam,std, lcell,std) = gnew(α), α = δ
σbeamlcell,std

σbeam,stdlcell

,

(4.61)

with σbeam,std = 3 mrad and lcell,std = 1 m as standard values chosen to reduce the
factor α. Here, gnew is the new sigma multiplier function which only depends on one
variable.

The values of gnew have been calculated for various α values and the function was ap-
proximated with the help of ZunZun2, a website for curve and surface fitting, resulting
in

gnew(α) ≈ gapprox(α) = max (a · e b
x+c + d, 1). (4.62)

1https://www.scipy.org/
2http://zunzun.com/

55

Coefficient Value
a 6.0654123395858638E-03
b 1.0168091727137571E+03
c 1.3522384735784115E+02
d 9.8897960843463073E-01

Table 1: Coefficients of the sigma multiplier function gapprox from Equation (4.62).

Table 1 gives the coefficients derived from ZunZun and Figure 40 shows the original
values of gnew as well as the approximation gapprox. As expected, the sigma multiplier
approaches one for small cell lengths meaning that the original Gaussian distribution
stays unchanged. However, a large α value for gapprox is also caused by a far distance
δ and a high standard derivation σbeam. Thus, the Gaussian convolution method is
presumed to be more accurate in those instances.

0 100 200 300 400

1

2

3

4

5

6

α (m)

S
ig
m
a
M
u
lt
ip
li
ca
to
r

Approximation
Original Values

Figure 40: Values of gnew and the approximation gapprox.

To evaluate the accuracy of the derived approximation in Equation (4.60) the root
mean square error (RMSE) between the integrated Gaussian distribution and the Gaus-
sian approximation is used. Besides the approximation using the sigma function also
the optimal Gaussian approxomation, derived with the scipy libraries is tested. The
results for different cell lengths lcell and standard derivations σbeam in dependence to
the distance δ can be found in Figure 41(b) and 41(a).

The figures support the assumption that the integrated Gaussian distribution con-
verges to a Gaussian distribution in the distance. Furthermore, our derived approxi-
mation reaches a similar RMSE as the optimal Gaussian approximation, especially for
large distances.

56

100 200 300

0.0

0.2

0.4

0.6

Distance (m)

R
M
S
E

gapprox, σbeam = 2 mrad
g, σbeam = 2 mrad
gapprox, σbeam = 4 mrad
g, σbeam = 4 mrad

(a) RMSE for various standard derivations
σbeam and distances with lcell = 1 m.

100 200 300

0.0

0.5

1.0

Distance (m)

R
M
S
E

gapprox, l = 2 m
g, l = 2 m
gapprox, l = 0.5 m
g, l = 0.5 m

(b) RMSE for various cell lengths lcell and dis-
tances with σbeam = 3 mrad.

Figure 41: RMSE between the integrated Gaussian distribution and the optimal Gaus-
sian approximation g as well as the approximation using the sigma function
gapprox.

Additionally, Figure 42(a) compares the RMSE of the integrated Gaussian distribu-
tion and the optimal approximation at a fixed distance of δ = 100 m. This is commonly
about the smallest distance of a heliostat cell to the tower. As before, the RMSE in-
creases for larger cell length and smaller standard deviations. However, the cell length
has a bigger influence on the RMSE than the standard derivation. The relative RMSE
difference between the optimal approximated Gaussian distribution and the approxi-
mation using the derived function is shown in Figure 42(b). Here, the relative RMSE
difference between the derived function and the optimal approximation is always less
than 1.5 %.

To conclude the integrated Gaussian distribution function was approximated by a
Gaussian distribution with a scaled standard derivation. The definition of an optimal
scaling factor as well as a function to approximate it has been given. Furthermore, the
derived function was shown to be an accurate approximation.

In order to make use of the derived approximation for the general case, a definition of
the cell width and height used in the two dimensional integrated Gaussian distribution
is needed.

57

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Length (m)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

be
am

 (m
ra

d)

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

RM
SE

(a) RMSE of the integrated Gaussian distri-
bution and the optimal approximation.

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Length (m)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

be
am

 (m
ra

d)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RM
SE

 d
iff

er
en

ce
 (%

)

(b) Relative RMSE difference of the function
approximation to the optimal one.

Figure 42: RMSE heatmaps for the approximation steps at a distance of 100 m.

4.3.2 Use of the approximation

For the purpose of developing a reasonable definition of the adapted cell dimensions,
the influence of the original cell dimensions in the current ray tracing techniques is
reviewed. So far, the only parameter depending on them is the ray power Pray. More-
over, the dependency lies just on the effective cell area, see Section 2.5. This is the
area of the heliostat cell projected onto a plane orthogonal to the sun vector. Due to
the law of reflection it is the same as the area of the projection onto a plane orthogonal
to the ray vector. As the shape of the cell did not influence the ray evaluation so far,
it is reasonable to assume the effective cell area to be quadratic and aligned with the
deviation directions of the ray, see Figure 43. Therefore, the adapted cell width w′cell

and length l′cell are defined as follows

l′cell = w′cell =
√
Acellηcos. (4.63)

The resulting integrated Gaussian distributions for both directions are then approx-
imated by Gaussian distributions as described earlier. As a distance δ used in the
approximation, the distance between the ray origin and the midpoint of the receiver
piece is utilized. From there on, the evaluation is carried out the same way as in the
Gaussian convolution method. Note that the perspective projection used to define
the area Dspan representing the receiver piece is not fully correct anymore as the rays
do not originate from the same point. However, due to the distances and the small
effective areas it is a reasonable assumption for the calculation of Dspan. Algorithm 6
sums up the required steps of the integrated convolution ray tracer.

A study done in [16] also confirms some approaches of our integrated convolution
method. Here, the slope error of HFLCAL was fitted such that the resulting flux

58

~r ver~rh
or

~r

Figure 43: Adapted heliostat cell drawn in blue of the original cell drawn in black.

distribution of the heliostat matches actual measured data. It was done for heliostats
with different distances to the tower and varying incident angles of the sun rays. The
behavior of the fitted slope errors corresponds to the predictions made by our derived
fitting function. They increased for larger cell areas and decreased with the distance.
Moreover, the authors were surprised to find that the heliostats closest to the receiver
had the worst fittings. But considering the findings of the last section, the flux of
theses heliostat is expected to differ most from the actual flux.

Algorithm 6 Integrated convolution ray tracer

1: function integratedConvolution(s, ~r, ~r hor, ~r ver, σhor
beam, σ

ver
beam)

2: solarPower ← 0
3: M ← getPerspectiveProjectionMatrix(s, ~r, ~r hor, ~r ver, 1)
4: l′cell ←

√
Acellηcos

5: for each receiver piece P in receiver pieces do
6: δ ← |s− P.midpoint|
7: αhor ← (δσhor

beamlcell,std)/(σbeam,stdl
′
cell)

8: αver ← (δσver
beamlcell,std)/(σbeam,stdl

′
cell)

9: σx ← tan (σhor
beamgapprox(αhor))

10: σy ← tan (σver
beamgapprox(αver))

11: projectedCorners← []
12: for each corner ci in P do
13: projectedCorners.add(Mci)

14: Dspan ← polygon(projectedCorners)
15: solarPower ← solarPower+

bivariatePolygonIntegration(Dspan, σx, σy)

16: return solarPower

59

5 Case study

In the following, various aspects of the ray tracing methods are investigated. First, our
optical model is validated against the Monte Carlo based ray tracing tool SolTrace [44].
Afterwards, the optimal settings for the multi- and quasi-Monte Carlo method are
derived. Then, the accuracy of the different ray tracers is compared against their
corresponding runtime. Lastly, different acceleration strategies for the ray tracing
techniques are discussed.

5.1 Validation

In this section, a cross validation of SunFlower with SolTrace for different test cases
is given. The test cases are predicated on the solar tower power plant Planta Solar 10
(PS10) in Spain [29] which utilizes 624 heliostats of the type Sanlúcar 120. Figure 44
displays the positioning of the heliostats. Each heliostat consists of 28 facets with a
total mirror area of about 120 m2 [30]. But as SolTrace was not able to handle the
total amount of facets, we simplified the heliostas to contain only a single facet.
Two receiver types, namely the cylindrical cavity receiver and the flat receiver were
used in the test cases. For each receiver type, three different sun positions are evaluated
in order to account for various shading and blocking effects. Table 4 shows the general
setup for the test cases that were derived from the settings of a similar test case [18].
The receiver settings in Table 2 and 3 are based on the receiver used in the PS10
plant [30]. Since our definition of the cavity receiver is not included in SolTrace, we
constructed it out of rectangular receivers. However, SolTrace does not model the
effect of tower blocking and thus it had to be turned off in SunFlower during the tests.

−400 −200 0 200 400

0

200

400

600

800

Figure 44: Heliostat field layout of the PS10 plant

60

Parameter Value
Height 12 m
Width 13.78 m
Tilt angle 11.5◦

Distance to towertop 2.74 m

Table 2: Parameters for the flat tilted re-
ceiver

Parameter Value
Number of panels 4
Panel width 4.8 m
Panel height 12 m
Raise height 2 m
Distance to towertop 2.74 m

Table 3: Parameters for the cylindrical
cavity receiver

Parameter Value
Latitude 37.442400◦

Longitude -6.250188◦

Sun Error 2.35 mrad
Global slope error vertical 2.6 mrad
Global slope error horizontal 2.6 mrad
Tracking error horizontal 1.3 mrad
Tracking error vertical 1.3 mrad
Heliostat Sanlúcar 120
Heliostat reflectivity 88 %
Heliostat facet type Flat
Tower height 115 m
Tower type Rectangular tower
Tower length 18 m
Tower width 8 m
Tower position (0,0)
Canting None

Table 4: Basic setup for the six validation test cases. The settings are inspired by the
PS10 plant and derived from a similar test case [18].

The sun positions as well as the direct normal irradiation (DNI) were inspired by
their corresponding values at eight, ten and twelve a.m. on the 21st of June [43]. A
definition of each test case is given in Table 5.

SunFlower and SolTrace simulated each test case ten times with roughly one million
rays. The resulting total optical power was then normalized by the average power
of SunFlower simulating ten million rays. Figure 45 shows the minimal, maximal
and average results of both tools for all test cases. The exact solar powers can be
found in Table 6 and 7. As presented, the average result as well as the minimum
and maximum of SunFlower is always in between the minimal and maximal results of
SolTrace. Moreover, the highest deviation of the average results from both tools is less
than 0.07 % and the maximal fluctuations of the results of SolTrace is about 0.47 %,
whereas for SunFlower it is only 0.13 %.

61

Test case Receiver type Azimuth Altitude DNI
1 Flat tilted 80◦ 30◦ 710 W/m2

2 Flat tilted 110◦ 60◦ 820 W/m2

3 Flat tilted 180◦ 70◦ 850 W/m2

4 Cylindrical cavity 80◦ 30◦ 710 W/m2

5 Cylindrical cavity 110◦ 60◦ 820 W/m2

6 Cylindrical cavity 180◦ 70◦ 850 W/m2

Table 5: Unique settings for each test case.

1 2 3 4 5 6 7 8 9

0.996

0.998

1.000

1.002

1.004

Test Case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er SolTrace
SunFlower

Figure 45: Normalized results of SunFlower and SolTrace for all test cases.

(a) Sunflower (b) Soltrace

Figure 46: Interpolated fluxmaps of both tools for test case two with a total power
difference of less than 0.05 %.

62

Testcase min (MW) avg (MW) max (MW)
1 27.1412 27.1452 27.1501
2 36.0456 36.0637 36.0838
3 39.0685 39.0787 39.0906
4 25.5098 25.5172 25.5265
5 33.8783 33.8943 33.9184
6 36.5828 36.6037 36.6309

Table 6: Exact results of SunFlower for each test case.

Testcase min (MW) avg (MW) max (MW)
1 27.074 27.138 27.187
2 36.012 36.060 36.156
3 38.995 39.054 39.114
4 25.473 25.528 25.594
5 33.797 33.868 33.927
6 36.509 36.586 36.664

Table 7: Exact results of SolTrace for each test case.

5.1.1 Fluxmap comparison

So far, the total solar power of both tools for different test cases has been compared.
However, in order to get an understanding of how well the solar power is concentrated,
not only the total sum is of interest but also the fluxmap. Thus, a short comparison
is given in the following.
The fluxmaps of SolTrace and SunFlower for the second test case with 50 by 50 receiver
pieces can be found in Figure 46 where X and Y are the horizontal and vertical
directions of the receiver, respectively. In order to obtain a clear image, the flux
values were interpolated. Figure 47 illustrated the relative difference between both
fluxmaps. Except for some peaks, the relative differences stayed below ten percent.
The comparatively high differences are mainly due to the very small receiver pieces
which therefore have a higher sensibility to fluctuations of the ray disturbance.

5.1.2 Validation of the new integrated convolution method

In [18] the early versions of our convolution methods were tested against the classical-
Monte Carlo ray tracer. However, the old Gaussian convolution results still had an
error of 2 %. Moreover, at this state of development the results of the integrated
Gaussian convolution ray tracer deviated more than 99 % for some test cases. In oder
to verify our new developed versions of these methods, the test cases were repeated.

63

Figure 47: Relative difference between both fluxmaps.

Each test case is based on the PS10 plant and an exact definition can be found in [18].
Table 8 gives a simplified overview over the test cases. The results of our classical-
Monte Carlo ray tracer were validated against SolTrace [18] and used to normalize the
results of each ray tracer. Figure 48 shows the old results and Figure 49 the results
of renewed ray tracers. For all test cases the new version of our convolution methods
reached an accuracy of more than 99.9 %.

Test case Short description
1’-6’ Single heliostat with different facet types and canting strategies

7’-12’
Two heliostats with different facet types and
canting strategies accounting for blocking effects

13’-18’
Two heliostats with different facet types and
canting strategies accounting for shading effects

19’-24’ Whole PS10 with different facet types and canting strategies

Table 8: Overview over the test cases in [18].

64

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’ 11’ 12’ 13’ 14’ 15’ 16’ 17’ 18’ 19’ 20’ 21’ 22’ 23’ 24’

0.000

0.250

0.500

0.750

1.000

Test case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er

Convolution
Cell-wise convolution

Figure 48: Old results of the convolution methods [18].

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’ 11’ 12’ 13’ 14’ 15’ 16’ 17’ 18’ 19’ 20’ 21’ 22’ 23’ 24’
0.980

0.985

0.990

0.995

1.000

Test case

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er

Gaussian Convolution
Integrated Convolution

Figure 49: Results of the renewed convolution methods.

5.2 Optimal setting for quasi- and multi-Monte Carlo

As an extension to the classical-Monte Carlo approach, the multi- and quasi-Monte
Carlo methods are using multiple samples of the error cone, i.e., several rays are gener-
ated when evaluating a representative ray. Therefore, an investigation on the optimal
number of samples is needed. For this, the second test case of Section 5.1 is used.
However, since SunFlower is able to handle the correct number of facets, the test case
was adapted and is now referred to as test case 2∗.

To see how the number of rays influences the accuracy of the ray tracers, different

65

number of rays per facet were simulated. Again, the results got normalized by the
average result of the classical-Monte Carlo method simulating ten million rays. Since
the facets of Sanlúcar 120 are about twice as wide as they are high, twice as many rays
were generated per width than per height. Each simulation was done twenty times
to account for fluctuations. A comparison of the classical-Monte Carlo method with
the multi-Monte Carlo method which exemplary takes five samples per ray, is given in
Figure 50. Here, the shaded regions illustrate the fluctuations of each ray tracer. As
shown, the multi-Monte Carlo method has less fluctuations and converges to the same
limit as the classical-Monte Carlo method.

0 1 2 3 4 5 6 7

·106

1.000

1.001

1.002

1.003

Number of Rays

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er Classical-Monte Carlo

Multi-Monte Carlo (5 Samples)

Figure 50: Fluctuations of the classical-Monte Carlo ray tracer and the multi-Monte
Carlo ray tracer taking five samples per ray illustrated by the shaded region.

But the evaluation of a sample is almost as computationally expensive as the evalu-
ation of a representative ray. Therefore, the total number of samples needs to be taken
into account. In Figure 51 the average results of the multi- and quasi-Monte Carlo ray
tracer each using five and one sample per ray is shown. Here, the quasi-Monte Carlo
method almost always showed more accurate results than the classical-Monte Carlo
method. A comparison of their fluctuations can be found in Figure 52.
However, the improvements are comparatively small.
As illustrated in Figure 51, simulating more rays has a larger impact on the accuracy
than taking more samples per ray. A possible explanation is given in the following.

66

0 2 4 6 8 10 12

·106

0.999

1.000

1.001

1.002

1.003

Total Number of Samples

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er Quasi-Monte Carlo (5 Samples)

Multi-Monte Carlo (5 Samples)
Classical-Monte Carlo

Quasi-Monte Carlo (1 Sample)

Figure 51: Average results of different Monte Carlo based ray tracers with respect to
the total number of samples.

0 1 2 3 4 5 6 7

·106

1.000

1.001

1.002

1.003

Number of Rays

N
or
m
al
iz
ed

O
p
ti
ca
l
P
ow

er Classical-Monte Carlo

Quasi-Monte Carlo (1 Sample)

Figure 52: Fluctuations, illustrated by the shaded regions, of the classical- and quasi-
Monte Carlo method using one sample per ray.

The question is whether a given heliostat cell should be discretized further or if it
would make more sense to take multiple samples from the current representative ray.
Taking more samples decreases the evaluation error of the corresponding error cone.
On the other hand, when the cell is discretized further the error of using one ray to
represent photon interaction of a cell is reduced as each ray has a smaller cell area.
But as the cell areas are small and closely packed, their corresponding error cones are
similar. Therefore, a reduction of the evaluation error for each error cone is also given.
Thus, the total error decreases more when the heliostat is discretized into smaller cells.

67

In the following sections one sample is taken for each ray.

5.3 Accuracy vs runtime

Since the ray tracing methods are repeatedly used for the optimization of the heliostat
field layout, a ray tracer not only needs to be accurate but also fast and precise. There-
fore, in this section the runtime and achieved accuracy for each ray tracing technique
is investigated. Prior to that, a cross validation of the ray tracing methods is given.

For the validation, the test cases of Section 5.1 with the correct number of facets
and the effect of tower blocking will be used. The corresponding test cases are marked
with a star. All ray tracers simulated each setup ten times with twenty million rays.
In Figure 53 the average results of each ray tracer normalized by the average results
of the classical-Monte Carlo method are given. Every ray tracer reached an accuracy
of more than 99.99 % in all test cases.

1∗ 2∗ 3∗ 4∗ 5∗ 6∗
0.990

0.995

1.000

Test Case

N
o
rm

al
iz
ed

O
p
ti
ca
l
P
ow

er

Gaussian Convolution
Integrated Convolution
Classical-Monte Carlo
Quasi-Monte Carlo

Figure 53: Average results of the different ray tracing methods for the PS10 test cases
of Section 5.1 with the correct number of facets.

In order to evaluate the accuracy of the ray tracers against their runtime, different
number of rays were simulated. Again, these were chosen such that the cell area of each
ray is roughly quadratic. Moreover, the ray tracers ran each setup twenty times and
the results were normalized by the average result of the classical-Monte Carlo method

68

using twenty million rays. As the difference between the classical- and quasi-Monte
Carlo method was shown to be comparatively small, only the classical-Monte Carlo
ray tracer was evaluated against the convolution methods. Every simulation was done
on a commercial laptop with an Intel Core i7-4720HQ CPU using eight cores running
at 2.60GHz each.

The normalized results for the test case 2∗ are given in Figure 54 and a compari-
son of the accuracy against the runtime in Figure 55. Fluctuations in the results of
the classical-Monte Carlo method are illustrated by the shaded region. As shown, the
results of the convolution methods are always within the boundaries of the classical-
Monte Carlo method. Furthermore, the integrated convolution ray tracer constantly
reached an accuracy of more than 99.98 % as illustrated by the dotted lines.
When a certain number of rays is reached, the Gaussian convolution method gives the
exact same results as the integrated convolution method. Considering the definition of
our sigma multiplier function this is the expected behavior.

0 2 4 6 8 10 12 14

·106

0.999

1.000

1.001

1.002

1.003

±0.02%

Number of Rays

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution

Integrated Convolution

Classical-Monte Carlo

Figure 54: Average results of different ray tracing techniques for test case 2∗ in depen-
dence on the total number of rays.

69

0 2 4 6 8 10 12 14
0.999

1.000

1.001

1.002

1.003

±0.02%

Runtime (s)

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution

Integrated Convolution

Classical-Monte Carlo

Figure 55: Average results of different ray tracing techniques for test case 2∗ in depen-
dence on the total runtime.

The same evaluation was done for the test case 6∗ to account for a cavity receiver
as well as a different sun position, see Figure 56 and 57. Here, similar results were
obtained but since the cavity receiver has four receiver pieces the runtime of the con-
volution methods increased.

0 2 4 6 8 10 12 14

·106

0.998

1.000

1.002

1.004

±0.02%

Number of Rays

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution

Integrated Convolution

Classical-Monte Carlo

Figure 56: Average results of different ray tracing techniques for test case 6∗ in depen-
dence on the total number of rays.

In all four figures a major problem of the classical-Monte Carlo method can be seen.
Due to its non determinism, even when simulating 14 million rays the result still has
an uncertainty of 0.02 %. Therefore, when used in an optimization, an increase or
decrease of 0.04 % in solar power could also be caused by fluctuations instead of a bet-
ter positioning. Furthermore, as a lot of simulations are done within an optimization

70

0 5 10 15 20
0.998

1.000

1.002

1.004

±0.02%

Runtime (s)

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution

Integrated Convolution

Classical-Monte Carlo

Figure 57: Average results of different ray tracing techniques for test case 6∗ in depen-
dence on the runtime.

process, usually not more than a million rays are used for each simulation. The cor-
responding uncertainty for the test cases 2∗ and 6∗ averages at around 0.1 % meaning
that an increase or decrease of 0.2 % in solar power might only be caused by fluctua-
tions. Therefore, an optimizer interpreting an increase of 0.2 % in solar power as an
improvement, can be guided into an incorrect direction. Thus, any optimization within
a certain percentage requires the results to be at least twice as accurate which indicates
the main advantage of analytical ray tracing methods. Since they are deterministic, the
results for a given setup are identical and thus do not fluctuate. Besides the precision,
our convolution methods have also been shown to reach a high accuracy in a compara-
tively small time. For this reason, they are especially useful in an optimization process.

5.4 Characteristics of the convolution methods

In this section different characteristics of the convolution methods are viewed. To do
so, one heliostat close and one far from the tower of test case 2∗ were tested, see Fig-
ure 58. Furthermore, each setup was simulated with a varying number of rays and the
results were normalized as in the last sections.

Because of the behavior of our derived sigma multiplier function, we would expect
the accuracy of both convolution methods to increase with the distance. This assump-
tion is supported by Figure 59.

71

−400 −200 0 200 400

0

200

400

600

800

Figure 58: Positions of the close and far heliostats.

0 1 2 3 4 5 6

·103

1.000

1.005

1.010

Number of Rays

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution (Close)

Integrated Convolution (Close)

Gaussian Convolution (Far)

Integrated Convolution (far)

Figure 59: Normalized results of both convolution methods for the far and close helio-
stat.

As stated in Section 4.2 our Gaussian convolution method is expected to have an
exact evaluation of each error cone. In order to validate the statement, the results
of the Gaussian convolution method is compared to the average result from ten runs
of the multi-Monte Carlo method with one thousand samples per ray. The test was
done for the close heliostat to include as much deviation to the actual solar power as
possible. For each setup the resulting solar power from both method differed at most
0.025 %, see Figure 60.

72

0 1 2 3 4 5 6

·103

1.000

1.005

1.010

Number of Rays

N
o
rm

a
li
ze
d
O
p
ti
ca

l
P
o
w
er

Gaussian Convolution

Multi-Monte Carlo

Figure 60: Average results of the multi-Monte Carlo method using thousand samples
per ray and the Gaussian convolution method.

5.5 Acceleration of the ray tracers

The ray tracers used in the last sections were already accelerated with different tech-
niques. However, to see the influence of each acceleration they are switched off and
gradually back on again in the following. The simulations were done using the classical-
Monte Carlo ray tracer as well as the Gaussian convolution ray tracer on test case 2∗.
Furthermore, the same laptop as in Section 5.3 was utilized.

5.5.1 Preselection

In Section 2.4 a method to compute sets of potentially blocking and shading heliostats
was discussed. These sets determine for each heliostat the subset of heliostats that
might shade or block them. Instead of checking every ray against every heliostat for
blocking and shading effects, only the subset is tested. As an extension to this, a
hierarchical preselection calculates the subset of potentially blocking and shading he-
liostats for each facet. Figure 61 shows the runtime improvement of both acceleration
strategies.

The classical-Monte Carlo method benefited more from the preselection than the
Gaussian convolution method. When simulating roughly 3.5 million rays with the
classical-Monte Carlo ray tracer, the preselection decreased runtime by a factor of 18.
Both methods were only slightly improved by the hierarchical preselection.

5.5.2 CPU parallelization

So far, only the generation of representative rays was parallelized on the central pro-
cessing unit (CPU). The evaluation of each ray was done in a critical section which

73

0 1 2 3

·106

0

20

40

60

80

Number of Rays

T
im

e
(s
)

No Preselection
Preselection
Hierachical Preselection

(a) Gaussian Convolution

0 1 2 3

·106

0

20

40

60

80

Number of Rays

T
im

e
(s
)

No Preselection
Preselection
Hierachical Preselection

(b) Classical-Monte Carlo

Figure 61: Acceleration of a Monte Carlo and a convolution based ray tracer using the
two preselection techniques on test case 2∗.

especially effects the convolution methods as they put more computational effort into
it. By limiting the critical section to the necessary code segments, this disadvantage
has been reduced. The results can be found in Figure 62.

0 1 2 3

·106

0

10

20

30

Number of Rays

T
im

e
(s
)

Hierachical Preselection
CPU Parallelization

(a) Gaussian Convolution

0 1 2 3

·106

0

1

2

3

4

Number of Rays

T
im

e
(s
)

Hierachical Preselection
CPU Parallelization

(b) Classical-Monte Carlo

Figure 62: Acceleration of a Monte Carlo and a convolution based ray tracer using a
CPU parallelization with a minimal critical section on test case 2∗.

74

6 Conclusion and Outlook

6.1 Conclusion

A fast but also accurate ray tracer is a key part for optimizing the heliostat field layout,
as a lot of simulations are needed throughout the optimization process. In contrast to
other tools, SunFlower has the benefit of being able to use a variety of ray tracers.
For test cases that were based on the solar power tower plant PS10, the results of
our classical-Monte Carlo ray tracer always stayed within the range of the results of
SolTrace. Moreover, on similar but more realistic test cases all other developed ray
tracers showed an accuracy of at least 99.99 % compared to the classical-Monte Carlo
results. Furthermore, problems with the early versions of our convolution methods
were eliminated. A small improvement to the classical-Monte Carlo method has been
made by introducing a quasi-Monte Carlo ray tracer. However, taking multiple samples
per ray as done in the multi-Monte Carlo method is not recommended as it increases
the processing time more than the accuracy benefits from it.
On the other hand, the multi-Monte Carlo ray tracer helped us to validate that the
Gaussian convolution method evaluates each ray perturbation accurately. Besides that,
our integrated convolution ray tracer reached an accuracy of more than 99.98 % in less
than 0.6 seconds on test case 2∗ and 6∗ where the classical-Monte Carlo method re-
quired at least 13 seconds to overcome their fluctuations. Due to the determinism, high
accuracy and comparatively small processing time, the integrated convolution method
is a useful alternative to a Monte Carlo ray tracer. Especially for an optimization it is
the recommended ray tracer as it produces accurate and reliable results.

6.2 Outlook

Despite the challenges we have overcome during the development of our convolution
ray tracers there are still improvements possible. In the following, strategies to accel-
erate the ray tracers as well as approaches to generalize them will be discussed.

6.2.1 Distant dependent heliostat discretization

As shown in Section 4.3.1 and 5.4, the accuracy of both convolution ray tracers increases
with the distance. Currently, for all heliostats the same number of rays is generated
per facet. However, by decreasing the number of rays for far distant heliostats, the
total number of rays and thus the runtime can potentially be reduced without losing
accuracy. To do so, a rule on how each heliostat should be discretized is needed.
Our suggestion is to choose the discretization such that certain sigma regions of two
neighboring cells just intersect, see Figure 63. Therefore, the cell lengths should fulfill

lcell = 2δ tan (aσbeam), (6.1)

75

for some value a ∈ R.
However, a closer investigation is needed in order to develop a reasonable distant
dependent discretization.

d

lcell
2

aσbeam

Figure 63: Illustration of the required cell length such that the a-sigma regions of two
neighboring cells intersect.

6.2.2 Combined receiver cells

Since the main aim of our convolution methods is the fast and accurate calculation of
the total solar power, the receiver pieces of the cylindrical receivers could be combined
to an overall receiver piece. So far, the simulation of the cylindrical receivers required
the integration over several receiver pieces for each ray. But by combining them to one
receiver piece, the computational effort involved in integrating over multiple receiver
pieces is reduced to the costs of integrating over a single larger receiver piece. The
resulting projection of that piece is not a convex polygon anymore but as described
in [17], the polygon integration method can be extended to handle arbitrary polygons.

6.2.3 Reversed convolution methods

In the early version of the integrated convolution method described in Richter et. al
[33, 35], the flux was viewed as what the receiver would ’see’ from the current heliostat.
Based on this idea, a reversed version of each convolution method can also be developed.

Consider the situation drawn in Figure 64. As illustrated, the angle α between the
perfect reflected ray and a perturbed ray is the same as the angle between the reversed
version of the perfect ray and the corresponding perturbed ray. Here, the reversed
version of the perfect reflected ray originates at the receiver piece center and travels
in −~r direction. Similarly, a reversed ray image plane for the reversed ray exists.
Therefore, an integration over a representative region Dheli on that plane gives the
relative average likelihood Lavg

hit of a ray to be perturbed such that it intersects the
receiver center. By assuming that the receiver cell has the same likelihood over its
area Arec the solar power Prec emitted from the current heliostat cell onto the receiver
is

76

~r

−~r
α

α

Figure 64: Illustration of a reversed ray and its correlation to the original ray. The
reversed ray originates from the receiver piece and travels in −~r direction.

Prec = PrayP
avg
hit ≈ PrayArecL

avg
hit = PrayArec

x

Dheli

f(x, y) dA, (6.2)

with f(x, y) as the bivariate normal distribution of Section 4.1.

Equation (6.2) is the foundation of the reversed Gaussian convolution method. Ap-
plying the same argument as for the integrated convolution method, a reversed version
of it can also be formulated

Prec = PrayP
avg
hit = Pray

x

Dheli

F (x, y) dA, (6.3)

with F (x, y) as the two dimensional integrated Gaussian distribution of Section 4.3.

Again, the integral in Equation (6.3) can be approximated as described in Sec-
tion 4.3.1. However, now the dimensions of the receiver piece is used in the approxi-
mation process as the reversed rays originate from the receiver. Because the error of
our approximation depends on the area from which the rays originate, the reversed
convolution methods are especially useful when the heliostat facet area is larger than
the receiver piece area. Not only does an increase of the receiver pieces improves the
accuracy of the reversed convolution methods, it also gives more information about
how the solar power is distributed.

6.2.4 GPU Parallelization

As stated in [10], tools such as TieSol [11] that use the graphic processing unit (GPU)
for the ray tracing process are extremely fast. For this reason and as our convolution
methods are based on techniques from computer graphics, a parallelization on the
GPU would be a useful development. But since our code currently relies on a lot of
data structures from CGAL [42], there are some adaptations required to achieve an

77

appropriate GPU parallelization. First of all, most data structures used in the ray
tracers need to be rewritten such that they require as little memory as possible. This
is crucial because the GPU has a very limited storage capacity [27]. Furthermore, there
are some functions of CGAL which are used during the ray tracing process and thus
have to be adapted to the new data structures. Lastly, the parallelization itself can
also be done in a lot of different ways. Our suggestion for this is to use OpenACC [14]
in combination with the PGI [23] compiler because of its simple implementation and
wide application.

6.2.5 Other distributions

Throughout the thesis, we modeled all errors by Gaussian distributions. But at least for
the sun shape, it is also common to use other distributions such as Pillbox or Buie [4].
Theoretically, a corresponding convolution and integrated convolution method for those
distributions can be developed. However, this requires an accurate and fast method to
solve the integral of the convoluted distribution over a polygon.
Another approach would be to approximate the convoluted distribution with a Gaus-
sian distribution based on the Central Limit Theorem [40]. A parameter dependent
approximation as used in the integrated convolution ray tracer can also be developed.
Moreover, a semi-deterministic version of the convoluted methods might also be a
reasonable alternative. Here, the sun vector gets perturbed by the corresponding dis-
tribution and the tracking and slope error of the resulting ray are evaluated using the
Gaussian or integrated convolution method.

78

References

[1] Jr. A. R. Di Donato, M. P. Jarnagin and R. K. Hageman. Computation of the bi-
variate normal distribution over convex polygons. Technical report, Naval Surface
Weapons Center, 1978.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover
printing, tenth gpo printing edition, 1964.

[3] Nils Ahlbrink, Boris Belhomme, Robert Flesch, Daniel Maldonado Quinto,
Amadeus Rong, and Peter Schwarzbözl. Stral: Fast ray tracing software with
tool coupling capabilities for high-precision simulations of solar thermal power
plants. In Proceedings of the SolarPACES 2012 conference, 2012.

[4] Germain Augsburger and Daniel Favrat. Modelling of the receiver transient flux
distribution due to cloud passages on a solar tower thermal power plant. Solar
Energy, 87:42 – 52, 2013.

[5] Omar Behar, Abdallah Khellaf, and Kamal Mohammedi. A review of studies on
central receiver solar thermal power plants. Renewable and sustainable energy
reviews, 23:12–39, 2013.

[6] Omar Behar, Abdallah Khellaf, and Kamal Mohammedi. A review of studies on
central receiver solar thermal power plants. Renewable and Sustainable Energy
Reviews, 23:12–39, 07 2013.

[7] Boris Belhomme, Robert Pitz-Paal, Peter Schwarzbözl, and Steffen Ulmer. A new
fast ray tracing tool for high-precision simulation of heliostat fields. Journal of
Solar Energy Engineering, 131(3):031002, 2009.

[8] Frank Biggs and Charles N Vittitoe. Helios model for the optical behavior of
reflecting solar concentrators. Technical report, Sandia Labs., Albuquerque, NM
(USA), 1979.

[9] Manuel J. Blanco. Tonatiuh: An object oriented, distributed computing, monte-
carlo ray tracer for the design and simulation of solar concentrating systems.
Technical report, The University of Texas at Brownsville, 2006.

[10] Sebastian-James Bode and Paul Gauché. Review of optical software for use in
concentrating solar power systems. In Proceedings of South African Solar Energy
Conference, 2012.

[11] Sebastian-James Bode and Paul Gauché. Review of optical software for use in
concentrating solar power systems. In Proceedings of South African Solar Energy
Conference, 2012.

79

[12] Juan Burgaleta, Santiago Arias, and Diego Ramirez. Gemasolar, the first tower
thermosolar commercial plant with molten salt storage. Solarpaces, 69, 01 2011.

[13] Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica,
7:1–49, 1998. doi: 10.1017/S0962492900002804.

[14] Sunita Chandrasekaran and Guido Juckeland. OpenACC for Programmers: Con-
cepts and Strategies. Addison-Wesley Professional, 1st edition, 2017. ISBN
0134694287, 9780134694283.

[15] Hongmei Chi, Peter Beerli, Deidre W. Evans, and Michael Mascagni. On the
scrambled soból sequence. pages 775–782, 2005.

[16] Francisco J. Collado. One-point fitting of the flux density produced by a heliostat.
Journal of the American Statistical Association, page 673–684, 2010. doi: 10.1080/
01621459.1949.10483310.

[17] A. R. Di Donato and R. K. Hageman. Computation of the integral of the bivari-
ate normal distribution over arbitrary polygons. Technical report, Naval Surface
Weapons Center, 1980.

[18] Linus Franke. Modelling and optimization of large scale solar tower power plants.
Master’s thesis, 2018.

[19] Pierre Garcia, Alain Ferriere, and Jean-Jacques Bezian. Codes for solar flux cal-
culation dedicated to central receiver system applications: A comparative review.
Solar Energy, 82(3):189–197, 2008.

[20] Fynn Kepp. Robust optimization of aiming strategies of heliostats in solar tower
power plants, 2018.

[21] Bruce L Kistler. A user’s manual for delsol3: a computer code for calculating the
optical performance and optimal system design for solar thermal central receiver
plants. Sandia National Laboratories, Sandia Report No. SAND86-8018, 1986.

[22] P.L. Leary and J.D. Hankins. User’s guide for MIRVAL: a computer code for com-
paring designs of heliostat-receiver optics for central receiver solar power plants.
Technical report, Sandia Laboratories, 1979.

[23] B Lebacki, Michael Wolfe, and Douglas Miles. The pgi fortran and c99 openacc
compilers. Cray User Group, 2012.

[24] Ahmet Murat Mecit and Fletcher Miller. Optical analysis of a window for solar
receivers using the monte carlo ray trace method. ASME 2013 7th International
Conference on Energy Sustainability. doi: 10.1115/ES2013-18186.

[25] Jean H. Meeus. Astronomical Algorithms. Willmann-Bell, Incorporated, 1991.

80

[26] Nicholas Metropolis and S. Ulam. The monte carlo method. Journal of the Amer-
ican Statistical Association, 44(247):335–341, 1949. doi: 10.1080/01621459.1949.
10483310.

[27] Carlos Schmidt Muniz. Gpu ray tracer for solar tower power plants, 2019.

[28] C.J. Noone, M. Torrilhon, and A. Mitsos. Heliostat field optimization: A new
computationally efficient model and biomimetic layout. Solar Energy, 86(2):792–
803, 2012.

[29] Rafael Osunaa, Rafael Olavarriaa, Rafael Morilloa, Marcelino Sancheza, Felipe
Canteroa, Valerio Fernandez-Queroa, Pedro Roblesb, Teodoro Lopez del Cer-
rob, Antonio Estebanb, Francisco Ceronb, Juan Talegonc, Manuel Romerod, Felix
Tellezd, MaJesus Marcosd, Diego Martineze, Antonio Valverdee, Rafael Monter-
reale, Robert Pitz-Paalf, George Brakmanng, and Manuel Silva. Ps10, construc-
tion of a 11mw solar thermal tower plant in seville, spain. 01 2006.

[30] R Pitz-Paal, J Dersch, and B Milow. European concentrated solar thermal road-
mapping (ecostar): roadmap document. ECOSTAR, SES6-CT-2003–502578,
2005.

[31] R. Pitz-Paal, N.B. Botero, and A. Steinfeld. Heliostat field layout optimization for
high-temperature solar thermochemical processing. Solar Energy, 85(2):334–343,
2011.

[32] A. Rabl. Active solar collectors and their applications. Oxford University Press,
1985.

[33] Pascal Richter. Simulation and optimization of solar thermal power plants. Disser-
tation, RWTH Aachen University, Aachen, 2017. URL http://publications.

rwth-aachen.de/record/690762. Veröffentlicht auf dem Publikationsserver der
RWTH Aachen University; Dissertation, RWTH Aachen University, 2017.

[34] Pascal Richter, Erika Ábrahám, and Martin Frank. Multi-objective optimization
of solar tower heliostat fields. 06 2014.

[35] Pascal Richter, Gregor Heiming, Nils Lukas, and Martin Frank. Sunflower: A new
solar tower simulation method for use in field layout optimization. AIP Conference
Proceedings, 2033(1):210015, 2018. doi: 10.1063/1.5067217.

[36] K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical methods for physics
and engineering. American Journal of Physics, 67(2):165–169, 1999. doi: 10.1119/
1.19216.

[37] Alberto Sánchez-González and Domingo Santana. Solar flux distribution on cen-
tral receivers: A projection method from analytic function. Renewable Energy,
74:576–587, 2015.

81

http://publications.rwth-aachen.de/record/690762
http://publications.rwth-aachen.de/record/690762

[38] Mario Botsch Sandip Sar-Dessai. Lecture notes on computer graphics i, May 2005.

[39] M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal. Assessment of the po-
tential improvement due to multiple apertures in central receiver systems with
secondary concentrators. Solar energy, 80(1):111–120, 2006.

[40] M. Schmitz, P. Schwarzbözl, R. Buck, and R. Pitz-Paal. Assessment of the po-
tential improvement due to multiple apertures in central receiver systems with
secondary concentrators. Solar energy, 80(1):111–120, 2006.

[41] Peter Schwarzbözl, Robert Pitz-Paal, and Mark Schmitz. Visual hflcal - a software
tool for layout and optimisation of heliostat fields. In SolarPACES Conference,
2009.

[42] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.14 edition, 2019.

[43] Janna Tinnes. Acceleration of ray-tracer models for the simulation of solar tower
power plants with real weather data, 2017.

[44] Tim Wendelin. Soltrace: a new optical modeling tool for concentrating solar
optics. In ASME 2003 International Solar Energy Conference, pages 253–260.
American Society of Mechanical Engineers, 2003.

82

	List of Figures
	List of Tables
	Introduction
	State of the art
	Outline

	Optical model
	Environment
	Heliostats
	Receiver
	Optical losses
	Generation of representative solar rays
	Blocking and shading computations
	Discretization of the receiver
	Ray tracing pipeline

	Monte Carlo ray tracing methods
	Classical-Monte Carlo method
	Multi-Monte Carlo method
	Quasi-Monte Carlo method
	Tower blocking

	Convolution methods
	Analytic image method HFLCAL
	Gaussian convolution method
	Computation of a region representing a receiver piece
	Integration of the bivariate Gaussian distribution over a polygon
	Tower blocking

	Integrated convolution method
	Approximating the integrated Gaussian distribution
	Use of the approximation

	Case study
	Validation
	Fluxmap comparison
	Validation of the new integrated convolution method

	Optimal setting for quasi- and multi-Monte Carlo
	Accuracy vs runtime
	Characteristics of the convolution methods
	Acceleration of the ray tracers
	Preselection
	CPU parallelization

	Conclusion and Outlook
	Conclusion
	Outlook
	Distant dependent heliostat discretization
	Combined receiver cells
	Reversed convolution methods
	GPU Parallelization
	Other distributions

	References

