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ABSTRACT

This thesis addresses the problems related to the design optimization of Solar-Tower
field in the context of CSP (Concentrating Solar Power) systems. The design of the
heliostat field is a challenging task of exceptional importance. It is the sub-system with
the highest cost that amount to around 50% of the total cost and its optimal design
highly depends on the project specific requirements. The placement of the mirrors may
lead to individual mirrors being blocked and shaded and and major optical losses are
associated with the field which all together a↵ects the e�ciency of the power plant.

To select an appropriate deterministic optimization procedure we need to parametrize
the plant design as a function of design variables which will formulate the problem
of finding optimal designs to the numerical problem of finding the optimum value of
a function of several variables. This parametric optimization problem is solved with
global optimization procedures to obtain the best design parameters. A hybrid method
of Di↵erential Evolution and Nelder-Mead is proposed which outperforms the Global-
ized Constrained Nelder-Mead method.

The optimal designed field can further be optimized with best-trial-neighbour heuristics
as a post-processing step. Single-neighbour Selection algorithm is easier to implement
than other two algorithms. Radius-dependent neighbour selection algorithm have less
time-computation time; so better than Single and Multiple neighbour selection algo-
rithms.
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1. Introduction

As it is well said, there is no cheaper energy than that which is not produced nor con-
sumed. Reasonable use of energy and energy conservation are extremely capacious and
diverse areas of interest, encompassing both the supply and the demand sides. Energy
conservation deserves the highest priority, but it cannot be the only energy story: one
has to first care about energy generation before there is something to think about con-
servation. Also another predicament, the limited supply of fossil hydrocarbon resources
and the negative impact of greenhouse gases emissions on the global environment peti-
tions a rational solution. Inevitably, renewable sources of energy are promising options
for the longer run. Among all renewable energies, Sun is the amaranthine source of
renewable energy and harbinger of one of the e�cient technologies of solar power: CSP
or concentrating solar power systems; these plants harness solar thermal power usually
by employing the concentration of solar radiation via mirrors to produce temperatures
of 300�C to 500�C, depending on the type of plant, in a circulating fluid. The thermal
energy transfered to this fluid is then used to produce electricity through conventional
thermodynamic cycle.

CSP is one of the most cost-e↵ective renewable electricity technologies since its sup-
ply is not restricted if the energy generated is transported from the world’s solar belt to
the population centres. These technologies have reached a certain maturity, as has been
demonstrated in pilot projects in di↵erent countries Germany, Spain, South Africa and
the USA. Today there are many large tower plants are already operating such as in the
US (Ivanpah 1-3 and Crescent Dunes), three in Spain (PS10, PS20 and Gemasolar).
Numerous small-scale plants exist around the world for demonstration and research
purposes (e.g. the Solarturm Jülich in Germany, CESA-1 and SSTS-CRS in Spain,
CSIRO solar tower at the Energy Centre in Australia, National Solar Thermal Power
Plant, designed and commissioned at Gurgaon by IIT Bombay.

Figure 1: Gema Solar Power Tower plant in Sevilla, Spain (left) and Abengoa PS10
power plant (Seville, Spain) Soler 2010(right).
Sources: Wikipedia
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The CSP plant typically has the following subsystems and components: heliostat field,
tower and receiver, heat transport system, thermal energy storage (optional), supple-
mentary fossil fuel firing system, power conversion system, plant control and auxiliary
power supply and heat rejection. Because the heliostat field usually constitutes the
largest fraction of the costs of a solar central receiver plant, the CSP development
program has given particular attention to development of low cost designs.

The design of the heliostat field layout is a challenging task of exceptional importance.
It is the sub-system with the highest cost that amount to around 50% of the total
cost and its optimal design highly depends on the specifications for each project. The
placement of the mirrors may lead to individual mirrors being blocked and shaded and
and major optical losses are associated with the field which all together a↵ects the
e�ciency of the power plant.

Therefore, optimization of a heliostat field is an essential task to make a solar central
receiver system e↵ective. The full heliostat field layout optimization is based on the
calculation of five optical performance parameters: the mirror or the heliostat reflectiv-
ity, the cosine factor, the atmospheric attenuation factor, the shadowing and blocking
factor, and the intercept factor. The main problems of full optimization of any helio-
stat field, with thousand of heliostat coordinates, would be the need to recalculate the
shadows and blockings for all the heliostats in the field for every step of the process.
In addition to the very strong computational load of these recalculations, this would
also necessitate correct management of not only the changing position of any heliostat
in the field, but also the location of its shading and blocking heliostats.

The performance of the heliostat field is defined in terms of the optical e�ciency,
defined as a ratio of the net power intercepted by the receiver to the power incident
normally on the field. As heliostats are packed closer together, blocking and shadowing
losses increase, but related costs for land and wiring decrease. Clearly, the heliostats
should be carefully distributed in the field, so that maximum e�ciency is obtained.

To select an appropriate deterministic optimization procedure we need to parametrize
the plant design as a function of design variables which will formulate the problem of
finding optimal designs to the numerical problem of finding the optimum value of a
function of several variables. This optimization problem will be attacked with di↵erent
algorithm procedures both local and global in nature to achieve an improvement in the
e�ciency of the field.

1.1. State-of-art

A remarkable number of studies have been done for optimizing the design of heliostat
field. In this section, we details the existing codes and methods which improves the
optical e�ciency of heiostat field. One of the earliest studies was done by Lipps and
Van’t Hull, who concluded that the overall collection e�ciency of staggered heliostat
fields is usually higher than that of a cornfield layout. They used the ratio between
total system cost to the total energy collected as figure of merit. In order to reduce the
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number of calculations, individual heliostats were replaced by cells of representative
heliostats. The commercial simulation tool based on this approach is UHC code also
called as RCELL suite [9].

Sanchez and Romero [15] suggested the use of a growth based algorithm to design
the heliostat field layout. The heliostats are added step by step on pre-defined points
of the field. The algorithm terminates when the system requirements are met. The
e�ciency and the runtime of this algorithm highly depends on the number of the pre-
defined points of the field. The first heliostat is placed in the position that yields the
highest yearly energy collection, the second heliostat is placed in the next best posi-
tion, considering blocking and shading by the first, and so forth until the entire field
is populated [15].

A code based on the discretization of the heliostat surface into cells was suggested
by Noone et al [12]. This code considered a non conventional biometric pattern for the
heliostat field layout for computing the annual performance. Consequently, of using
this new pattern, better annual e�ciency was achieved; nonetheless, in a full optimiza-
tion process, which includes a large number of heliostats, it can be time consuming
due to the implementation of a discretization approach, especially if the intercept is
calculated locally for each cell [12].

Collado and Guallar developed a code called Campo which considers all the heliostat
positions in a full optimization process. This code was validated, using the available
data on Gemasolar-a concentrated solar power plant. The validation was carried out
on annual basis by varying the radial spacing manually in between the rows of the
heliostats. Furthermore, the heliostats, which had low optical performance, were elim-
inated to obtain a desired number of heliostats and to increase the overall optical
e�ciency of the whole heliostat field [8].

A new technique was developed for the calculation of shadowing and blocking factor,
using the Sassi procedure, which reduces the computation time in Mueen Code [7].

Wei et al [18] focused on the heliostat field for a cavity receiver, and concluded that
there is a relationship between the e↵ective field boundaries and cavity aperture ge-
ometry.

Lutchman et al [10] assigned a random location to each heliostat in a bounded
field, and used a constrained classical gradient based optimization algorithm to force
heliostats towards positions that maximize the field optical e�ciency.The heliostat po-
sition vector for each heliostat is treated as a design variable.

Carizosa et al [3] used a greedy-based algorithm to optimize the electricity generated
per unit cost for a heliostat field comprised o↵ di↵erent sized heliostats in the same field.

3



Summing up there are multiple commercial field layout tools like UHC code, DEL-
SOL/WinDELSOL, HFLCAL. Recent new tools like HFLD and Biometric have been
better. The layouts generated by these codes are characterized by number and posi-
tion of heliostats, the tower height and the position, size, orientation of the receiver.
But, most of them optimizes specific objective function. The problem of field design is
NP-hard, we can search for near-optimal solutions. In pursuit of finding optimal de-
sign; the task of this thesis would be the development of a black-box optimizer which is
compatible with complex multi-objective, multi-modal and non-di↵erentiable objective
functions.

1.2. Optimization

Classical Approach:

Pattern based approach: The heliostats are placed based on defined geometric
patterns like rows, ellipses, radially staggered, spirals, nature inspired sunflower
pattern; that can be described by a limited number of variables instead of opti-
mizing the x-y coordinates of center of heliostats. The search domain is highly
reduced from hundreds or thousands of x and y coordinates to a handful parame-
ters. Thus, the pattern method essentially determines the best adaptation of the
pattern for the problem and not necessarily the best x-y coordinates for optimal
plant performance.

A typical procedure for the field layout is to use one or multiple correlations with
upto 11 or more variable parameters to define heliostat positions as well as tower
height and receiver configuartions. Using these correlations, an oversized helio-
stat field is generated, and for each of the heliostats, the annual performance is
calculated with a simplified simulation test function. From the oversized helio-
stat field, the best performing heliostats are selected, until a certain requirement
such as design point thermal power is fulfilled. Best performance depends on the
optimization goal and can mean, for example, the annual intercepted energy or
the annual thermal receiver output, assuming that a receiver performance model
is applied.

A superimposed parametric-optimization tool controls the execution of
multiple runs with di↵erent parameters, defining di↵erent configurations of the
heliostat field, tower, and receiver, until an optimum is the goal to achieve. The
optimization target is usually least cost of thermal energy or electricity. This
procedure results in an optimized configuration with a heliostat field that is al-
ways characterized by some kind of regular pattern of the heliostat positions.

There exists a large variety of optimization approaches which could be used for
parametric optimization, such as non-linear mixed programming, gradient-based
methods (which takes approximate value of gradient and hessian, doesn’t actually
evaluate the derivative) such as variants of Powell method [1] and Sequential Ap-
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proximate Optimization(SAO) strategy [10] or the gradient free search methods
like Nelder-Mead Method and coordinate-search methods.

Free-variable Method: The nature-inspired genetic algorithm, di↵erential evo-
lution, simulated annealing and particle swarm intelligence, ant colony algorithms
are global gradient free methods which follows a more classical approach to opti-
mization by directly optimizing the x-y coordinates. Due to the complexity of the
problem an appropriate heuristic is needed. This approach starts with a random
layout which iteratively adjusts each x-y coordinate by following the gradient in
the direction of a better function value until a certain objective is achieved. In
this optimization the heliostats are not limited to a pattern, which means, that
they can freely move through the field during the optimization.

Hybrid Methods Approach:

1. Hybrid I: Pattern + Local Search Heuristics The hybrid optimization
strategy consists of a combination of two or more approaches defined above.
The classical method finds a optimized pattern, The subordinated methods then
should refine the solution locally, in context of that either a greedy heuristic or a
linear programming algorithm might be a good choice. This strategy has shown
to give better results when compared to each of the two algorithms alone. Buck [2]
used a pattern based optimization method and refined the results with a greedy
heuristic by perturbing each heliostat position locally. In this work, using classical
methods Multi-dimensional Golden Section method and Globalized Nelder Mead
method as superimposed parametric-optimization tool we obtain the best
parameters for the field and then we perform local refinement of the pattern fields
with a new approach best-trial-neighbour heuristics.

2. Hybrid II: Metaheuristics + Nelder-Mead method Another possiblity, at
first a meta-heuristics can be used, which is able to search on a huge solution
space and to move towards the global optimum. The subordinated methods then
should refine the solution locally. In this work, a ”hybrid method”(which can
be extended into a multi-step optimization strategy) is developed to optimize
the design parameters of field to reach to a optimal solution. This method is
combination of Di↵erential Evolution and Nelder-Mead method and is used to
minimize the shading and blocking e�ciency of the field which in turn maxi-
mizes the overall annual optical e�ciency. Both the hybrid methods I and II
are compared; IInd is better than the Ist in terms of time complexity and fast
convergence.

Thus as post-processing step for Ist we use best-trial-neighbour heuristics and
Nelder-Mead method for IInd and best-trial-neighbour heuristics can also fur-
ther be used as next step in IInd hybrid method.
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2. Mathematical Model

A solar field is given by N heliostats Hi, each with a diameter Di and position coor-
dinates (xi, yi) of center of heliostats. The ray-tracing model computes the received
optical radiation over a year, while taking cosine e↵ects ⌘cos, shading and blocking
⌘sb, heliostat reflectivity ⌘ref, atmospheric attenuation ⌘aa and spillage losses ⌘spl into
account. For each heliostat Hi the time dependent received optical e�ciency is defined
by

⌘opt,i(x, y, t, d) = ⌘cos,i · ⌘sb,i · ⌘ref,i · ⌘aa,i · ⌘spl,i (1)

at time t of the day d. In the next subsections a model is discussed which computes this
annual received radiation of the full plant, which depends on the sunrise and sunset of
every day in the year.

2.1. Heliostat Field Description

Solar Positioning Model In order to calculate the instantaneous optical e�ciency of
the heliostat field, it is necessary to include a solar positioning model. According to
date, time and a geographical location on earth given by latitude � and longitude ✓,
the solar position can be computed.

It is described by two angles, the solar zenith ✓s and the solar azimuth �s, both mea-
sured in radians [2]. In addition to the geographical location the time zones of summer
and winter time, a year and of course the day and time need to be provided.

� =
23.45⇡

180
sin

⇣
2⇡

284 + nd

365

⌘

↵s = sin�1(cos� cos� cos!s + sin� sin�)

�s = sgn(!s)cos
�1
|
sin↵s sin�� sin�

cos↵s cos�
|

where � is the solar declination angle, !s is the hour angle, nd is the day of the
year, � is the latitude angle, ↵s is the solar altitude also called elevation angle,which
is complement of solar zenith angle ✓s. In the three-dimensional Cartesian coordinate
system, the x-axis is facing from west to east, the y-axis from south to north, the
z-axis is vertically upwards [2].

↵s = 90� � ✓s (2)
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Figure 2: The solar position is given by solar zenith ✓s = ✓solar and solar azimuth
�s = �solar.

Heliostat geometry The heliostats are tracking the sun position, to concentrate
the sun light on a central, tower-mounted receiver. Each heliostat Hi is raised on
a pedestal. All heliostat are considered flat mirrors [3] of di↵erent shapes; example-
rectangular with length li and width wi. The heliostat’s expansion Di is the diameter
of the minimum bounding sphere, Di =

p
l2i + w2

i .

(a) Stellio 100 (b) Rectangular Heliostat

Figure 3: Di↵erent Geometric Heliostats

Minimal distance between heliostats For security reasons or to make sure every
heliostat is accessible for cleaning, maintenance and cabling, it may be desired to have
a minimal distance between two heliostats [4]. The distance is measured between the
two bounding spheres of the heliostats.

Tower The tower is assumed to be a cuboid or cylinder, Each ray from a heliostat
must hit the tower receiver’s aim point. A subset of potentially tower-shaded heliostats
can be computed by selecting just those heliostats, which are placed in a simplified
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Figure 4: The safety distance(h) between two heliostats with centers D and C

shadow of the tower, called a feasible region with the width of the tower’s expansion
facing in opposite direction of the sun.

2.2. Optical losses and E�ciencies

Heliostat reflectivity: The value of mirror reflectivity depends upon heliostat
reflection rate. The mirror surface reflects the solar radiation in direction of
the receiver and some radiation is scattered in a wrong direction due to slightly
cleanliness or absorbance at the surface of the mirror. The reflectivity of a mirror
depends on the incidence angle; not on the heliostat field configuartion or other
factors related. Often a constant value of the heliostat reflectivity is considered
for a particular layout.

⌘ref,i ⌘ 0.88, (3)

This means that 88% of the energy is reflected and 12% is lost at the surface of
the heliostat.

Cosine E�ciency: The cosine e�ciency is related to the cosine angle between the
incident vectors of sunlight and normal vector of the heliostats.This is calculated
using the law of specular reflection. The heliostats are tracking the sun in such
a way that the rays are reflected on the surface to hit the receiver aim point.
The surface of heliostats is assumed to be pefectly flat, so the normal vector of
heliostat is definite. The incident rays can’t be considered parallel because the
sun is a disk rather than a point for any observation place on the earth. Thus
it’s of vital importance to generate the incident rays according to the energy
distribution of the sun. Each incident ray has an angle subtended between the
center of the sun to some point toward the edge called solar angle [9]. Due to
the tilt of the heliostat surface, the projected area is reduced. This e↵ect is
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called cosine e↵ect and is numbered as ⌘cos. Cosine e↵ects depend on the solar
position and the location of the individual heliostat relative to the receiver. The
heliostat surface normal bisects the angle between the solar rays and a line from
the heliostat to the tower. The e↵ective reflection area of the heliostat is reduced
by the cosine of one-half of this angle. The scalar dot product of the solar vector
pointing towards sun dsun and the unit normal ni to the heliostat surface is cosine
e�ciency of heliostat Hi.

⌘cos,i = dsun · ni (4)

Shading and blocking: The shadowing and blocking factor is defined as the frac-
tion of the area of the heliostat that is free of shadowing and blocking. In the
algorithm explained by [16], the projections of the edge points of the a↵ecting
heliostats are used on the reference heliostat. For simplification, the heliostats
can be considered as parallel planes. This approach implies that it is only nec-
essary to project the center points of the a↵ecting heliostats. The heliostat is
then divided into n narrow vertical stripes and the height of the projection of
the possible blocking or shadowing heliostat in each stripe is evaluated and so
the mirror area that is free of blocking or shadowing is calculated based on these
heights. During the process, the height is continuously updated for each stripe if
a higher value has been found.

Another procedure for calculation of shading and blocking was given by Collado
and Turegano[5]. For each heliostat, a number of rays determine if a region of a
heliostat is blocked or shaded by neighbouring heliostats and the tower. There-
fore the neighbouring heliostats positions have to be selected to reduce shading
and blocking e↵ects. This is the most expensive part of a simulation.

Interception e�ciency: The intercept factor is defined as the fraction of the
reflected rays intercepted by the receiver. The interception e�ciency (or often
called spillage losses) of a ray is described by a two-dimensional integral of the
standard normal distribution,

⌘spl,i =
1

2⇡�2
total

x

⌦

exp

✓
�
x2 + y2

2�2
total

◆
dx dy. (5)

where �total is the total standard deviation on the receiver plane, which is a result
of convolution of four error functions, sun shape error �sun(standard deviation
sun), beam quality error �bq , astigmatic error �ast , and tracking error �track .
The total standard deviation was defined as

�total =
q

d2i (�
2
sun + �2

bq + �2
ast + �2

track)

Atmospheric attenuation e�ciency:
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The atmospheric attenuation e�ciency is defiend as the e↵ect, that some of the
energy of the reflected rays are scattered and absorbed by the the atmosphere
di↵erent constituents which results in progressively less light. This radiation loss
depends on the distance di between the heliostat Hi and the receiver aim point,
in case of certain weather conditions, the farther the distance is, the smaller the
value of ⌘aa,i [17].

di = |pi � prec,i|. (6)

where pi is the vector of center position of heliostat and prec,i is vector corre-
sponding to receiver aim point of tower. With the goal to agree well with the
model of Pitman and Vant-Hull for a visual range of about 40 km:

⌘aa,i =

(
0.99321� 1.176 · 10�4 di + 1.97 · 10�8 d2i , di  1000m

exp(�1.106 · 10�4 di) , di > 1000m
. (7)

2.3. Annual energy production

The annual received optical e�ciency of the whole heliostat field is given by the sum
of the annual received optical radiation of all heliostats Hi,

⌘year =
NX

i=1

⌘i,year =
NX

i=1

365X

d=1

✓Z sunset

sunrise

⌘opt,i dt

◆
, (8)

with optical power ⌘opt,i given in equation (1). The sunrise and the sunset depend on
the day d. The value of the received optical radiation over a year ⌘year, is the basis for
each objective function in the optimization process. For each di↵erent configuration of
the solar field, this value has to be computed by a simulation. The following equation
is used for calculating the daily averaged annual optical e�ciency of the solar heliostat
field.

⌘average,year =

PN
i=1

P365
d=1

⇣R sunset

sunrise ⌘opt,i dt
⌘

P365
d=1

⇣R sunset

sunrise dt
⌘ (9)

2.4. Parameters based Objective Function

To get an averaged annual optical e�ciency ⌘average which depends on multiple pa-
rameters which are defined in optical power ⌘opt,i given in equation (1); makes our
problem a nonconvex nonlinear optimization problem. Each heliostat layout has its
own defining variables and parameters corresponding to heliostats dimensions, tower,
sun angles, terrain slope, area restrictions. It is di�cult to optimize all these param-
eters together since the objective function may be complex. We write our objective
function in general form

10



⌘average,year(V, P )

where V is the set of optimization variables and P is the set of design parameters and
we restrict our work to more simplified objective function assuming other variables like
heliostat and tower dimensions, terrain lattitude and area as constant.

⌘average,year(P )

which depends only on the solar heliostat field layout design parameters and heliostat
positions. In the next section, we extract design parameters of di↵erent field layouts
and the ranges for each paramters.

2.5. Black-Box Optimization

A function for which analytic form is not known is called a black-box(BB) function.
Typically a BB function can be evaluated to obtain value, definiteness, (approximate)
gradient. A BB function is not necessarily a complex one, it might be smooth and
defined every where and even convex. The cost is the measure of the resources needed
to evaluate the function.

cheap function: it can be evaluated thousand of times

costly function: it can be evaluated only few times(typically << 200)

For cheap black-box functions we can sample the feasible set: randomly or with ex-
perimental design or with deterministic procedure. We may want to sample around
an available point (intensification) or just everywhere on the feasible set (exploration).
Since we have non-linear problem to optimize we can use direct search methods or
steepest descent, Quasi-Newton methods (BFGS) or implicit filtering methods, and
thus large amount of function evaluations allows the gradient approximation. There
are better methods like Nelder-Mead Simplex search, feasible set sequential partition,
and metaheuristics which are easy to implement and to parallelize with almost no
convergence theory and in general quite low performance. To balance the global/local
phases,we use a two-phase approach:

use a method algorithm to generate a new set of points (exploration).

start local searches from some of them.

For costly functions we need to minimize the function evaluations to achieve the target.
This can be done by carefully selecting the domain space. In this work, we defined a
surrogate model to the practical problem and consiering the BB functions as cheap,
we implement the two hybrid methods. The objective functions depend upon the
coordinates of centers of heliostats, so we take simple simulations functions as objective
function.
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3. Heliostat Field Generation

Di↵erent field layout generation procedure were studied and for each of them optimiza-
tion parameters with their ranges were determined which helps our objective function
to be optimized in specific ranges of parameters.

3.1. Radial-Staggered Layout

The radial staggered configuration is a layout in which the heliostats are located around
a tower in rings. The heliostats of a ring are placed with an azimuth angular spacing
and no heliostat is in front of other heliostat of an adjacent row. Such a configuration
allows for rays to pass in between heliostats located on neighboring rings. Figure [5a]
demonstrates a caption of radially staggered heliostat configuration where each helio-
stat can be defined in 2D space by radial spacing �R and azimuth spacing �A(�az
in figure [5b]). The two di↵erent methods to optimize shading and blocking factor by
Campo Code [8] and Mueen Code [7] are discussed here.

(a) Radial-Staggered Rows (b) DM-Characteristic Diameter

Figure 5: Radial-Staggered Configuration

Table 1: Common Paramters for all layouts
Input Parameters for Implementation

Characteristic Heliostat Diameter 5m
Height of Tower 50m
Lattitude 36�

12



Dense Radial Staggered The most simplified version of this layout considers the
spacing between the rings of a zone constant. The layout will be made of circular
concentric rows of heliostats. The heliostats are placed as close as possible satisfying
the minimum safety distance criteria. This layout theoretically signifies the hexagonal
close dense packing of circles on 2D in a concentric circular fashion with appropriate .

In order to reduce the shadowing and blocking losses, and to keep the minimum distance
for mechanical constraints, parameter dsep is proposed to define the minimum distance
between the heliostats. For this algorithm, the first step is the evaluation of the
parameters that define each of the zones in the field which are azimuth spacing, the
radius of the first row in the zone, number of heliostats per row and the number of rows
in the zone. The following steps presents the implementation of dense radial staggered
field which are followed from [8]. The characteristic diameter in Figure [22b] is DM
the addition of distance between the center of the adjacent heliostats and seperation
distance, the equations used to calculate it are

DH = (
p
1 + f 2) · LH (10)

DM = (
p

1 + f 2 + ds) · LH (11)

The equation (11) can be re-written as

DM = DH + dsep (12)

dsep = ds⇥ LH = (dsafety + dA)LH (13)

where DM is the characteristic diameter(We will use notation D for the charateristic
diameterDM), DH is the heliostat diagonal and dsep is any additional security distance
between the heliostats, which is equal to ds⇥LH; dsep is the safety distance and dA is
the additional azimuthal seperation both are in unit of D. f is the ratio of the width
to the height of the heliostat, LH is the height of the heliostat, LW is the width of the
heliostat. In the equation (13); ds is ratio of heliostat separation distance to heliostat
length. For no blocking, the minimum value of the ratio of separation distance to
heliostat length for no blocking, is given by [5] is:

dsmin = 2f �
p

1 + f 2 (14)

for sqaure heliostats: f = 1, we get dsmin = 0.5858
Keeping �R > 0, it is necessary that

fb > 1� [
2f � (

p
1 + f 2ds)

f
] (15)

where fb is the blockimg factor which is practically assumed to be annual avarage
value, so constant in dense radial field. Here we also take dA annual azimuthal distance
between two heliostats to be constant as well.
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Campo Code The layout configuration proceeds from densest fields, with the worst
shadowing and blocking factor, towards expanded fields with decrement in shading
and blocking. The algorithm proposes a radial expansion of the dense radial staggered
field. In first step calculation of the layout parameters that define each of the zones in
the dense field is done and then for each heliostat a radial expansion is calculated using
a blocking factor and that is used to calculate how much the radial distance increases.
The expression for radial expansion is given by [16].

�R =

"✓
cos!(x, y)

cos "T (x, y)

◆✓
1�

(1� fbwr)

2wr � (
p
1 + wr2 + ds)

◆#
D (16)

which is dependent on blocking factor and heliostat postions

�R = �R(fb, xi, yi) (17)

The algorithm of Campo code is given by:

1. The angular azimuth spacing should be kept constant between contiguous he-
liostats in the same row throughout each zone in which the field is divided. This
azimuth spacing is regularly decreased in passing to an outer zone. This distance
is set equal to the minimum radial increment allowed by mechanical constraints
�Rmin. which is practically the height of an equilateral triangle formed by join-
ing three centers of bounding circles of three heliostats in the configuartion as
shown in Figure [5b].

2. The generation procedure for the radial staggered layout starts at radius R1 with
the first heliostat placed tangent to the right of the axis perpendicular to axis
of tower; the second one with the same R1 is placed clockwise at an azimuthal
distance �A1 from the first heliostat. Both R1 and �A1 will be a function of the
number of heliostats of the first row Nhel1 .

Nhel1 =
2⇡

�A1
=

2⇡R1

h
(18)

R1 =
hNhel1

2⇡
(19)

3. Due to radial staggered configuration, the length of the azimuthal spacing be-
tween adjacent heliostats will progressively grow with the radius of the row. Any
zone would then be complete when we could place an extra heliostat between
two adjoining heliostats in the same row. Thus, the azimuth anular spacing of
the second zone �A2 between adjacent heliostats in its first row should be

�A2 =
�A1

2
=

h

R2
(20)

R2 = 2(
h

�A1
) = 2R1 (21)
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4. As the radial increment between the consecutive rows is kept constant throughout
the field, the number of the rows in each zone Nrow can be derived. For zone one,
the number of rows are

Nrow1 =
(R2 �R1)

�Rmin
=

R1

�Rmin
(22)

5. general formulae for each zone

�An =
�A1

2n�1
(23)

Rn = 2n�1R1 (24)

Nrown = 2n�1 R1

�Rmin
(25)

6. For radial expansion, radius for next row is calculated by adding �R(i)next to
the coordinates of first row. dsep is responsible for azimuthal expansion (13).

�R(i)next = max
�
Rmin(dsep),�R(fb, xi, yi)

�
(26)

Campo code presents a simplified version of this radial-staggered algorithm that
considers the spacing between the rings of a zone constant. In order to reduce the
shadowing and blocking losses, and to keep the minimum distance for mechanical
constraints, this algorithm proposes parameter dsep or dsafety and �R. The range of
optimizing parmeter dsep is between [0, D]. The range for radial expansion di↵erence
lies in interval [0, 1].

The annual average density of mirror [5] will be given as

� =
reflecting surface

level terrain covered
=

ffaLH2

D�R
(27)

Putting the expression for �R in above equation, it is clear that maximum density
will agree with the least value of blocking factor; for CESA-1,[5] it was 1.778 so that

� = 0.3286
m2mirror

m2level terrain
(28)

Thus, only 30% of the land area was used, with all parameters values taken as opti-
mized.
The optimization problem formulation can be written as

maximize ⌘year(�Rexpansion-di↵erence, dsep, dfirst row)

where

Rexpansion-di↵erence 2 [0, 1]

dsep 2 [0, D]

dfirst row 2 [0.5Htower, 1.5Htower]
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Table 2: Campo Code
Input Parameters for Implementation

Diameter of Heliostat 5m
Safety Distance 0.3m
Ist row radius Htower

Field Size ⇡(N th
zone-radius

2
�H2

tower)
Number of Zones 2
Number of Heliostats in First Zone 35
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Nhelio = 35,R1 = 1,dsep=0.3, Nzones = 2

(a) Radial-Staggered Field

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140
elevation angle = 30.55,Min first row distance = 50, Cornfield

(b) Row-Pattern Cornfield

Figure 6: Test- Fields generated with initial parameters
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Figure 7: Scheme used in the graphical method to calculate new row
radius:Resources:[7]

Mueen Code The algorithm here discusses a methodology to create a radial stag-
gered configuration field using a graphical method that avoids blocking losses between
heliostats. The field is also divided in zones in order to increase the land use e�ciency.
The methodology defines the radius for a new row selecting the radius that maximizes
the land use. For this purpose, the algorithm has to decide whether to add a new row
to the current zone or start a new zone when a new ring is needed. In order to add a
new row in the zone the radius is trigonometrically calculated. To calculate this radius
a line is drawn from the receiver centre point and tangential to the heliostat in the
new row and the previous row as can be seen in the Figure [7]
While the method assures that neighboring mirrors block none of the energy reflected

by a heliostat, it does not take into consideration the possibility of shading part, or
all, of the reflecting surface. This is based on the experience that blocking has a more
pronounced e↵ect on the layout of the heliostat field.

This arrangement also ensures that no heliostat is placed directly in front of another
heliostat in adjacent rings along a spoke to the tower. Here some mathematical ex-
pressions are given followed form [7].

Essential Ring: The rings that have a heliostat on the north axis in the field.
Staggered Ring: The rings that have no heliostat on the north axis in the field.
Here, the radius of the first ring R0, by definition an essential ring, is usually
given in terms of the reciever aim point height on tower Htower.

Minimum radius is achieved with restriction of collisons between adjacent he-
liostats

�Rmin = Rm+1,min �Rmin = D ⇥ cos30� ⇥ cos�L (29)
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where �L is the tilt angle of the field and L is set to 0. The maximum radius is
determined according the principle of no blocking between the heliostats.

zm = Rmtan�L +Hh

d =
q

Rm
2 + (Htower � zm)2

� = sin�1(
D

2d
) + sin�1(

Rm

d
)� �L

�Rmax = Rm+1,max �Rm = D
cos�L

cos�

where Hh is the height of the heliostat mirror, and Htower is the height of the
tower. So the the radius of each ring can be expressed as:

Rm+1 = Rm +�Rmin +Rdi↵erence(�Rmax ��Rmin) (30)

where Rdi↵erence is the optimized parameter of the radius, 0 < Rdi↵erence < 1.

In the paper [7], the angular unit of each ring is assumed to be the same. The
minimum value of the angular direction unit is given by:

�Amin = sin�1(
D/2

Rm
) (31)

The maximum value of the angular direction is to avoid blocking. So it is given
by: For the first ring:

�Amax = sin�1(
D/2

Rm
) + sin�1(

D/2

Rm+1
) (32)

For second ring:

�Amax = sin�1(
D/2

Rm
) + sin�1(

D/2

Rm�1
) (33)

So the angular direction unit can be expressed as:

Am = �Amin + Adi↵erence(�Amax ��Amin) (34)

where Adi↵erence is the optimized coe�cient of the radius, 0 < Adi↵erence < 1. Thus
the angle between the north axis and the distribution axes can be given by:

�m = ±nAm (35)

where n = 0, 2, 4..... is for essential rings, n = 1, 3, 5...... is for staggered rings.
The optimal field layout with maximum value of the product of the ground
coverage and annual optical e�ciency can be obtained through the search of above
decision variables. A heliostat is located in the field by defining the coordinates
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of its center. These are known once the angular direction of the heliostat and
the radius of the ring to which it belongs are fixed. The location of heliostats are
given by:

8
><

>:

x = Rmsin�m

y = �Rmcos�m

z = zm

The optimization problem formulation can be written as

maximize ⌘year(Rdi↵erence, Adi↵erence, dfirst row)

where

Rdi↵erence 2 [0, 1]

Adi↵erence 2 [0, 1]

dfirst row 2 [0.5Htower, 1.5Htower]

3.2. N-S Cornfield Layout

The approach is to utilize a tightly packed North-South cornfield configuration in an
e↵ort to pack as many heliostats as possible into the utilizable region of the tower for
the primary aimpoint of the heliostat field. The utilizable region of a tower is defined
as the region where heliostats can be placed so that tower can recieve reflected sun
rays from heliostats. This heliostat layout ensures that a heliostat will not block a
parallel vertical heliostat on a subsequent row if the heliostats, tower, and sun source
are all co-linear. For any given row, heliostats are compacted side by side, as close as
physically possible without obstructing the range of motion of an adjacent heliostat.

To allocate the row spacing for the field, the lowest position of the sun in the sky at
solar noon for the geographical location over the course of the year is required. The
elevation or solar altitude angle, ↵s, is defined by the angle between the horizontal and
a line to the sun. The elevation angle is a complement of the solar zenith angle ✓s, and
therefore can be calculated according to the equation

↵s = 90� � ✓s

At solar noon, in the Northern Hemisphere the elevation angle can be represented by
the simplified equation

↵s = 90� � ✓s + �s (36)

The solar declination angle �s ranges from 23.45� on the summer solstice, June 21,
to �23.45� on the winter solstice, December 22. Using above equation 36 for test
simulation model values(say 36�) on the winter solstice when the sun is at its lowest
elevation yields the following minimum elevation angle, ↵min, at solar noon.

↵min = 90� � 36� � 23.45� = 30.55�
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Table 3: Cornfield Code
Input Parameters for Implementation
Field Size H2

tower

Minimum Elevation angle 30.55�

With the minimum elevation angle at solar noon specified, the row spacing, Rspacing ,is
defined as ratio of characteristic diameter D of the heliostat and sine of the elevation
angle, according to the following equation

Rspacing =
D

sin(↵min)
'

D

tan(↵min)

With the row spacing allocated, the heliostats are placed in the first row and for
subsequent rows, having di↵erence as defined by Rspacing , up to the distance of the
maximum row. The width of each row is initially defined by laying down a square grid
of heliostats, as determined by the dimensions of the region. The lower bound for the
row spacing is equal to characteristic diameter D.

The column spacing between the mirrors is determined such that no two heliostats
block each other and do not collide with each other. The lower bound of the search
range of column space will be D and the upper bound is determined with no blocking
condition [7] which can be taken as 2D. Another input parameter is minimum feasible
distance dfirst row from the tower to the first row of heliostats which depends on receiver
point height on tower. The minimum elevation angle calculated through out the year
is taken which depends on lattitude and longitude as well as on solar zenith angle.

maximize ⌘year(Rspacing, Cspacing, dfirst row)

where

Rspacing 2 [D,
D

tan(↵min)
]

Cspacing 2 [D, 2D]

dfirst row 2 [0.5Htower, 1.5Htower]

3.3. Biometric Layout

Biometric spirals are based on the phyllotaxis pattern, as proposed in [12]. The char-
acterizing parameters are (a, b). The following equations are used to calculate the
position coordinates(xk, yk) of an individual heliostat k is calculated.

rk = a · kb (37)

✓k = k ·
�
2 · ⇡ · ��2

�
(38)
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Figure 8: North-South Cornfield

xk = rk · cos (✓k) (39)

yk = rk · sin (✓k) (40)

where ✓k is linearly proportional to the kth element of the sequence and rk is the radial
growth function. The angular component is related to golden ratio � which equals 1+

p
5

2 .
These equations determine the radial distance to the tower and the azimuth angle in
the field. In this algorithm the density of heliostats between zones is more continuous
than in radial staggered configurations. The value of � is not optimized because small
variations from the nominal produces dramatically di↵erent patterns which may be
significanly suboptimal[12]. But to see how the change in irrational number a↵ects the
field layout and our objective function; we consider nearly same geometric irrational
numbers silver ratio and plastic number. These numbers deviate the results ivariably
with reference to golden ratio.

Table 4: Golden Ratio and its sister numbers
Golden Ratio 1+

p
5

2 1.61803398875
Silver Ratio 1 +

p
2 2.4142135623730950488

Plastic Number
3
p

108+12
p
69+

3
p

108�12
p
69

6 1.32471795724474602596

The essence of natural pattern is that it forgives the minimum bounding distance
criteria between neighbouring heliostats. That’s why here we don’t need to optimize
minimum bounding distance-security distance criteria which was given by dsep or dsafety
in radial-staggered layouts. The number of heliostats and dimensions of each heliostat
will be fixed. So, we optimize two parameters azimuthal Expansion-Contraction control
parameter a. related to radial component of spiral, b is the mean distance between
neighboring heliostats. The heliostat pattern density as a function of distance from
the receiver can be varied by varying b. The density fraction of this layout is given by

� =
D ⇥D

a⇥ b
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Table 5: Geometric Spirals
Input Paramteres for Implementation
Irrational Numbers Refer table[4]
Number of Heliostats 100,500,1000

where D is the characteristic diameter. Based on the observations in [12] the range
for a and b are [2, 8] and [0.5, 0.7] respectively. Non-linear constrained optimization
problem can be formulated as

minimize ⌘year(a, b,�)

where

2  a  8

0.5  b  0.7

(a) Golden Spiral (b) Silver Spiral (c) Plastic Spiral

Figure 9: E↵ect of changing irrational number with a = 2, b = 0.8

3.4. Basic Patterns Layout

Concentric regular patterns The two dimensional concentric regular patterns like
row-pattern cornfield[6], circles, ellipses, squares[10], rectangles could be the first choice
for placements of mirrors in a CRS plant. Let’s take the case of rectangles, the user
can limit the maximum number of the concentric rectangles as well as the spacing
between rows of rectangles. The optimization parameters are the distance between two
heliostats in a rectangle a and expansion factor b ,the distance between two consecutive
rectangles. Similarly for the circles, ellipses and squares patterns, the heliostats are
moved freely on the their regular boundaries to achieve optimal configuration. The
equations below show the basic computation of a position on an ellipse.

✓ = 360 ·
spacing

circumference
(41)
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Figure 10: Basic Patterns:Resources:[14]

x = a · cos
⇣
✓ ·

⇡

180

⌘
(42)

y = b · sin
⇣
✓ ·

⇡

180

⌘
(43)

The problem formulation would be:

maximize ⌘year(a, b)

where

amin  a  amax

bmin  b  bmax

3.5. Comparison

Ground coverage or field density can be defined as the total area of heliostats divided by
the field area of given configuartion represents the local density of the heliostats. The
results of ground coverage for existing research of di↵erent patterns and theoretical
packing density which is the maximum possible density of ground usage by mirror
heliostats based on the circle-close packing configuaration are given in table [6].

In two dimensional Euclidean space,the highest-density lattice arrangement of circles is
the hexagonal packing arrangement, in which the centres of the circles are arranged in
a hexagonal lattice (staggered rows, like a honeycomb)[8], and each circle is surrounded
by 6 other circles. The density fraction of this arrangement is

d =
⇡

2
p
3
= 0.9069

.

The square tiling can be used as a circle(locus of heliostat spinning on its axis) packing
for North-South Cornfield and basic patterns, placing equal diameter circles at the
center of every point. Every circle is in contact with 4 other circles in the packing
which is known as kissing number. The packing density fraction is

d =
⇡

4
= 0.7854
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Table 6: Ground Coverage of Fields
Layout Practically Acheived Maximum Possible

North-South & Basic Pattern 35-38% 78.54%
Radial-Staggered Configuration 30-35% 90.69%

Biometric Spiral Pattern 35-40% f(D
2

ab ,�)

Table 7: Objective Values of di↵erent layouts
Initial Field Configuartion

Layout Type Paramters Practical An-
nual E�ciency)

Dense Radial-
Staggered

[0.5, D2 , Htower] 75%

NS- Cornfield [3D2 , 3D2 , Htower] 86.3%
Row- Cornfield Figure[6] 43.3%
Campo Code Figure[6] 82.5%
Mueen Code [0.5, 0.5, Htower] 84.45%
Golden Spiral Figure[9] 85.65%
Silver Spiral Figure[9] 85.65%
Plastic Spiral Figure[9] 85.65%

This is evident as the density of field increases the shading and blocking factor would
increase and in result decease the annual total optical e�ciency of the field. To achieve
an overall improvement in annual performance, there should be trade-o↵ between the
ground coverage and the optical e�ciency as depicted in Pareto Curve in Figure 7(b) of
paper [12]. Thus, maximizing the product of annual optical e�cency and the ground
coverage would be the best choice for the objective function for optimization. To
simplify the problem; we consider here simulation dummy function for the shading
and blocking e�ciency and rest of the other factors which contributes to the objective
cost are not conidered.

f1((x1, y1), (x2, y2), ......(xn, yn)) =
nX

i=1

x2
i + y2i

Since the coordinates in the field design depends on the parameters, taking objective
function as f1 is justified. The simulation test-optimization problem can be written as:

minimize ⌘sb(a, b)

where

amin  a  amax

bmin  b  bmax
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4. Post-Processing Step

There objective functions for optimization can be convex or non-convex, but there is
no explicit relationship between the parameters and objective function. So, the idea
to develop a black-box optimizer which do not depends on the charateristics of the
objective function explicitly during optimization is followed strictly in this work.

Pattern + Classical Approach + Local Search Approach:

4.1. Classical Approach

The geometric configuration described in previous section are used by commercial
softwares like UHC-RCELL Code[9], DELSOL3(winDELSOL), HFLCAL[17]. We dis-
cussed decision variables(used-defined) and paramters defining these field layouts. All
the decision variables could also be considered as parameters to optimize. A typical
field layout configuartion is optimized by optimizing di↵erent combinations of these
parameters. We consider those paramters whose ranges have been determined and
considering others as constant user-defined input.
There exists interpolation methods, line search methods like Newton method, Secant

method, Taylor methods which involves derivatives. Here, the methods which do not
involve Jacobian evaluation are considered. These are elimination methods which can
be used to solve problems where the interval in which the optimum is known to lie is
finite. Let xs and xf denote, respectively, the starting and final points of the range
of parameters. We call this range interval as interval of uncertainty. Analysis of one-
dimensional methods is performed and Golden-Section method is extended to mult-
dimensional case. A gradient-free method downhill-simplex method is also used to get
the optimal parameters in the prescribed ranges for the patterns. A meta-heuristics
Di↵erential Evolution is also used for the same situation.

4.1.1. Multidimensonal Golden Section Method

Exhaustive Search The exhaustive search method consists of evaluating the objective
function at a predetermined number of equally spaced points in the interval (xs, xf ) and
reducing the interval of consideration using the assumption of unimodality of objective
function. In general, if the function is evaluated at n equally spaced points in the
original interval of uncertainty of length L0 = xf � xs , and if the optimum value of
the function (among the n function values) turns out to be at point xj then the final
interval of uncertainty is given by

Ln = xj+1 � xj�1 =
2

n+ 1
L0

The final interval of uncertainty obtainable for di↵erent number of trials in the exhaus-
tive search method is given below.

Number of Trials 2 3 4 5 ..... n-1 n
Ln
L0

2
3

2
4

2
5

2
6 ..... 2

n
2

n+1
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Since the function is evaluated at all n points simultaneously, this method can be
called a simultaneous search method. This method is relatively ine�cient compared
to the sequential search methods discussed next, where the information gained from
the initial trials is used in placing the subsequent experiments [13].

Dichotomous Search The exhaustive search method is a simultaneous search method
in which all the experiments are conducted before any judgment is made regarding the
location of the optimum point. The dichotomous search method, as well as the Fi-
bonacci and the golden section methods discussed later, are sequential search methods
in which the result of any experiment influences the location of the subsequent exper-
iment. In the dichotomous search, two experiments are placed as close as possible at
the center of the interval of uncertainty. Based on the relative values of the objective
function at the two points, almost half of the interval of uncertainty is eliminated. Let
the positions of the two experiments be given by

x1 =
L0

2
�

�

2

x2 =
L0

2
+

�

2
where � is a small positive number chosen so that the two experiments give sig-

nificantly di↵erent results. Then the new interval of uncertainty is given by L0
2 + �

2 .
The building block of dichotomous search consists of conducting a pair of experiments
at the center of the current interval of uncertainty. The next pair of experiments is,
therefore, conducted at the center of the remaining interval of uncertainty. This results
in the reduction of the interval of uncertainty by nearly a factor of 2. The intervals
of uncertainty at the end of di↵erent pairs of experiments are given in the following
table.

Number of Experiments 2 4 6

Final Interval of Uncertainty (L0+�)
2

1
2

�
L0+�

2

�
+ �

2
1
2

�
L0+�

4 + �
2

�
+ �

2
In general, the final interval of uncertainty after conducting n experiments (n even)

is given by

Ln =
L0

2
n
2
+ �

✓
1�

1

2
n
2

◆

Interval Halving In the interval halving method, exactly one-half of the current in-
terval of uncertainty is deleted in every stage. It requires three experiments in the first
stage and two experiments in each subsequent stage [13]. The interval of uncertainty
remaining at the end of n experiments (n > 3 and odd) is given by

Ln = L0

✓
1

2

◆(n�1
2 )
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Fibonacci Method The Fibonacci method can be used to find the minimum of a
function of one variable even if the function is not continuous [13]. The initial interval
of uncertainty, in which the optimum lies, has to be known. The function being
optimized has to be unimodal in the initial interval of uncertainty. The exact optimum
cannot be located in this method. Only an interval known as the final interval of
uncertainty will be known. The final interval of uncertainty can be made as small as
desired by using more computations. The number of function evaluations to be used
in the search or the resolution required has to be specified beforehand. This method
makes use of the sequence of Fibonacci numbers, Fn for placing the experiments. These
numbers are defined by this recursive relation

F0 = F1 = 1 (44)

Fn = Fn�1 + Fn�2, n = 2, 3, 4.. (45)

The interval of uncertainty remaining at the end of n experiments

Ln =
L0

Fn

Golden Section Method The golden section method is same as the Fibonacci method
except that in the Fibonacci method the total number of experiments to be conducted
has to be specified before beginning the calculation, whereas this is not required in
the golden section method. In the Fibonacci method, the location of the first two
experiments is determined by the total number of experiments, n. In the golden
section method we start with the assumption that we are going to conduct a large
number of experiments. The total number of experiments can also be decided during
the computation. The intervals of uncertainty remaining at the end of di↵erent number
of experiments can be computed as follows:

L2 = lim
N!1

FN�1

FN
L0

L3 = lim
N!1

FN�2

FN
L0 = lim

N!1

FN�2

FN�1

FN�1

FN
L0

⇠= lim
N!1

✓
FN�1

FN

◆2

L0

This result can be generalized to obtain

Lk = lim
N!1

✓
FN�1

FN

◆k�1

L0

Using the relation
FN = FN�1 + FN�2
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we obtain, after dividing both sides

FN

FN�1
= 1 +

FN�2

FN�1

By defining a ratio � as

� = lim
N!1

FN

FN�1

we get

� ⇠=
1

�
+ 1

�2
� � � 1 = 0

This gives the root � = 1.618, and hence

Lk = lim
N!1

✓
1

�

◆k�1

L0 = (0.618)k�1L0

the ratios FN
FN�1

and FN�2

FN�1
have been taken to be same for large values of N. The validity

of this assumption can be seen from the following table:
Value of N 2 3 4 5 6 7 8 9 10 1
FN�1

Fn
0.5 0.667 0.6 0.625 0.6156 0.619 0.6177 0.6181 0.6184 0.618

The procedure is same as the Fibonacci method except that the location of the first
two experiments is defined by

L0
2 =

FN�2

FN
L0 =

FN�2

FN�1

FN�1

FN
L0 =

L0

�2
= 0.382L0

The desired accuracy can be specified to stop the procedure.

Analysis The e�ciency of an elimination method can be measured in terms of the
ratio of the final and the initial intervals of uncertainty, Ln

L0
. The values of this ratio

achieved in various methods for a specified number of experiments or for a specified
ratio number of experiments are calculated. To achieve any specified accuracy, the
Fibonacci method requires the least number of experiments, followed by the golden
section method as well as in reducing the interval of uncertainty [13]. In all these
methods function has to be unimodal; but the Golden Section(GS) method is fastest
one except for Fibonacci Search; but in later method number of function evaluations
should be known before experiment. GS method is not bonded by this restriction.
Also, the main characteristic of one-dimensional GS is to save one function evaluation
per iteration except for the first one. In one-dimensional case, approximately one half
of computational cost will be saved.
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2-D Golden Section Method-Extended Assuming that the objective function is
denoted as f(x, y), intervals of uncertainty are [a, b] and [c, d], respectively. Based on
the same principle of one-dimesion, in 2-D case only three function evaluations are
needed at each stage of iterations after the first iteration and one function evaluation
will be saved per iteration. Simultaneously, the region of uncertainty or search space
is reduced by a factor of �2. For 2-D GS, a saving of one fourth of computational
cost of function evaluations is earned, not one half like the case of one-dimensional GS
[4]. Under n-dimensional case, a saving of function evaluations is not one half,but 1

2n ,
where n is the dimension.Similarly, the Golden-Section Method can be generalized to
multi-dimensional case; the limitations and benefits are discussed in [4].

Implementation One of the most important feature of GS method is, the number
of iterations to achieve a prescribed tolerance can be established before the iterations
start. The upper bound of the function is evaluated before and then passed to multi-
dimensional GS method. A generic approach of search direction is also considered to
initialize the iterations. So, both the functions need current position vector or design
vector x and s perscribed direction vector. Although, the e�ciency of 2D-GS is not
better than in case of 1D-GS, yet this algorithm has potential for as gradient-free
evaluations of the objective function which is unimodal in nature.

4.1.2. Globalized Bounded Nelder-Mead Algorithm

Nelder-Mead Method This method also called downhill-simplex method is a direct
search method for minimizing unconstrained real functions. The basic idea in the
simplex method is to compare the values of the objective function at the n+1 vertices
of a general simplex and move the simplex gradually toward the optimum point during
the iterative process. The following equations can be used to generate the vertices of
a regular simplex function values at the n + 1 vertices xi of a simplex. A simplex of
size a is initialized at x0 based on the rule

xi = x0 + pei +
nX

k=1
k 6=i

qek (46)

where ei are the unit base vectors and

p =
a

n
p
2

⇣p
n+ 1 + n� 1

⌘
(47)

q =
a

n
p
2

�p
n� 1� 1

�
(48)

The simplex vertices are updated through reflection, expansion, and contraction oper-
ations in order to find an improving point. The algorithm terminates when the vertices
function values become similar, which is measured with the inequality,

vuut
n+1X

i=1

(fi � f̄)2

n
< ✏, f̄ =

1

n+ 1

n+1X

i=1

fi (49)
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where ✏ is a small positive scalar. The cumulative e↵ect of the operations on the
simplex is, very similar, to stretch the shape along the descent directions, and to zoom
around local optima. There are two limitations of the algorithm. First, algorithm may
fail to converge to a local optimum, which happens in particular when the simplex
collapses into a subspace. Second,the method may escape a region that would be a
area of attraction for a pointwise descent search if the simplex were large enough.
Ultimately, as the size of the simplex decreases, the algorithm becomes local.

Improvements The Globalized Bounded Nelder–Mead algorithm, GBNM, is meant
to be a black-box local-global approach to real constrained optimization problems. A
restart procedure that uses an adaptive probability density keeps a mem- ory of past
local searches. Constraints and limits on variables are taken into account through
adaptive penalization and projection, respectively. Finally, GBNM can be applied to
discontinuous (no gradient information needed), non-convex functions, since the local
searches are based on a variant of the Nelder–Mead algorithm (Nelder and Mead 1965).
Improvements to the Nelder– Mead algorithm consist of simplex degeneracy detection
and handling through reinitialization [11].

Local optimizers can make up a global search when repeatedly started from
di↵erent points. The simplest restart methods initialize the search either from a
regular grid of points, or from randomly chosen points. In the regular grid case,
we need to know how many restarts will be performed to calculate the size of
the mesh. In the probabilistic case, knowledge of past searches is not used, so
that the same local optima may be found several times, costing vast unnecessary
e↵ort. Here we consider 2nd case, the number of restarts is unknown beforehand
and the cost of each local search is unknown. A grid method cannot be applied
here because discritizing the full land area would be compuatationally expensive.
Also, a memory of previous local searches is kept by building a spacial probability
density of starting a search [11].

With bounded variables, the points cannot leave the domain after either the
reflection or the expansion operation. These variable bounds are accounted by
projection [11].

if(xi < xmin), xi = xmin; (50)

if(xi > xmax), xi = xmin; (51)

Implementation Minimization of simulation test function which is a scalar function
is performed in the region determined by the column vectors xmin and xmax using this
globalized Nelder-Mead direct search method based on geometric operations on an N-
dimensional simplex. The code returns final global solution and function value at that
optimal point. The algorithm parameters are: maximum probablistic or degenerated
restarts 15; maximum function evaluations 2500; number of random points per restart
5; maximum iterations per restart 250; reflection coe�cient ↵ = 1; contraction coe�-
cient � = 0.5; expansion coe�cient � = 2; convergence tolerance 1e�9 and the gaussian
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length parameter is set to 0.01, which means that one standard devaiation away from
Gaussian means covers about 20% of the domain of parameters.

4.1.3. Di↵erential Evolution

The main idea of DE is using vector di↵erences for perturbing the vector popula-
tion. This idea has been integrated in a novel recombination operator of two or more
solutions and a self-referential mutation operator to direct the search toward good
solutions.

Initialization of population: The diversity of the initial population in DE is very
important since the search is guided by the di↵erence between vector elements.
First, vectors of initial population are generated equivalent to the population
size.Like any evolutionary algorithm, DE generates a randomly distributed initial
population of size k(k � 4). Each individual is a D-dimensional real vector xi,j.
Each individual is encoded as a vector of floating-point numbers. Values of
various control parameters like the radial and the azimuthal spacing in radial-
staggered layout, a and b in spiral case; which represent a candidate solution, are
included in each of these vectors. This is accomplished by passing on random
values for each parameter of solution, within the range [xmin, xmax] defined for
the corresponding parameters specified in second section. The vector xij would
be:

xi,j = xmin,j + r(xmax,j � xmin,j)

where r 2 U [0, 1] is uniformly distributed random number and j 2 [1, D] and
i = 1 indicates initial population size.

Evaluating and finding the best solution: After the formation of initial popula-
tion, the objective like simulation test function of each vector is evaluated and
compared. Therefore, an optimal solution is obtained, and its value is stored
externally and updated by comparison with all the values in each generation.

Mutation operation: For every solution xi in the population in ith population-
generation, a mutant vector mi is generated using:

m(t+1)
i = xi + F · (xbest � xi) + F · (xr1 � xr2)

where xr1 and xr2 are randomly selected solution parameters from the ith genera-
tion, which are di↵erent from each other. The variable F 2 [0, 1] is the mutation
factor, which is defined by the user, and it depends upon the type of problem
to be optimized. This scaling factor controls the amplification of the di↵erence
between the individuals r1 and r2 and is used to avoid stagnation of the search
process. xbest is the solution that attains the best value.

Crossover operation: Instead of using the classical crossover operators of EAs
where parts of the parents are recombined, the DE recombination operator is
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Classical-Optimization Results-function f1,D = 5m,H = 50m
Layout Parameters N-dim GS GBNM
NS-C [Rspace, Cspace, d1st-row] [3D2 , 3D2 , Htower] [3D2 , 3D2 , Htower]
R-S [Rdi↵, Cdi↵, d1st-row] [0.5, 0.5, Htower] [0.5, 0.5, Htower]
G-Spiral [a, b,�] [2, 0.8,�] [2, 0.8,�]

Table 8: Results of Multi-GS & GBNM

based on a linear combination in which the distance concept plays an important
role. The crossover operation is applied to further perturb the generated solutions
and enhance the diversity. This is performed by copying the parameters of the
generated mutant vector and its corresponding vector i in the original population
according to a crossover factor denoted by CR 2 [0, 1]. For each parameter, a
random number in the range [0, 1] is generated and compared with CR, and if
its value is greater than or equal to CR, the parameter value is taken from the
parent vector; otherwise, it will be taken from the mutant.

Selection procedure: For the selection procedure, normally, the solutions of the
old population are compared with trial solutions for the generation of a new
population. For this purpose, the objective function corresponding to each trial
solution is evaluated and compared with the value of the parent. If the new
solution does not perform better, the old solution is retained; otherwise, the new
solution replaces the parent solution. Thus an elitist replacement is considered,
that is, the o↵spring will replace its parent if its objective value is better or equal
to the parent one.

Stopping criteria:

A Matlab code is written, which e↵ectively optimizes a preliminary generated
heliostat field using Di↵erential Evolution. After a new population is formed, the
algorithm updates the global best solution. This code is run for 100 iterations
which is considered as stopping criteria. The number of iterations is user defined
parameter.

DE has algorithmic complexity of O(n).

Implementation Maximum Number of Iterations is taken to be 100; Population Size
50; Lower bound of scaling factor �min = 0.2; and the upper bound of scaling factor is
�max = 0.8 and crossover probability pCR = 0.2.
DE was performed for one parameter dsep for RS-Configuration. The results of this

work are presented in table [8].
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Figure 11: Results of Di↵erential Evolution

4.2. Local Search Approach

The field configuartion at the end of previous section is taken as input for the local
search algorithms. The basic idea of local search is to improve the existing layout’s
objective value until a certain requirement is fulfilled (such as molten salt flow feasib-
lity in pipelines) by selecting the best performing heliostats. Here, we control the local
search through number of iterations as input. In implementation of three approaches
below, the cartesian coordiantes are converted to polar coordinates. If the polar co-
ordinates of reference heliostat are (r, ✓) and for neighbor are (r1, ✓1). Then the new
cartesian coordinate of a neighbor w.r.to reference point will be:

(a, b) = (rcos(✓)� r1cos(✓1)), rsin(✓)� r1sin(✓1))

and we change to polar coordiantes again:

((rnew, ✓new) =
p

(a2 + b2), tan�1(
b

a
))

.

4.2.1. Single Neighbor Selection

Considering each coordinate as reference point, we calculate the Euclidean dis-
tances to all the other points, and sort the distances and select first neighbor of
each point.
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Draw a circle of radius r equals the distance between reference point and its first
nearest neighbor; then respecting the safety distance dsafety; update the radius[12]

r0 = r � dsafety

We update the polar coordinates of neighbor w.r.to the reference point polar
coordinates.

We discretize this inner circle of radius r0 along circumference in clockwise direc-
tion starting from the polar angle of neighbor with the fixed increment of angle
2⇡
n where n is user-defined input which is number of required trial points[13] and
store these trials points.

Evaluate a simmulation test function value at each of these trials positions and
compare with the function value at reference position; The best value is chosen
and the coordiante of reference point is updated by the new best trial position
and each of the coordiantes must satisfy a restriction security constraint.

dsafety 
q
(xi � xj)2 + (yi � yj)2

where dsafety is also a input parameter. If any of the new position violates the
security constarints, we do not take that trial position.

This procedure is repeated for all the reference heliostats and output for one iter-
ation is given as input to the next iteration. We run this iteration for 200 times.
The configuration corresponding to best objective function value is selected.

Time complexity of this algorithm is O(n2); where n is the number of heliostats.

This algorithm was tested for the three test cases with simulation function f1 and
N is the number of heliostats:

PS10 and N = 624

Golden Spiral and N = 600

Dense Radial Staggered with Number of zones = 2.
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(r0, ✓new)

Figure 12: Selection of Ist neighbor
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Figure 13: Discretization along circumference for 5 new trial points
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Results for PS10
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Figure 14: PS10 Radial-Staggered Configuration
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Results for PS10
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(a) PS10 Layout
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(b) After Local Refinement of PS10

Figure 15: Intensity Map - Shading and Blocking E�ciency
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Results for PS10
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Figure 16: Results of Single Neighbor best-trial heuristics
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Results for Dense Radial Staggered-Campo Code
Initial Configuaration- Number of Zones = 2
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Figure 17: Dense Radial-Staggered Configuration
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Results for Dense Radial Staggered-Campo Code
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(a) Initial Dense RS Field
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(b) After Local Refinement

Figure 18: Intensity Map - Shading and Blocking E�ciency
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Results for Dense Radial Staggered-Campo Code
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(a) Number of Iterations vs Objective Function
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Figure 19: Results of Single Neighbor best-trial heuristics
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Results for Biometric Spiral
Initial Configuaration- Golden Spiral- N=600
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Figure 20: Golden Spiral Configuration
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Results for Biometric Spiral
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(b) After Local Refinement

Figure 21: Intensity Map - Shading and Blocking E�ciency
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Results for Biometric Spiral
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Figure 22: Results of best-trial heuristics
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4.2.2. Multiple Neighbors Selection

Considering each coordinate as reference point, we calculate the Euclidean dis-
tances to all the other points, and sort the distances and select nearest neighbors
of a each point according to user defined input.

For each reference point, the polar coordinates of its neighbors are updated w.r.to
reference point polar coordinates.

Then we sort these updated polar angles and for each adjacent pair of polar angles
we define sweeping sector[23] of fix angular sweep ✓i+✓i+1

2 in both the directions
of the polar angle of each neighbor.

Then we discretize[24]this sector using section formula and store these trials
points for each sector; each sector have 8 new trial points. Thus if a reference
point have 4 neighbors then total trial points for that reference point will be 32.

we compare test function value at each of these trials positions with the function
value at reference position; The best value is chosen and the coordiante of refer-
nece point is updated by the new best trial position and each of the coordiantes
must satisfy a restriction security constraint.

dsafety 
q
(xi � xj)2 + (yi � yj)2

where dsafety is also a input parameter.

This is done for all the reference points and output for one iteration is given as
input to the next iteration. We run this iteration for 100 times.

Time complexity of this algorithm is O(n2); where n is the number of heliostats.
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Figure 24: Discretization of a trianglur subregion

4.2.3. Radius-Dependent Neighbors Selection

Given a predefined pattern, for each heliostat we select a neighbourhood search
radius; let say 3D, where D is the heliostat characterstic diameter, we record the
neighbours which lies in the circle with the radius 3D and center as the reference
heliostat.

Now, for each heliostat, we have specified number of neighbours; we find a convex
hull of these coordinates in the plane [25]. Given a set of points in the plane. the
convex hull of the set is the smallest convex polygon that contains all the points
of it.

The corner points are now used to divide the convex hull in convex triangular
subregions.

Each triangular subregions are then discretized [24] for trial positions to evaluate
the objective function.

Comparing all the trial positions with the reference heliostat position value; the
position with minimum test function value is selected to update the position of
reference heliostat.

Neighbourhood Search Based on di↵erent patterns; we will have di↵erent number of
heliostats neighbouring a reference heliostat. So, this generic approach of neighbour-
hood search is compatible with all existing layouts; we simulate the neighbourhood
search with di↵erent radius like 2D,3D,4D...etc; where D is the characteristic diameter
of a heliostat which is same for all heliostats.

46



Convex Hull Algorithm Given a set of points in the plane. the convex hull of the
set is the smallest convex polygon that contains all the points of it. In other words; a
convex hull can be defined as:

smallest perimeter fence enclosing the points.

smallest area convex polygon enclosing the points.

There exists multiple algorithms for finding the convex hull of a given set of points.
We use Graham’s scan algorithm, from which we can find Convex Hull in O(n log n)
time where n is the number of neighbours. The Graham’s algorithm is followed as: Let
points [0, 1.....n� 1] be the input array.

1. Find the bottom-most point by comparing y coordinate of all points. If there are
two points with same y value, then the point with smaller x coordinate value is
considered. Let the bottom-most point be P0. Put P0 at first position in output
hull.

2. Consider the remaining n � 1 points and sort them by polar angle in counter-
clockwise order around points[0]. If polar angle of two points is same, then put
the nearest point first.

3. After sorting, check if two or more points have same angle. If two more points
have same angle, then remove all same angle points except the point farthest
from P0. Let the size of new array be m.

4. If m is less than 3, then return Convex Hull not possible.

5. Create an empty stack S and push points[0], points[1] and points[2] to S.

6. Process remaining m�3 points one by one. Do following for every point points[i]

Keep removing points from stack while orientation of following 3 points is
not counterclockwise or they don’t make a left turn.
a) Point next to top in stack
b) Point at the top of stack
c) points[i]

Push points[i] to S.

7. Print contents of S

The above algorithm can be divided in two phases.

Phase-1(Sort points): We first find the bottom-most point. The idea is to pre-
process points by sorting them with respect to the bottom-most point. Once the points
are sorted, they form a simple closed path which is shown in [25]. Sorting criteria
The computation of actual angles would be ine�cient since trigonometric functions are
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Figure 25: Sorting of points and Convex Hull Formation

Figure 26: Accept and reject points with orientation function

not simple to evaluate. The idea is to use the orientation to compare angles without
actually computing them.

Phase-2(Accept or Reject Points): Once we have the closed path, the next step
is to traverse the path and remove concave points on this path. Again, The concept
of orientation helps how to decide which point to remove and which to keep. The first
two points in sorted array are always part of Convex Hull. For remaining points, we
keep track of recent three points, and find the angle formed by them. Let the three
points be prev(p), curr(c) and next(n). If orientation of these points; considering them
in same order; is not counterclockwise, we discard c, otherwise we keep it. Diagram
[26] shows step by step process of this phase.
Time Complexity: Let n be the number of input points. The algorithm takes

O(n log n) time if we use a O(n log n) sorting algorithm. The first step (finding the
bottom-most point) takes O(n) time. The second step; sorting points; takes O(n log n)
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time. Third step takes O(n) time. In third step, every element is pushed and popped
at most one time. So the sixth step to process points one by one takes O(n) time,
assuming that the stack operations take O(1) time. Overall complexity is

O(n) +O(n log n) +O(n) +O(n)

which is O(n log n)

Discretization Now we have a convex hull corresponding to each reference point.
Now, we take all the corner points of convex hull and the reference point and we do
traingulation of convex hull and then we discretize each triangle. Discretization[24] is
one approach for getting trial positions, we can do it by random selection function.
Here we create a regular mesh for each triangle.

Objective Evaluation In each triangle, we evaluate the function and compare with
the reference heliostat function value and record the minimum function value position.
There will be two type of triangles; one without any other heliostat and second type
of traingle which have some previous selected neighbours; for which we already have
the recorded function value. If the trial coordinates position violates the following
constarints:

� 
q

(xi � xj)2 + (yi � yj)2

where � = dsafety is the safety distance. Then we reject that trial position and do not
evaluate objective function at that position and compare rest of the others trials posi-
tion function value and record the lowest value. From each triangle, we have minimum
value which we refer as local minimum and then take the minimum of all these values
at local minimum; we get a global minimum.

In summary, Methodologically, all three procedure are composed of a number of con-
secutive simulation cycles depending on the number of heliostats. Each simulation
cycles(iteration) is a loop over all heliostats in the neighbourhood of the reference he-
liostat. In each loop one heliostat is selected as the one to be repositioned. S is the
set of cartesian coordinates of all heliostats. S = {(xi, yi) 2 R2) : i 2 [1, N ]} For each
reference heliostat Hi; N(i) = {1, 2, ....k} is the index set of neighbouring heliostats
and which satisfying following mechanical constarints:

� 
q
(xi � xj)2 + (yi � yj)2  ⌧

where � = dsafety is the safety distance and ⌧ is the distance dependent on number of
neighbours for a specified radius in a specified pattern.
In one simulation cycle; all the heliostats have been repositioned according to their

convex hull region discretization. The best positions for each reference heliostat is
recorded and will be used in futher simulations. Thus after each loop step, every
reference heliostat will be at new position expectedly contribute for better performance
of the system. If no better annual improvement is noticed, the heliostat position
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Figure 27: Results of Algorithm-3

remain unchanged. This position will be stored again and will be used in consequent
simulation.
Since, relocating the heliostats will influence the adjacent heliostats, it o↵ers addi-

tional improvement potential for those heliostats that were previously handled in the
same loop. That’s why, it is requird to perform consecutive simulation cycles to obtain
best result.

To confirm the locality of algorithm, we can take the larger radius, which in result
gives the larger convex hull with more neighbours and perform the same simulation.
We have thus tested all three algorithms and results of first algorithm, for the selec-

tion of best configuration are presented from Figure [14] to Figure [22]. A comparison
of multiple neighbours selection is done in [22]. Figure [27] demonstrates the optimal
radius for search of neighbours is 4 units for the test case of golden spiral.

50



5. Conclusion

Metaheuristics + Nelder-Mead method

5.1. Why Hybrid Meta-heuristics Strategy

The engineering optimization problems are characterized by the calculation-intensive
system simulations, existence of designs constraints, and a multiplicity of local solu-
tions. The high numerical cost of global optimizers has been at the heart of subsequent
e↵orts to speed up the search either by adding problem-specific knowledge to the search,
or by mixing e�cient local algorithms with global algorithms. There are many ways
in which local and global searches can cooperate.

The simplest strategy is to link the searches in series, meaning that firstly, a global op-
timization of limited cost is executed, the solution of which is refined by a local search.
An example of the serial hybrid is given in Shang et al. (2001), in which simulated
annealing, the global optimizer, is coupled with a sequential quadratic programming
and a Nelder–Mead algorithm.

A hybrid method combining two algorithms is suitable for the global optimization of
multiminima functions. To localize a ”promising area”, likely to contain a global min-
imum, it is necessary to well ”explore” the whole search domain. When a promising
area is detected, the appropriate tools must be used to ”exploit” this area and obtain
the optimum as accurately and quickly as possible. Both tasks are hardly performed
through only one method.

We propose an algorithm using two processes, each one devoted to one task. Global
metaheuristics, such as simulated annealing(SA), tabu search(TS), particle swarm opti-
mization(PSO) and evolutionary algorithms like genetic algorithm (GA) or di↵erential
evolution(DE) are e�cient to localize the ”best” areas. On the other hand, local search
methods are classically available: in particular the hill climbing (e.g. the quasi-Newton
method, Powell method), and the Nelder–Mead simplex search. Therefore we worked
out an hybrid method, performing the exploration with a DE, and the exploitation
with a Nelder–Mead. Furthermore, DE will be replaced by a generalized metaheuris-
tic framework, having other metaheuristics compatible with Nelder-Mead. For further
improvement, the local refinement procedures can be used.

Multi-dimensional Golden Section works for unimodal functions only, GBNM is suit-
able for our field design optimization problem but to select the best initial population
for the GBNM is itself an hard optimization problem. Thus the idea of using meta-
heuristics as first step is appropriate; for the generation of initial population under the
given constraints and then use Nelder-Mead for the local search. The results of this
work are presented in the table [9]. Here, also we present the profound pseudocode
of DE, PSO hybridized with Nelder-Mead which outperforms the GBNM. TS can also
be hybridized with Nelder-Mead. For future work, a comparison analysis would be
performed to find the best hybrid method for the specific problem.
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Classical-Optimization Results-function f1,D = 5m,H = 50m
Layout Parameters Hybrid DE-NM GBNM
NS-C [Rspace, Cspace, d1st-row] [3D2 , 3D2 , Htower] [3D2 , 3D2 , Htower]
R-S [Rdi↵, Cdi↵, d1st-row] [0.5, 0.5, Htower] [0.5, 0.5, Htower]
G-Spiral [a, b,�] [4.0, 0.65,�] [4.0, 0.65,�]

Table 9: Results of GBNM & Hybrid DE-NM

5.2. Pseudocodes

Velocity Update Equations:

V New
i (t+1) = c0 ·V

old
i (t)+c1 ·rand()·(Pi(t)�X

old
i (t))+c2 ·rand()·(Pg(t)�X

old
i (t)) (52)

XNew
i (t+ 1) = Xold

i (t) + V New
i (t+ 1) (53)

Algorithm 1 PSO

1: Initialize a population of particles with random values positions and velocities from
D dimensions in the search space

2: while Termination condition not reached do
3: for Each particle i do
4: Adapt velocity of the particle using Equation 52
5: Update the position of the particle using Equation 53
6: Evaluate the fitness f(

�!
X i)

7: if f(
�!
X i) < f(

�!
P i) then

8:
�!
P i  

�!
X i

9: end if
10: if f(

�!
X i) < f(

�!
P g) then

11:
�!
P g  

�!
X i

12: end if
13: end for
14: end while

The pseudo-code of hybrid method is inspired from [6]. The pseudocodes of PSO
and its NM-hybrid are taken from [6]. The main blocks of algorithm: initialization
of parameters, generation of the initial population, production of the new population,
intensification around the best point, and output of the best point found.

Diversification: The algorithm starts with a large population uniformly dispersed
within the whole solution space, then the new population is pro- duced through
evoluationary steps. Once the o↵spring have been produced by selection, re-
combination, and mutation of individuals belonging to the old population, the
objective function values of the o↵spring may be calculated, the new population
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Figure 28: Dispersion of the initial population(30 individuals) in the solution space
[�1, 1]2, for f2 function

is produced, and the process is reiterated. The exploration stops when one of the
following conditions is reached:

1. given number of successive generations Max-Gen without detection of promis-
ing area is reached;

2. a given accuracy relating to the individuals coordinates is obtained.

The area where the most individuals lie is named as ”promising area”.

Intensification inside the promising area: The best found point in the previous
phase becomes the new initial solution x0 in this intensification phase. We con-
struct a new solution space centered around x0. Each domain edge is reduced in
a ratio given by the reduction parameter. The Nelder–Mead simplex algorithm
performs the initial simplex. The first vertex is x0 and other vertices xi are cho-
sen in such a way that they form a geometrical base, in generally an orthogonal
one. The NM starts the search by using the various geometric moves.

Stopping criteria: The algorithm performs the exploitation phase inside the
promising area until the local stopping criteria are reached. There are two stop-
ping criteria. The first criterion is related to the maximal number of iterations
of the objective function MaxIter, the second one is a measure of how far the
simplex si was moved from one iteration k to the following one (k + 1).

The simulation test function is:

f(x1, x2) = x2
1 + 2 + x2

2 � 0.3cos(3⇡x1)� 0.4cos(4⇡x1) + 0.7

with search domain:
�100 < xj < 100; j = 1, 2
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Figure 29: Detection of Promising area

Algorithm 2 Hybrid NM-PSO

1: Generate a population of size k ·N + 1
2: REPEAT
3: while Termination condition not reached do
4: Constraint Handling Methods

Repair particles that violate the constraints by directing the infeasible solution
toward the feasible region. Leave unrepairable solutions as they are.

Evaluate the constraint fitness, the objective fitness of each particle and rank
them.

5: Simplex Method: Apply NM operator to the top N + 1 particles and update
the (N + 1)th particle.

6: PSO Method: Apply PSO operator for updating the remaining (k � 1) · N
particles with worst fitness.

Selection. From the population select the global best particle and the neigh-
borhood best particles.

Velocity Update. Apply velocity updates to the (k � 1) · N particles with
worst fitness according to Equations 52 and 53.

7: end while
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Figure 30: The path followed by the NM to find best solution in local space for f2
simulation function

Algorithm 3 Hybrid NM-DE

1: G,G0 Quality = table with size N;
2: Generation of initial population
3: (fmin, xmin) = best point among parent population
4: Diversification
5: Repeat
6: while G0 was full do
7: while detection of promising area do
8: Quality = produce the most adapted population
9: Repeat(phases of evolutionary reproduction)

selection

recombination

mutation

10: end while
11: Replacement(G,G0)
12: end while
13: Intensification
14: Repeat
15: reducation of search domain
16: construction of initial simplex
17: while stopping criteria is reached do
18: Geometric modifications

reflection

exapnsion

contarction

19: end while
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Figure 31: Convergence of GBNM and Hybrid DE-NM for f2 simulation function

The DE-NM hybrid may converge more quickly than GBNM, though starting from
a point far from the solution which can be observed from Figure [31].
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A. Appendix

A.1. Code Structure

Pattern generator(PG) creates test-cases of di↵erent pattern with user-defined
variables. PG also determines the range for the design parameters.

Optimzer takes two types of input and work on two hybrid method approahes:

1. Pattern + Classical Method + Local Refinement

2. Di↵erential Evolution + Nelder-Mead method

A.2. Outlook

The Black-box optimizer might be verified by functions having global optimum.
Some examples are Branin RCOS, Easom function, Goldstein and Price function,
Shubert function, De Joung, Hartmann, Rosenbrock, Shekel, Zakharov function
etc.

The Hybrid method Di↵erential Evolution and Nelder-Mead is a robust method
can be used for general engineering design problems.

The work in this thesis has been considered for only a simplified simulation tool
and simplified objective function; but in practice the objective function might
be complex, non-convex, multi-modal, non-di↵erentiable and multi-objective;but
still the Black-Box Optimizer is flexible for all type of objective functions.

One of the future attempt to optimize heliostat field layout could be to introduce
Atificial Intelligence and build a neural-network through deep-learning from data
related to sun and atmospheric conditions throughout the year.

There is significant decrement in objective value for simulation test function
f1, but in practice due to complexity of objective function, the improvement
sometimes is very less significant around 1-5%.
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