
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Multi-Step Layout-Optimization of Turbines in Offshore
Wind Farms

Mehrstufige Layout-Optimierung von Turbinen in
Offshore-Windparks

Bachelorarbeit
Informatik

September 2020

Vorgelegt von Yin-yin Lo
Presented by Rudolfstraße 80

52070 Aachen
Matrikelnummer: 367456
yin-yin.lo@rwth-aachen.de
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1 Introduction

Renewable energy production is a relatively inexhaustible energy source in comparison
to more conventional sources such as coal, oil or natural gas, also known as fossil fuels.
The main reasons for the growing demand in renewable energy generation is on one
hand the limited availability of fossil fuels as a resource and on the other hand the
rising awareness for climate change in the global population and the necessity to divest
from fossil fuels as conventional energy sources. The burning of fossil fuels for energy
releases green house gases such as carbon dioxide and methane and the emission of
these gases contribute globally to an increase in the average temperature and locally
to a rise in air pollution and health risks such as lung cancer.

In recent decades, the production of renewable energy has grown in many countries
due to the realization of its potential to serve as the primary source of energy. In
addition, for each method of renewable energy production the levelized cost of energy
has decreased since 2010 and is predicted to be lower than the cost of fossil fuel in the
near future. This means that many of these production methods already are or will be
competitive with fossil fuels and the potential for the replacement of fossil fuels as the
primary energy source is very high. Offshore wind farms are one of these renewable
energy generation methods and already widely in use around the world. There are
already many wind farms in the world like one of the largest offshore wind farms called
DanTsyk and Sandbank in the German North Sea, where each of them has a capacity
of 288 MW.

One of the goals but also a challenge is to maximize the Annual Energy Production
of offshore wind farms. Offshore wind farms consist of several wind turbines where
the rotor starts rotating due to the incoming wind. The rotational movement will be
converted into electrical energy through electromagnetism. In order to maximize the
generated energy, factors such as the layout of the wind turbines have to be optimized.
If the turbines are placed too close to each other, they will shadow each other, resulting
in some turbines receiving wind with reduced wind speed. This is known as the wake
effect and leads to energy generation inefficiencies as well as negative impact on the
Annual Energy Production. The search for the optimal placement of turbines in an
offshore wind farm is known as the wind farm layout optimization problem (WFLOP).

This thesis presents a multi-step layout optimization of turbine placements for off-
shore wind farms. The main characteristic of this special optimization approach is
the execution of multiple optimization algorithms one after another. These algorithms
include the pattern method, the dense packing method and lastly local search to refine
the result.

1.1 State of the art

For a suitable simulation and optimization of offshore wind farms, adequate models
are needed. In this subsection, state-of-the-art models and existing optimization ap-
proaches are presented.

The first literature regarding offshore wind farm modeling was published in the
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1980s by Jensen [14] in 1983 and by Katic et al. [16] in 1986. In general, research
is concerned with the modeling of wake effects and cost functions. Therefore, the
following presents commercial wake and cost models and optimization algorithms that
have been published throughout the past.

When modeling offshore wind farms, the wake model and the cost model are ad-
dressed. By including the wake effect in the modeling of offshore wind farms, the
efficiency of wind turbines in terms of energy production can be increased. Whereas
the cost model refers to the layout optimization of the wind turbines and the develop-
ment of the cost functions. However, there exist many trade-offs in order to determine
the optimum layout, which should be considered in the wake and cost model.

The above mentioned first literature regarding offshore wind farms was a wake model,
where the model uses a top-hat speed profile. The expansion of the wake is linear with
a form of a cone starting in the wake downwind of a wind turbine. This wake model
was integrated into a computer program named PARK [15] and is able to optimize the
layouts of wind farms.

The wake model, presented by Ainslie [2], is based on the numerical solution of
Reynolds-averaged Navier–Stokes (RANS) equations in a cylindrical coordinate. The
assumptions include the addition of eddy viscosity turbulence closure such as symmet-
ric axis. Another model called Fuga was introduced by Ott et al. [22] in 2014. Fuga is
based on the linearized RANS equations and in order to simulate the wakes the model
uses an actuator disk, which is an idealized model of a wind turbine rotor effect on the
flow of the air [3].

Notable cost models include the cost model used in the OWFLO project, which was
presented by Elkinton et al. [9]. The OWFLO is known to calculate the total cost
of the wind farm. Alternatively there are also cost models that focus on the relative
costs, such as the model used in the TopFarm project, which was presented by Réthoré
et al. [23], where only the cost regarding the layout of the wind farms is relevant [26].

The following summary is based on the work of Tesauro et al. [26], where several
optimization algorithms and strategies will be presented.

• Genetic algorithms (GA) are commonly used among optimization of wind
farms and the method is inspired by the genetic and natural selection principles.
The algorithm will start with a population, which is a set of coordinates of the
wind turbines. For each wind turbine, the objective function will be calculated
and compared with each other. The best results of the wind turbines are filtered
out, while the rest will be recombined by the mechanism through mutation and
crossover. This method has shown good results, although the algorithm provides
little freedom in terms of placement of wind turbines.
Mosetti et al. [19] published one of the first methods to optimize wind farm
models with GA in 1994, which have used a multi-objective function of power
and costs. Researchers such as Grady et al. [13] and Szafron [25] included GA
in their work.

• The Gradient methods, also known as hill climbing, evaluate derivatives of the
objective function from an initial point until no numerical improvement occurs.
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Although this method is fast in calculating the local optimum, but in order to find
the global extremes the initial point needs to be near the global minima/maxima.
Nevertheless, this method can be used in a multi-step algorithm as a refinement
of previous steps. The hill-climbing method has been incorporated into the work
of Lackner et al. [17].

• Particle Swarm algorithms (PSA) is similar to the genetic algorithm, where
the starting point is a randomly generated group of wind farm layouts and each
layout can be a candidate solution. The set of proposed solutions is a population
also known as a swarm. In the search space for the best possible solution, the
particles have access to three information: the current direction of motion, the
direction to the best point the particle has found in the past and the third
information is the direction to the best position the swarm has found so far.
Lastly, every particle will move towards the areas with the best possible solution
because the swarm converges to the optimal value.
The introduced method by Wan et al. [29] optimizes the placement of the turbines
in a continuous space and is based on the particle swarm algorithm.

This thesis presents a multi-step layout optimization of turbines in offshore wind
farms. Several optimization algorithms regarding turbine positioning are presented
and evaluated. The goal of this thesis is to find out if a multi-stage layout optimization
achieves better results than the individual algorithms.

1.2 Outline

The structure of this work is as follows. In Section 2 the model and its components
for the simulation of an offshore wind farm, i.e. the wind model, wake model, power
generation model, and economic model, are presented. Section 3 introduces several
optimization algorithms and the documentation of the optimization process. In Section
4 the case studies are presented and their results are discussed. Lastly, the conclusion
and the outlook on future research are stated in Section 5.
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2 Offshore wind farm model

This section introduces an offshore wind farm model, which will later be used for the
optimization process. To create a realistic model of an offshore wind farm, the wind
data, wake effect, energy production and costs have to be considered. Therefore, the
following subsections present a wind model for the measured wind data and a wake
model, which considers the wake effect of the turbines. An energy production model
calculates the overall annual energy production which will be important for the cost
model to calculate other relevant costs, i.e. levelized cost of energy, net present value as
well as internal rate of return. Lastly, the settings of the wind farms will be introduced.

2.1 Wind model

The production of energy in offshore wind farms depends on the incoming wind and
must therefore be suitably represented in the simulation and optimization process. A
wind model should be used to model wind data appropriately so that an accurate
calculation of energy production can be guaranteed. The data used in this work has
been collected on the FINO31 research platform, which is located 80 km west of Sylt
off the North Sea coast, over a period of seven years. Therefore, the amount of data
regarding wind directions and wind speed is very large. Figure 1 shows distribution
measurements of wind direction at the FINO3 platform. The size of the sectors, which
are arranged according to the cardinal points, represents the probability of the wind
direction.

In this work, the distribution of wind directions is also modeled as illustrated in
Figure 1. In addition, the dimension of time is also taken into account so that the
model can differentiate the probability of wind coming from a certain direction at a
certain time of day. This ensures a more accurate representation of the wind direction
distribution. For example, 24 of the displayed wind roses can be created, each one
representing an interval of one hour, which represents the distribution of wind direction
in the given time interval, rather than a generalized distribution of one wind rose for
the whole day.

The distribution of speed velocity is considered independently with a speed direction
distribution function. This is possible through fitting the data from each direction
sector. The Weibull distribution or the Histogram distribution can be used to model
the wind velocity data. Figure 2 shows a visualization of the fitted wind velocity
data by histograms, shown in gray, and the Weibull distribution using the maximum
likelihood estimation and the determined scale and shape parameters, represented by
the blue line.

The approach of the bins distribution consists of dividing the global minimum and
maximum wind speed range (e.g. 0 to 40 m/s) into a certain number of equally
large speed intervals, also called bins, e.g. an interval of 1 m/s. The probability
of the incoming wind with a certain speed is thus the relation of the total number

1https://www.fino3.de/
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Figure 1: Measurements of wind directions at the FINO3 research platform at 100
meters height from January 2010 to December 2017. The data is clustered
into 12, 32 and 360 direction sectors [24].

of measurements within the certain velocity interval and the total number of wind
velocity measurements.ƒshape

As for the Weibull distribution, there is no need to save all probability value of each
distribution sector because only a few parameters, which describe the distribution
function, needs to be saved. The following probability density distribution

W(u;λ, k) =

(
k

λ

)
·
(x
λ

)k−1

· exp

(
−
(x
λ

)k)
, (1)

with shape parameter k > 0, the scale parameter λ > 0 describes the Weibull distri-
bution [6].

In order to approximate the density function (1) to the wind velocity data, the
shape parameter k and scale parameter λ needs to be estimated through the maximum
likelihood estimate. The likelihood function is defined as:

L(λ, k;u) = L(λ, k;u0, ..., uN−1) =W(u0, ..., uN−1;λ, k) =
N−1∏
i=0

W(ui;λ, k) (2)

with N number of wind velocity data u0, ...., uN−1. Let wϕ denote the probability
that the incoming wind is from the direction sector ϕ and let the parameter wu denote
the probability of the wind speed interval around u, whereas wϕi

describes the weight
of wind direction ϕi.

The values of the parameters k and λ can be estimated by deriving the logarithm
of the likelihood function (2) according to the parameter k and λ and then equated to
zero, the equation for the scale parameter λ is:

λ =

(
1

N

N−1∑
i=0

xki

) 1
k

, (3)
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Figure 2: Fitted wind velocity data by the Weibull distribution using the maximum
likelihood estimation, represented by the blue line. Data were measured at
the FINO3 platform from January 2010 to December 2017 for the sector at
255◦ to 285◦ at a height of 100 meter. (Source: Richter et al. [24])

and for the shape parameter k:

1

k
+

1

N

N−1∑
i=0

log(xi)−
∑N−1

i=0 xki · log(xi)∑N−1
i=0 xki

= 0. (4)

The derivation of the equation (2) according to parameter k can be solved using
the Newton-Raphson method [4]. Further details about the derivation can be found
in [11]. The Weibull distribution function will be multiplied by the wind velocity loss,
which describes the loss causes by high wind hysteresis, directional restrictions, wind
shearing, turbulence and inclined wind flow.

The day is divided into Ntime time slots with same duration, for which the probability
of wind in Ndir equidistant wind directions ϕi is considered. For this probability w(t, ϕi)
it holds

Ntime∑
t=1

Ndir∑
i=1

w(t, ϕi) = 1. (5)

Furthermore, at each time slot t and for each wind direction ϕi, the wind speed proba-
bility is given by the Weibull distributionWt,ϕi

(uj). Using a discretization with Nspeed

equidistant speed slots, for the resulting wind speed probability wt,ϕi
(uj) at each time
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slot t and wind direction ϕi it holds

Nspeed∑
j=1

wt,ϕi
(uj) ≤ 1. (6)

The inequality is due to the fact that in general not the whole wind speed domain is
discretized, e.g. slow (e.g. ≤ 3 m/s) and very large wind speeds (e.g. ≥ 30 m/s) are
neglected.

In summary, this work models the wind by specifying a probability for each time
interval, direction interval and speed interval.

2.2 Wake model

The representation of the wake is important for the simulation and optimization of
offshore wind farms since the energy production from each turbine depends on the
velocity of the incoming wind. By suitably modeling the wake, the placement of a
wind turbine in the wake of another turbine can be prevented and therefore optimize
the energy production. This Section will present wind turbine properties such as the
PARK wake model.

2.2.1 Wind turbine

The most commonly used wind turbine is the horizontal axis wind turbines (HAWT)
with a rotor on the windward side, which is shown in Figure 3a. With incoming wind,
the rotor begins to rotate, which sets the low-speed shaft in rotational motion. The
gearbox transmits the motion to the high-speed shaft. An attached magnet on the
high-speed shaft rotates inside the generator between coils of conductive wire. Thus,
the electromagnetic induction induces a voltage in the coil and generates electrical
energy. The components for this operation can be seen in Figure 3b.

A horizontal-axis wind turbine has a cut-in speed ucut-in and a cut-out speed ucut-out.
The cut-in speed is the minimum wind velocity to produce consistent power and the
cut-out speed is the maximum wind velocity at which the turbine is not damaged.
In addition to the cut-in and cut-out speed, a wind turbine has a power curve that
indicates the power output and a thrust curve that indicates the thrust coefficient Ct.
The velocity deficit is lower for small values of Ct and grows with an increasing thrust
coefficient.

2.2.2 PARK wake model

The PARK wake model was introduced by Jensen [14] and Katic et al. [15, 16]. It is a
common model used in many software tools. As mentioned before in Section 1.1, the
PARK wake model has a top-hat speed profile. The expansion of the wake is linear
with a form of a cone starting in the wake downwind of a wind turbine as shown in
Figure 4.
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(a) Front view (b) Side view

Figure 3: Figure (a) shows the front-view construction of a horizontal axis wind turbine
with a rotor diameter D and a hub height z (Source: [11]). Figure (b) shows
the components of a wind turbine from the side.

The growth of the wake radius Dw is linear by a factor of 2k with a wake decay
of k = 0.5/ log(z/z0), where z is the hub size and z0 is the surface roughness which
is a constant factor that describes the condition of the foundation site. The surface
roughness is an important parameter for the calculation of the wake decay.

The parameter uk describes the inflow wind velocity at turbine k, ur describes the
decreased wind velocity starting in the down-stream of a turbine where the wind flow
is turbulent. Lastly, uw(x) describes the wake velocity at any point x behind turbine
k with the equation:

uw(x) = uk −
1−

√
1− Ct(uk)(

1 + 2kx
Dk

)2 · `wake · uk = uk −
1−

√
1− Ct(uk)(

1 + x
Dk·ln(z/z0)

)2 · `wake · uk, (7)

where the last fraction describes the velocity deficit inside the wake at any point with
an initial speed uk and rotor diameter Dk of turbine k. The parameter `wake describes
the wake losses caused by internal turbine arrangements, external turbines and future
developments in the vicinity of the wind farm. The parameter Ct(uk) denotes the
velocity-dependent thrust coefficient of the turbine describes a property of the turbine
type and is specified by the wind turbine manufacturer [24].

It is notable that the wake velocity uw(x) at any point in the wake, derived in
equation (7), only applies to turbines in the free wind stream and do not consider the
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Figure 4: Top-view vizualization of the PARK wake [14, 11].

losses of turbines in the downstream area of another turbine. In order to derive a
formula that takes the above aspect into account, the interaction between the turbines
must be considered. Let the turbine Ti be in front of the turbine Tj, therefore turbine
Tj is shaded by the wake from turbine Ti. Equation (7) will be applied if Tj is entirely in
the wake of turbine Ti. Otherwise, a shadowing factor βj ∈ [0, 1] has to be introduced
if turbine Tj is partially shaded by the wake of turbine Ti [7, 28]. With Aj the circular
area of turbine Tj and Ai,wake describing the circular intersection area of the rotor from
turbine Tj with the wake from turbine Ti, the shadowing factor is defined as:

βj =
Ai,wake

Aj

. (8)

The shading factor can be used to calculate the incident velocity of a wind turbine
using the shading factor βj between the initial free stream wind velocity uk and the
wake velocity uw(x) from equation (7) [24]. More details on the derivation of the
equations can be found in [11].

Overall, this wake model can be used to calculate the wake speed uw(ϕ, u, k) for each
turbine k, which depends on the wind direction ϕ, due to the different wake effects,
and the wind speed u.

2.2.3 Modified PARK wake model

The modified PARK wake model [27] is based on the PARK wake model with small
changes in the calculation of the shading factor βj. The calculation of the shading
factor is the ratio between `i,wake of turbine Tj and the rotor diameter D, where `i,wake

describes the length of the rotor diameter affected by the wake of turbine Ti. Therefore,
the shading factor is defined as
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Ti

Tj

Original PARK Modified PARK

Ai,wake

Dj

`i,wake

Figure 5: The calculation of shadowing factor βj from the original PARK and mod-
ified PARK, where the wake of turbine Ti partially shadows turbine Tj.
(Source:[11]).

βj =
`i,wake

Dj

. (9)

Figure 5 shows the difference of the shading area between the PARK wake and modified
PARK wake calculation.

2.3 Power generation model

The generated power of a turbine is denoted by P , which is dependent on the incident
wind speed and the power curve of the turbine type. It is defined as

Pk(u) = Ppower curve(u) · `power, (10)

where the parameter `power denotes the power curve losses. The power curve value
Ppower curve(u) is given by the turbine manufacturer [24] of turbine k, shown in Figure
6. The maximum produced power for turbine k is described by Pmax(k). The whole
power collected by a wind farm for wind direction ϕ and wind speed u is defined as

Pfarm(ϕ, u) =

Nturbines∑
k=1

Pk

(
uw(ϕ, u, k)

)
. (11)

2.4 Economic model

The annual energy production (AEP) describes the total amount of produced electrical
energy over a year and is important for the calculation of other cost, i.e. levelized cost
of energy (LCOE), net present value (NPV) and internal rate of return (IRR), which
will be introduced in the following.

To calculate the AEP of the whole farm, the whole collected power of the wind farm
(11) for all wind direction and wind speeds is needed. Therefore, the gross AEP is
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defined as follows

EAEPgross = (8760h+ 6h) · `wind ·
Ntime∑
t=1

Ndir∑
i=1

(
w(t, ϕi) ·

∫ ucut-out

ucut-in

Wt,ϕi
(u) · Pfarm(ϕi, u) ∂u

)

≈ (8760h+ 6h) · `wind ·
Ntime∑
t=1

Ndir∑
i=1

w(t, ϕi) ·
Nspeed∑
j=1

wt,ϕi
(uj) · Pfarm(ϕi, uj)

 ,

(12)

The multiplication factor is 8760h + 6h because a year has 8760 hours with respect
to leap years an additional 6 hours. The parameter `wind describes the wind velocity
loss mentioned in Section 2.1. The parameter wϕi

denotes the weight for given wind
direction ϕi at time t, where Ntime denotes the number of considered time slots. The
number of wind directions is denoted by Ndir and the number of wind speeds is denoted
by Nspeed. The wind velocity loss `wind mentioned in Section 2.1. The probability of
wind velocity wt,ϕi

(uj) is determined by solving the integral of the Weibull distribution
for each wind velocity slot. This is achieved by using the corresponding cumulative
distribution function,

wt,ϕi
(uj) :=

∫ uj+1/2

uj−1/2

Wt,ϕi
(u) ∂u (13)

= exp

(
−
(
uj−1/2

λϕi

)kϕi

)
− exp

(
−
(
uj+1/2

λϕi

)kϕi

)
.

with equidistant steps uj := ucut-in + (j + 1/2) · ucut-out−ucut-in

Nspeed
. The parameters kϕi

and

λϕi
are the shape and scale parameter from the Weibull distribution Wt,ϕi

(u).
With given gross AEP (12), other important economic values can be calculated which

is needed to evaluate the profitability and efficiency of an offshore wind farm.

Net annual energy production The net AEP considers wind losses through lower
wind speed than expected in the calculation, machine downtime, wear-related inef-
ficiencies and turbine components such as rotor or gearbox in contrast to EAEPgross .
EAEPnet in MWh per year is defined as follows:

EAEPnet = EAEPgross · `performance, (14)

where `performance is the plant performance loss.

Levelized cost of energy The levelized cost of energy (LCOE) describes the mini-
mum cost in Euro per MWh at which the electricity must be sold to reach the break-
even point. The following formula, introduced by Elkinton [9], is defined as

πLCOE =
Cinvest · (1+rrate)Nlifetime ·rrate

(1+rrate)Nlifetime−1
+ CO&M

EAEPnet

, (15)
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with the discount/interest rate rrate including debt, taxes and insurance and Nlifetime

the expected life-time of the project in years.
The annual operation and maintenance cost CO&M is defined as

CO&M = CMWoperation ·
Nturbines∑

k=1

Pmax(k), (16)

where CMWoperation is the cost for operation of 1 MW.
The total investment cost Cinvest includes project management, logistics, labour costs

for laying the cables, cable material cost, transformer substations, decommission, tur-
bines, and turbine foundations. The overall investment cost is defined as

Cinvest = Cproject +Nsubstation · Csubstation + Ccabling +

Nturbines∑
k=1

(
Cturbine + Cfoundation(k)

)
.

(17)

The parameter Cproject denotes the project management cost and Nsubstation ·Csubstation

describes the cost of all substations, which are constant values.
The cabling costs Ccabling describes the material cost for the cables and the labour

costs for laying and connecting the cable into the sea bed, which is defined as

Ccabling = Claying · `total cable +

Ncable types∑
i

Cmateriali · `cablei +Nconnections · Cconnect, (18)

Where the total cable length `total cable, the cable length per cable type `cablei for i ∈
{1, ..., Ncable types} and the number of connections Nconnections are determined through
the cable optimization. The parameter Claying denotes the cable laying cost, Cmateriali

the material cost of cable type i and Cconnect the connection cost.
The individual cost for a turbine is defined as Cturbine, which is a constant value.

The parameter Cfoundation(k) describes the individual costs for the foundation, since
the depth to the sea floor can vary. The calculation is based on the model of Dicorato
et al. [8], defined as

Cfoundation(k) =
(
306 700 e

MW
+ (z(k)− 5) · 5 383 e

MW

)
· Pmax(k), (19)

where Pmax(k) is the maximum produced power, see Section 2.3, and z(k) represents
the sea depth of turbine k.

Annual revenue The annual revenue is the total revenue of the project, including
leap years and is dependent on the given time t without considering other costs. The
value can be calculated with

Crevenue = (8760h+6h)·`wind·
Ntime∑
t=1

Ndir∑
i=1

w(t, ϕi) · πtariff(t) ·
Nspeed∑
j=1

wt,ϕi
(uj) · Pfarm(ϕi, uj)

 ,

(20)
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where Ntime is the amount of time sampling points (see Section 2.1) and πtariff(t) is
the time dependent energy price measured in Euro per MWh.

Net present value The net present value (NPV) is the difference between the net
present value of cash inflows and the outflows over a time period, where a positive
value indicates that the generated projected income exceeds the expected costs. The
following equation for calculation was introduced by Gonzales et al. [12] and is defined
as

CNPV =

Nlifetime∑
t=1

Crevenue − CO&M

(1 + rrate)t
− Cinvest, (21)

where Nlifetime describes the project lifetime.

Internal rate of return The internal rate of return (IRR) describes the average annual
return on an investment. The equation (21) can be used for calculating the IRR, by
replacing rrate with rirr as an unknown and set the formula equal to zero:

Nlifetime∑
t=1

Crevenue − CO&M

(1 + rirr)t
− Cinvest

!
= 0. (22)

For the project to be profitable, the rirr should be larger than the sum of the discount
rate rrate and other risk deficit.

Payback period The payback period is the number of years Npayback after which the
plant begins to generate profits and can be calculated with

Npayback =
log
(

Crevenue−CO&M

Crevenue−CO&M−(Cinvest·rrate)

)
log(1 + rrate)

. (23)

2.5 Wind farms

The data used in this work were collected on the FINO3 research platform on a mea-
suring mast at an altitude of 100 meters from 2010 to 2017. The nearest wind farms
are the Horns Rev, DanTysk and the Sandbank with distances of 50 km, 2 km and
20 km to the met mast. Figure 6 shows the thrust coefficient curve and the power
production curve of the different turbines from the three wind farms. Table 1 shows
the collected data of each wind farm. The three wind farms are used as an input for
the following examinations. The collected data for the wind farms Anholt, Horns Rev
2 and 3, Rodsand 1 and 2 are shown in Table 20 and 21.
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Figure 6: Thrust coefficient curve Ct (left) and the power production curve (right) of
the turbines used on the wind farms Horns Rev 1 (blue), DanTysk (green)
and Sandbank (red). The dashed lines represents the cut-in and cut-out
speed of the corresponding curve.
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(a) Horns Rev 1
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(b) DanTysk
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Figure 7: Three wind farm layouts of Horns Rev 1, DanTysk and Sandbank. The
blue dots represents the wind turbines and the gray dashed lines the side
boundaries. The places marked with a red pentagon represents a restricted
area.

14



Parameter Horns Rev DanTysk Sandbank
Turbine positions see Figure 7a see Figure 7b see Figure 7c
Sub-station positions see Figure 7a see Figure 7b see Figure 7c
Wind data FINO3 (2010–2017) FINO3 (2010–2017) FINO3 (2010–2017)
Wind speed losses `wind 98.5 % 99.2 % 99.5 %
Turbine type Vestas V80-2.0MW Siemens SWT-3.6-120 Siemens SWT-4.0-130
Number of wind turbines Nturbines 80 80 72
Rotor diameter D 80 m 120 m 130 m
Hub height z 70 m 88 m 95 m
Surface roughness z0 0.2 · 10−3 m 0.2 · 10−3 m 0.2 · 10−3 m
Cut-in speed ucut-in 4 m/s 4 m/s 4 m/s
Cut-out speed ucut-out 25 m/s 32 m/s 32 m/s
Wake effect losses `wake 99.9 % 99.9 % 99.9 %
Max power Pmax 2 MW 3.6 MW 4 MW
Power curve losses `power 98.8 % 98.8 % 99 %
Power curve P (u) see Figure 6 see Figure 6 see Figure 6
Ct curve Ct(u) see Figure 6 see Figure 6 see Figure 6
Plant performance losses `performance 92.5 % 92.8 % 93 %
Interest rate rrate 2.75 % 2.75 % 2.75 %
Project lifetime Nlifetime 20 years 20 years 20 years
Operation costs per 1 MW CMWoperation 85 000 e/MW 200 000 e/MW 240 000 e/MW
Annual operation and maintenance cost CO&M 13.6 Mio. e 60.5 Mio. e 69.1 Mio. e
Project management cost Cproject 14 Mio. e 60 Mio. e 70 Mio. e
Number of substations Nsubstation 1 1 1
Substation cost Csubstation 14 Mio. e 60 Mio. e 65 Mio. e
Cable laying cost Claying 555 000 e/km 700 000 e/km 720 000 e/km
Cable material Cmaterial [131, 400] e/m [131, 400] e/m [131, 400] e/m
Connection cost Cconnect 66 000 e/turbine 100 000 e/turbine 120 000 e/turbine
Cable costs Ccabling 47.9 Mio e 110 Mio. e 98.1 Mio. e
Turbine cost Cturbine 1.8 Mio. e/turbine 8 Mio. e/turbine 11.5 Mio. e/turbine
Overall turbine cost NturbineCturbine 144 Mio. e 640 Mio. e 828 Mio. e
Foundation cost Cfoundation 51.6 Mio. e 125 Mio. e 123 Mio. e
Total capital costs Cinvest 272 Mio. e 995 Mio. e 1 118 Mio. e

Table 1: Collected data of the three wind farms Horns Rev, DanTysk and Sandbank.
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2.6 Verification with Openwind

This Section presents the AEP computation results of this wind model, which will
be validated with the results from the Openwind2 software. The simulation will be
carried out with a bins distribution and a Weibull distribution, mentioned in Section
2.2. The verification consists of multiple test cases with different simulation settings.
The different simulation settings aim to test the sub-model correctness of the wind
farm model. Table 2 is listing all validation settings. The surface roughness is equal
1.04617 mm, because it is derived from a wake decay of k = 0.5/ log(z/z0). Figure 8
shows the power curve of the two turbine types, 1 and 2, used in the test cases.

Parameter Specification
Cut-in speed ucut-in 4 m/s
Cut-out speed ucut-out 25 m/s
Speed step size ustep 1 m/s
Turbine Type see Figure 8
Site air density 1.225 kg/m3

Air density lapse rate 0 kg/m3/kg
Number of hours in a year 8766
Hub height z 70 m
Wind measurment height zm 100 m
Surface roughness z0 1.04617 mm
Elevation 0m
Energy Losses 0

Table 2: Settings of the validation test cases for our simulation model and the Open-
wind software.

Basic verification The test cases in this paragraph will examine all sub-model func-
tionalities without considering a wake model in the calculation. With the default
settings, the following test cases are carried out and the results are listed in Table 3.

• Test 1: Consists of one turbine at the site, where the turbine is of type 1 and
type 2.

• Test 2: Consists of two turbines with a distance of 20D between each other. In
this case, we consider turbine type 1 and type 2.

Test case 1 checks whether the power generation model is correct. If the generated
power for all wind speeds of turbine type 1, from cut-in to cut-out, is 1 MW and the
total sum of all wind direction probabilities is 1, the wind farm AEP should be 8.766
GWh for 8766 hours per year. As for case 1 with turbine type 2 the power interpolation
is tested with the original turbine power table.

Test 2 also check if the model gets the same results as OpenWind for two turbines
spaced 20D apart. With this safety distance, we make sure that the wake of the two

2https://aws-dewi.ul.com/software/openwind/
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Figure 8: The power curve of two turbine types used in the verification test cases,
where the cut-in and cut-out speed is marked by the gray dashed lines. The
turbine type 1 only has a power of 1MW for all wind speeds and turbine type
2 has the same power curve as the Vestas V80-2.0MW turbine, mentioned in
Section 2.5.

turbines do not affect each other. Therefore, for test case 2 with two turbines of the
same type and no-wake losses, the models should have a result twice the value of test
case 1.

Overall the basic verification tests show good results. Especially the bins distribution
has a relative error of 0.228·10-16.

Case Turbine Distrib. AEPWindFlower AEPOpenwind Rel. Error

1 Type 1 Bins 8.766 8.766 0.2280·10-16

Weibull 8.68168 8.68031 0.1578·10-3

Type 2 Bins 12.95829 12.96062 0.1798·10-3

Weibull 10.18115 10.18342 0.2229·10-3

2 Type 1 Bins 17.532 17.532 0.2281·10-15

Weibulls 17.36054 17.36062 0.4660·10-5

Type 2 Bins 25.91659 25.94378 0.1048·10-2

Weibulls 19.80440 19.80596 0.7895·10-4

Table 3: AEP verification results of test cases 1 and 2, where the AEP is measured in
GWh and the relative error in %.

Wind direction model verification This paragraph will introduce the results of the
direction model verification. For the number of wind direction sectors Ndir sect and the
number of simulated direction steps Ndir sim, tests are performed for Ndir sect = 36 with
Ndir sim = 12, 20, 30, 36, 50, 72, 144. Table 4 shows the result of this test case.
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Turbine Distrib. Ndir sim AEPWindFlower AEPOpenwind Rel. Error

Type 2 Bins 12 12.90830 12.93886 0.2383·10-2

20 12.90830 12.93887 0.2362·10-2

30 12.90830 12.93887 0.2362·10-2

32 12.90830 12.93889 0.2024·10-2

50 12.90830 12.93887 0.2107·10-2

72 12.90830 12.93886 0.2362·10-2

144 12.90830 12.93887 0.2363·10-2

Type 2 Weibull 12 9.89997 9.90053 0.5637·10-3

20 9.89997 9.90053 0.5637·10-3

30 9.89997 9.90053 0.5637·10-3

36 9.89997 9.90298 0.3039·10-3

50 9.89997 9.90298 0.3039·10-2

72 9.89997 9.90298 0.3039·10-2

144 9.89997 9.90298 0.3039·10-2

Table 4: AEP verification results of test case 3 where the wind direction model is
verified. The AEP is measured in GWh and the relative error in %.

Wake model verification During the third part of the verification process, different
scenarios will be reconstructed, in order to test the wake model. The wake type
settings used for the simulation are the original PARK wake and the modified PARK
wake accordingly for bins and Weibull distributions.

• Test 4: Consists of two turbines, where the two turbines are arranged in such a
way that one turbine is completely shaded by the wake of the turbine in front of
it.

• Test 5: Consists of two turbines, where the two turbines are arranged in such a
way that one turbine is partially shaded by the wake of the turbine in front of it.

• Test 6: Consists of ten turbines, where the ten turbines are arranged in a row
one behind the other. Therefore all nine turbines will be shaded by the wake of
the first one in the row.

• Test 7: Simulation of the wind farms DanTysk, Horns Rev 1 and Sandbank with
given settings mentioned in Table 1. Figure 7 illustrates the turbine layout of
each wind farm.

Table 5, 6 and 7 shows the result of the scenarios with different wake types and
Table 8 shows the result of the existing wind farms. For test 4 (fully shaded), the
AEP for different wake models should be identical, since one turbine is fully shaded
by the wake from the turbine in front of it. The results show that this is the case
for different wake models, which proves the correctness of the wake loss calculations
of our model. The results for test case 5 (partially shaded) are different for PARK
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and modified PARK because the area of partial overlap is calculated differently. The
partially shaded scenario is illustrated in Figure 10. As for test cases 4, 5, and 6
with turbine type 1, the values did not vary between different wake models, because
the power production of the turbine is always 1 MW for all wind speed. During the
evaluation of the results of the individual wind farms, it became apparent that the
Weibull distribution achieves better results on average. Nevertheless, the differences
are not great, since the worst relative error is in the 10−2 range and the best in the
10−3 range.

Figure 9: Illustration of fully shaded turbine from test case 4. (Source: [11])

Figure 10: Illustration of partially shaded turbine from test case 5. (Source: [11])

Figure 11: Illustration of ten turbine arranged in a row from test case 6. (Source: [11])
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Turbine Distrib. Wake Model AEPWindFlower AEPOpenwind Rel. Error

Type 1 Bins PARK wake 17.532 17.532 0.2282·10-15

modified PARK 17.532 17.532 0.2282·10-15

Weibull PARK wake 17.36054 17.36054 0.0207·10-5

modified PARK 17.36054 17.36054 0.0207·10-5

Type 2 Bins PARK 25.00310 25.00777 0.1868·10-3

modified PARK 25.00310 25.00777 0.1868·10-3

Weibull PARK 19.47900 19.48199 0.1535·10-3

modified PARK 19.47900 19.48199 0.1535·10-3

Table 5: AEP verification results of test case 4, where 1 of 2 turbines are fully shaded,
for different wake models. The AEP is measured in GWh and the relative
error in %.

Turbine Distrib. Wake Model AEPWindFlower AEPOpenwind Relative Error

Type 1 Bins PARK 17.532 17.532 0.22815·10-15

modified PARK 17.532 17.532 0.22815·10-15

Weibull PARK 17.36054 17.33661 0.3262·10-2

modified PARK 17.36054 17.33660 0.1381·10-2

Type 2 Bins PARK 26.04685 26.14252 0.3659·10-2

modified PARK 25.91726 25.99185 0.2869·10-2

Weibull PARK 19.63052 19.69897 0.3475·10-2

modified PARK 19.63734 19.66202 0.1255·10-2

Table 6: AEP verification results of test case 5, where 1 of 2 turbines are partially
shaded, for different wake models. The AEP is measured in GWh and the
relative error in %.

Turbine Distrib. Wake Model AEPWindFlower AEPOpenwind Relative Error

Type 1 Bins PARK 87.66 87.66 0.11408·10-12

modified PARK 87.66 87.66 0.11408·10-12

Weibull PARK 86.80271 86.80312 0.4774·10-5

modified PARK 86.80271 86.80312 0.4774·10-5

Type 2 Bins PARK 102.24431 103.11246 0.8419·10-2

modified PARK 112.68811 112.77908 0.8066·10-3

Weibull PARK 93.93617 94.09301 0.1666·10-2

modified PARK 95.19976 95.70061 0.5233·10-2

Table 7: AEP verification results of test case 6 for different wake models, where ten tur-
bines are arranged in a row, for different wake models. The AEP is measured
in GWh and the relative error in %.
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Powerplant Distrib. Wake Model AEPWindFlower AEPOpenwind Relative Error

DanTysk Bins no WAKE 1 371.47149 1 372.21147 0.5393·10-3

original PARK 1 371.47149 1 372.21076 0.5387·10-3

modified PARK 1 371.47149 1 372.21076 0.5387·10-3

Weibull no WAKE 1 371.47149 1 373.35886 0.1374·10-2

original PARK 1 371.47149 1 372.98347 0.2101·10-2

modified PARK 1 371.47149 1 372.15217 0.4961·10-3

Horns Rev 1 Bins no WAKE 656.99664 657.33217 0.5104·10-3

original PARK 656.99664 657.33102 0.5087·10-3

modified PARK 656.99664 657.33102 0.5087·10-3

Weibull no WAKE 656.99664 657.97589 0.1488·10-2

original PARK 656.99664 658.37715 0.2010·10-2

modified PARK 656.99664 657.32456 0.4989·10-3

Sandbank Bins no WAKE 1 415.12707 1 415.86999 0.5247·10-3

original PARK 1 251.87076 1 252.48372 0.4895·10-3

modified PARK 1 286.06861 1 286.71309 0.5009·10-3

Weibull no WAKE 1 342.47956 1 344.03370 0.1156·10-2

original PARK 1 184.56807 1 185.15599 0.4961·10-3

modified PARK 1 217.10661 1 217.74000 0.5202·10-3

Table 8: AEP verification results of DanTysk, Horns Rev 1, and Sandbank wind farms
for different wake models (test case 7). All the settings of the simulation are
listed in Table 1, if not otherwise noted. The AEP is measured in GWh and
the relative error in %.

2.7 Configuration of the simulation model

This section presents the configuration of the simulation, which determines the setting
for the number of wind directions Ndir and wind speeds Nspeed to get precise results.
The case studies is carried out for Sandbank, DanTysk and Horns Rev 1.

For each of the wind farms, the number of wind directions is first examined, based
on wind data with 360 wind sectors. Hereby the relative AEP error is decisive for the
choice of the number of wind directions. The values to be examined for the number of
wind directions start from 12 to 180 with a step size of 4 in between.

After a reasonable Ndir is determined, the number of wind speeds Nspeed is examined
based on the number of wind directions. Consideration is given to values that result
in a small relative AEP error, but not causing a too small step size, which results in a
longer run time. The results are set as default values for the number of wind directions
and wind speeds of the respective wind farm.

The relative error of the respective number of wind directions is illustrated in Figure
12 for the Weibull and bins distribution of the three wind farms. As shown in the
graph, the relative error converges to zero from a number of 110 wind directions for
all powerplants, which is why the Ndir = 120 is set as default for further calculations.
Additionally, Figure 13 shows the relative error of the respective number of wind
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speeds, both for Weibull and bins distributions based on Ndir = 120. Based on the
results, the number of wind speeds is set as Nspeed = 56, resulting in a wind speed
step size of 0.5 m/s with 4 and 32 as cut-in and cut-out speed for the DanTysk and
Sandbank wind farm. Compared to the other two wind farms, the Vestas V80-2MW
turbine placed on Horns Rev 1 has a cut-in and cut-out speed of 4 and 25 m/s. Thus
the step size is 0.375 m/s, which is smaller than the step sizes of the other two wind
farms. Although the relative errors are smaller at a higher number of wind speeds, we
choose Nspeed = 56, because otherwise it leads to very long computing times.

In summary, the individual models, e.g. wind, wake, power generation and economic
model, of the offshore wind farm were presented. The wind farm settings were checked
and presented in Table 1. Lastly, the models were validated against the OpenWind
software and a suitable number of wind directions and wind speeds were determined
for the following investigations.
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Figure 12: Relative error defined as |AEPi−AEP1000|/AEP1000 for the respective num-
ber of wind directions, based on the Sandbank (blue line), DanTysk (green
line) and Horns Rev 1 (red line) wind farm. The parameter AEPi denotes
the AEP of Ndir = i.
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Figure 13: Relative error defined as |AEPj−AEP200|/AEP200 for the respective number
of wind speeds, based on the Sandbank (blue line), DanTysk (green line)
and Horns Rev 1 (red line) wind farm. The parameter AEPj denotes the
AEP of Nspeed = j.

3 Wind turbine layout optimization

In this section we address different optimization algorithms to find an optimal wind
turbine layout for offshore wind farms. Firstly, Section 3.1 introduces the pattern
method for layout optimization of wind turbines and presents pattern extensions. The
extensions will be discussed in later work and examined whether they contribute to the
improvement of positioning. Finally, Section 3.2 introduces a multi-step optimization
approach.

The goal of the presented model is to maximize the AEP, NPV or IRR or to mini-
mize the LCOE or payback period. This can be achieved by determining the optimal
positions of wind turbines for offshore wind farms with a maximum energy production.

3.1 Pattern for optimal wind turbine placement

The pattern-based method works with geometric patterns, which are defined by a small
set of parameters. The layout of the wind turbines can be found through the optimiza-
tion of parameters. This results in a smaller search domain instead of optimizing each
coordinate of a wind turbine.
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3.1.1 Slanted grid pattern
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Figure 14: Illustration shows the slanted grid pattern. The angle θrotation describes
the row rotation and θshearing describes the column shearing. The distance
between rows and between columns is denoted by `rowsD and `colsD. The
site borders are represented by the gray dashed lines.

Offshore wind farms commonly use a standard grid layout, like the London Array3

offshore wind farm where the turbines are arranged in rows in front of each other.
The slanted grid pattern has a grid-like layout and is tilted at the origin by an angle
θrotation so that the wind turbines are facing the main incoming wind direction θmain wind.
The distance between all parallel rows and columns is defined by `rowsD and `colsD.
The shearing angle of the columns is defined by the parameter θshearing. Both angle
parameters have a column distance and row distance intervals are defined as

θrotation ∈ [θmain wind, θmain wind + 180◦), (24)

θshearing ∈ [0◦, 180◦),

`rows ∈ [1, 10),

`cols ∈ [1, 10).

Figure 14 shows an illustration of the slanted grid. The calculation of the positions
can be calculated through intersecting lines. Given the parameters θrotation, θshearing,
`rowsD and `colsD, row and column lines can be calculated. Let the parameter lcols,i

denote the i-th column line and lrows,j the j-th row line. The pattern starting point
is defined as (xc, yc)

ᵀ, which is equals (0, 0)ᵀ. For the i-th line ltype,i of type row or
column, the starting point (xstart

i , ystart
i )ᵀ and ending point (xend

i , yend
i )ᵀ of the line is

defined as

3http://www.londonarray.com/
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(
xstart
i

ystart
i

)
=

(
xc + i · xstep size

yc

)
(25)(

xend
i

yend
i

)
=

(
xc + xmax · cos(θshearing)
yc + ymax · sin(θshearing)

)
. (26)

The parameters xmax and ymax describes the length starting from the pattern starting
point to the upper right site corner. Parameter xstep size describes the step size between
the starting points of line i− 1 and i, where the step size of row lines with d = `rowsD
and column lines with d = `colsD is defined as

xstep size =
d

sin(θshearing)
. (27)

With starting and ending points, the line ltype,i(x) = m ·x+c of the type row or column
is defined as

m =
ystart
i − yend

i

xstart
i − xend

i

, c = ystart
i ·m− xstart

i . (28)

For the i-th column line and the j-th row line, the coordinate of the intersection point
of both lines is defined as (

xi,j
yi,j

)
=

( cj−ci
mi−mj

mi · xi,j + ci

)
. (29)

This calculation will be carried out for all lines in order to get the positions on the
site. Table 9 shows the parameters for optimization.

Parameter Definition

`rows distance along vertical direction

`cols distance along horizontal direction

θrotation rotation angle of the rows

θshearing shearing angle of the columns

Table 9: Parameters for optimization of the slanted grid pattern.

3.1.2 Hexagonal grid pattern

In the hexagonal grid, the wind turbines are positioned at the corners of the hexagons
and are tilted at the origin by an angle θrotation so that the wind turbines are facing the
main incoming wind direction. The side length of each hexagon is denoted by `distD,
where `dist is the side distance factor. The intervals of both parameters are

θrotation ∈ [θmain wind − 60◦, θmain wind + 60◦), (30)

`dist ∈ [1, 10),
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(a) Original hexagon layout with hexagon side
distance `distD and rotation angle θrotation.
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(b) Extended hexagon layout with applied
stretching parameter νstretch > 1 and ro-
tation angle at the origin θrotation.

Figure 15: Illustration shows the original hexagonal grid pattern on the left the ex-
tended hexagon pattern on the right. The site borders are represented by
the gray dashed lines. The gray position in the left Figure represents the
center of the hexagon and the green circled position is the first position of
the hexagon.

where θmain wind is the angle of the main incoming wind direction. The rotation angle is
only ±60◦ from θmain wind because bigger values than 60◦ will cause repeating patterns.
The pattern does not position wind turbines inside each hexagon to counteract wake
effect deficits on the incident wind speed of turbines. Figure 15a shows the original
hexagonal grid layout and Figure 15b shows the layout with the extension of the
stretching parameter.

Let position (xc, yc)
ᵀ be the hexagon center position and position (xk, yk)ᵀ the k-th

position of the hexagon. The hexagon center is important for the calculation of the
layout, because it is needed to calculate the coordinates of the corner positions. The
Cartesian coordinates of the k-th position of a hexagon with center position (xc, yc)

ᵀ

can be expressed by (
xk
yk

)
=

(
xc + `dist · cos(αk)
yc + `dist · sin(αk)

)
, (31)

where the parameter αk = (π/180◦) · (30◦ + 60◦ · k) is the radian of position k with
k ∈ {0, 1, 2, 3, 4, 5}. The first position of a hexagon is (x0, y0)ᵀ, which is shown in
Figure 15a as the green circled position. Each hexagon with `distD side length has a
width of whex =

√
3 · `distD and height of hhex = 2 · `distD. With given information the

horizontal distance between adjacent hexagon centers is whex and the vertical distance
between adjacent hexagon centers is h ·3/4. The whex and hhex parameters can be used
to calculate the coordinates of other surrounding hexagon center positions.
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Additionally, we extend the hexagonal grid with a stretching parameter νstretch. For
the original hexagonal grid pattern it means that νstretch = 1. For other values of
νstretch not equal to one, the pattern will be stretched or compressed. The stretched
coordinates (x′k, y

′
k)ᵀ of position (xk, yk)ᵀ are defined as(
x′k
y′k

)
=

(
xk

νstretch · yk

)
=

(
xc + `dist · cos(αk)

νstretch (yc + `dist · sin(αk))

)
. (32)

With given rotation angle θrotation, the rotated coordinates (x′′k, y
′′
k)ᵀ are defined as(

x′′k
y′′k

)
=

(
x′k · cos(θrotation)− y′k · sin(θrotation)
y′k · cos(θrotation) + x′k · sin(θrotation)

)
. (33)

Table 10 shows the parameters for optimization.

Parameter Definition

`dist the side length of a hexagon

θrotation the rotation angle of the hexagon around the origin

νstretch stretching factor

Table 10: Parameters for optimization of the hexagon grid pattern with extended
stretching parameter.

3.1.3 Spiral grid pattern

The spiral pattern, also called a biomimetic pattern, was proposed by Noone et al. [21]
in 2012. This pattern was developed for heliostat layout optimization, but can also be
used for wind turbine layout optimization.

The spiral pattern is based on the degree of closeness of its positions and the decrease
in density from the center to the outside is continuous. The k-th position can be
determined by the polar coordinate (αk, rk) for each setting of the scaling factor a and
the density factor b. Both parameters have an interval of

a ∈ [100, 2000] (34)

b ∈ (0, 1].

The angle of the k-th position is defined as

αk = 2πk

(
1 +
√

5

2

)−2

, (35)

where ϕ = (1 +
√

5)/2 is the golden ratio. The golden ratio does not need to be
optimized according to the research of Noone et al. [21], because small changes can
cause different arrangements. The radius is defined as rk is defined as

rk = akb. (36)
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(a) Original golden spiral pattern.
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(b) Extended golden spiral pattern with ellip-
tic stretching parameter νstretch > 1

Figure 16: Illustration shows the original golden spiral pattern on the left and extended
on the right. Parameter αk describes the angle and rk the radius from the
origin to the k-th position. Figure 16b shows the elliptic stretched golden
spiral with the Cartesian coordinates (x′k, y

′
k)ᵀ of position k and νstretch > 1.

The site borders are represented by the gray dashed lines.

The spiral pattern is extended by an elliptical stretch parameter νstretch. For the
original spiral pattern it means that νstretch = 1. For other values of νstretch not equal
to one, the pattern will have a vertically extended or compressed elliptic form. Figure
16 shows the difference between the original and the extended pattern. Given the polar
coordinate (αk, rk) of position k and the center of the spiral (xc, yc)

ᵀ, the Cartesian
coordinates are defined as (

xk
yk

)
=

(
xc + rk · cos(αk)
yc + rk · sin(αk)

)
. (37)

By elliptically stretching the spiral pattern on the y-axis with the stretch parameter
νstretch, where the spiral center is at the origin, the new coordinates of the position k
are defined as

(
x′k
y′k

)
=

(
xk

νstretch · yk

)
=

(
rk · cos(αk)

νstretch · rk · sin(αk)

)
. (38)

Table 11 shows the parameters for optimization. The parameter ω describes the
percentage of the maximal scaling value amax. The maximum scale is determined
based on the density factor b by bisection because a higher density leads to larger
distances between the spiral windings and therefore the size of the spiral is scaled by
amax to fit the given number of turbines on the field. The introduction of ω should
make it possible to refine the scaling factor a = ω · amax even though the maximum

28



scaling has been determined and thus to test the values between 0.8 ·amax and 1.0 ·amax

with nresolution steps to find the best objective value.

Parameter Definition

b exponential density factor

ω percentage of maximal scaling factor amax

νstretch elliptic stretching factor

Table 11: Parameters for optimization of the spiral pattern with extended elliptic
stretching parameter.

3.1.4 Contracted honeycomb grid pattern
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Figure 17: Illustration shows the contracted honeycomb pattern. The site borders are
represented by the gray dashed lines.

The contracted honeycomb pattern comes from logistics planning introduced by
Carlsson et al. [5]. The idea of this layout is based on the introduction of a center,
which is in this case the center of the wind farms site, and local distributions points.
The goal is to minimize the distance of all local distribution points to the center point
as well as the distance between each local distribution points in logicstic planning.
Applied to the optimization of turbine layouts, the goal is to reduce the distance to
the center, while maintaining the safety distances between the individual positions,
and in addition to have a good distribution of positions across the field to achieve
good AEP results. The contracted honeycomb pattern is derived from a regular grid
layout with equidistant distances. The distance depends on the dimension parameter
d, because it influence the position values of the regular grid. The coordinates xi,j
and yi,j of each column i and row j will have an interval of [−d, d]. Additionally, the
parameter npositions describes the number of positions in each row and column.
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In order to determine the new contracted positions, the complex number of the old
position needs to be determined. For position (xi,j, yi,j)

ᵀ of column i and row j the
complex number is defined as

zi,j = xi,j + yi,j · ι. (39)

With the complex number the new contracted position is defined as(
x′i,j
y′i,j

)
=

(
Re(z1.333)
Im(z1.333)

)
. (40)

If the center is defined as (xc, yc)
ᵀ, the coordinate will be shiftet to the center position.

Figure 17 shows the contracted honeycomb pattern. Table 12 shows the parameter
for optimization.

Parameter Definition

d dimension factor

Table 12: Parameter for optimization of the contracted honeycomb.

3.1.5 Optimal parameter determination

In order to optimize the patterns, methods are presented which are used to find an
optimal parameter setting for the pattern parameters, which needs to be optimized.
The methods will be a combinatorial search method and the downhill simplex method.
All methods are executed on a fixed predefined parameter range, i.e. a minimum and
maximum value range must be specified for all pattern parameters. Possible parameter
ranges of the individual patterns are examined in Section 4.1. In the following, all
methods will be introduced.

Combinatorial search method The combinatorial method is based on simulating
each combination of the parameter settings, which describes the pattern, during the
optimization process, and in the end, the best result of all combinations will be the
output. The combination of the parameter settings depends on the given parameter
intervals, which are presented in the introduction in Section 3.1.

In order to determine the possible combinations for given parameter intervals, the
step size of each interval needs to be identified. The step size is a fraction of the
combinatorial resolution nresolution. The parameter nresolution can be set by the user. It
should be noted that if nresolution is too small, the number of combinations to be checked
is small, which reduces the probability of finding a good combination. If nresolution is
chosen too large, the run-time of this optimization is higher. If there is n parameters
to be optimized in the pattern method, the combinatorial method has to simulate n10

combinations.
For the combinatorial algorithm, the termination criterion is simply when all com-

binations have been simulated and the set of positions with the best objective value
will be the output.
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Downhill simplex method The downhill simplex, or Nelder-Mead method [20], is a
gradient-free optimization algorithm and finds the parameter settings to optimize the
objective function f . As the name implies, the method works with a simplex that is
spanned by N + 1 points in the search space S if the parameter space has a dimension
of N . Each point P0, ..., PN represents a coordinate set of parameters influencing the
pattern-based method. These N+1 points will be evaluated by f and in each iteration
of the method, the point with the worst evaluation will be replaced with a new point
until it converges and reduces its space towards a local optimum. The new point will be
determined by a set of heuristic operations called reflection, contraction, expansion, and
shrinking, which will be introduced in the following. Figure 18 shows a visualization
of the operations from the algorithm. The method is not known to converge very
quickly but is simple and relatively robust. This is because by avoiding the use of a
derivation, the method can avoid the pathological behaviour of a derivation in case of
discontinuities or other disadvantages. The disadvantage of the algorithm is that for
many parameters exponential growth of combinations can be found. In addition, the
global optimum will probably not be found, because only single fixed discrete points
are tried. In this case, the quality of the optimum depends strongly on discretization
parameters.

1. Determine Ph, Pl and Pm.

2. Calculate the reflection Pr of Ph at the centroid Pm with

Pr = Pm + ρ(Pm + Ph), (41)

where ρ is a positive constant value called reflection coefficient.

3. If Pr has a better evaluation value yr than the second worst point but not better
than Pl, then Ph will be replaced with Pr and the procedure will start a new
iteration from step 1.

4. However, if the reflected point Pr has a better evaluation value yr than yl, i.e.
yr < yl, then the expansion of Pr will be determined by

Pe = Pm + γ(Pr − Pm), (42)

where γ > 1 is the expansion coefficient.

• If for the expansion point Pe, f(Pe) < f(Pl), then Ph will be replaced by Pe

• Otherwise, Ph will be replaced by Pr

A new iteration will be started from step 1 after updating Ph.

5. If till now the procedure have not been restarted, the evaluation value of Pr

must be greater than the second highest evaluation value Ph−1 of all N points.
Therefore, the contraction operation will be applied

Pc = Pm + β(Ph − Pm), (43)
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P0 = Ph

P1

P2 = Pl

Pm

Pr

Pe

(a) Initial simplex with points P0, P1, P2,
the reflection point Pr with reflection
coefficient ρ = 1 and expansion point
Pe with expansion coefficient γ = 2.

P0 = Ph

P1

P2 = Pl

Pm

Pr

Pe

Pc

(b) Contraction point Pc with contraction
coefficient β = 1/2 used on Ph.

P0 = Ph

P1

P2 = Pl

Pr

Pe

Pc

P̂c

P̂1

(c) Shrunken simplex with points Pl, P̂1 and
P̂c, with shrinking factor σ = 1/2.

Figure 18: Illustration of the operations reflection, expansion, contraction and shrink-
ing of the downhill simplex algorithm.

where β < 1 is the contraction coefficient. If f(Pc) < yh then Ph will be replaced
by Pc and a new iteration will be started from step 1.

6. The shrinking operation is used when the simplex does not show any improvement
regarding the evaluation values, which can be caused by the fact that the point
with the best evaluation is near the local optimum. Therefore, the shrinking
operation reduces the space of the simplex by updating all points, except from
Pl, towards the local optimum. The shrinking operation applied to all points Pi,
with i 6= l, is as follows:

Pi = Pl + σ(Pi − Pl), (44)

where σ < 1 is the shrinking factor.

7. The termination criterion is satisfied if either a maximum number of iteration is
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reached or the following convergence inequality is valid:√∑N
i=0

(
yi − f

)2

N + 1
< ε. (45)

The variable f is the arithmetic mean of all f(Pi) from the current simplex,
whereas ε ≥ 0 is a small constant.

The convergence equation (45) expresses that if the sample standard deviation of
the function values of the current simplex falls below a specified tolerance ε, the op-
timization process terminates. As a result, the point P ∈ S with the smallest value
f(P ) = mini(yi) in the latest simplex will be returned as a possible local optimum.
More information about the downhill simplex can be found in [20].

The algorithm needs to be initialized with the parameter bounds that describe the
specific pattern, which is to be optimized. Since the parameter bounds for each pattern
are examined in Section 4.1, the downhill simplex will be initialized with same param-
eter bounds. In this case, the mean values from the parameter interval are selected as
the start parameters.

In the following, the maximum number of iterations as well as the tolerance value
ε will be determined. Figure 19a, 20a and 21a shows the AEP in GWh determined
by the downhill simplex algorithm in each iteration. Figure 19b, 20b and 21b shows
the corresponding sample standard derivation value (45) of the simplex set at the
corresponding iteration. For all patterns of the individual wind farm, it can be seen that
the AEP values usually show no improvement after the first iteration. The similarity
rate mostly starts to fall to zero after the second iteration, where it depends on the
respective pattern. However, the downhill simplex for the hexagon and slanted grids
converges towards a local optimum for all three wind farms, as can be seen from
the yellow and green lines. This is concluded from the fact that the other patterns
like the spiral and contracted honeycomb grid achieve a much better AEP. For this
reason, one can consider using a multi-start downhill simplex, where a new simplex
with randomly generated starting points is generated if the inequality (45) is satisfied,
and the computations with the newly generated points start again. All results are
stored and after reaching the maximum iteration, the algorithm aborts and returns
the best result of all runs. Another possibility to avoid converging towards a local
optimum would be to use a simulated annealing algorithm as parameter determination.
Simulated annealing is less prone to local optima because there is no deterministic
progress towards the steepest descent/ascent. After all, values which do not show the
best improvement can be accepted as well.
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(b) Sample standard derivative (similarity).

Figure 19: AEP and similarity (45) obtained by the downhill simplex applied to the
individual patterns on the Sandbank wind farm. The circle marks represent
one iteration.
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Figure 20: AEP and similarity (45) obtained by the downhill simplex applied to the
individual patterns on the DanTysk wind farm. The circle marks represent
one iteration.
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Figure 21: AEP and similarity (45) obtained by the downhill simplex applied to the in-
dividual patterns on the Horns Rev 1 wind farm. The circle marks represent
one iteration.

3.2 Multi-step optimization using local search

A multi-step optimization strategy combines different optimization algorithms by ex-
ecuting them one after the other. The idea of the strategy is to first apply a global
optimization algorithm and then refine the result with a local optimization algorithm.

In 2018, Elkinton et al. [10], presented detailed research on the usage of optimization
algorithms for offshore wind farms. In the paper a multi-stage optimization approach
was presented, where first a generic algorithm and then a greedy heuristic was applied.
The combination of both algorithms led to a minimization of costs, which was the goal
of the objective function. Another implementation was presented by Abdelsalam et al.
[1] in 2018, wherein the first step a generic algorithm was used and in the second a local
search was performed to refine the result of step one. This thesis will also examine and
test a multi-step optimization approach, where the first step is a global optimization
algorithm, e.g. a pattern-based method, and the second step a local optimization
approach, e.g. a variable-neighborhood descent algorithm.

The result of the pattern method will be a turbine layout defined by the optimized
parameters determined by the downhill simplex algorithm presented in Section 3.1.5.
Figure 22 shows the structure of the multi-step optimization algorithm. In the following
sections, this thesis examines whether the given parameter assignments lead to an
optimal solution and whether the multi-step optimization achieves better results than
the individual algorithms.

This section presents a local search algorithm used in the optimization process of the
offshore wind farm model. With a given layout of wind turbines, which have already
been calculated by the optimization steps before, the result can be refined by the local
search.
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Pattern Optimization Local Search Optimum

Figure 22: Structure of the multi-step optimization algorithm.

3.2.1 Variable-neighborhood descent algorithm

The presented local search algorithm belongs to the class of variable-neighbourhood
descent algorithms, which was introduced in 1997 by Mladenovic et al. [18]. The local
search heuristic examines several neighborhood structures in a deterministic way. The
optimization is based on the principle that different neighborhood structures usually
do not have the same local minimum. Therefore, the problem of converging towards
local optima can be solved by a deterministic modification of the neighborhoods. If all
neighborhoods of the current solution have been examined, the best solution among
all neighborhoods are chosen as the new solution set if there is an improvement. These
examinations happens repeatedly for the solution set until no improvement can be
detected.

The neighborhood of the following algorithm is based on a circular grid method. The
algorithm determines for each turbine of a given set whether a better position exists at
a given distance that would provide a better objective function value than the current
turbine position. This would also improve the evaluation of the whole set.

Algorithm For a given initial turbine position, every turbine from the set is examined,
with radially arranged grid positions being calculated for each turbine. For a c number
of circles around a turbine, n possible new turbine positions are calculated on each
of the circles. Between each circle grid there is a distance of `radialD, where D is the
rotor diameter and `radial is the radial distance factor. Figure 23 shows a circular grid
calculation of the described local search. For the i-th position on the j-th circle, with
original turbine position (x0, y0)ᵀ, the Cartesian coordinates are defined as(

xi,j
yi,j

)
=

(
x0 + j · `radial ·D · cos(αi)
y0 + j · `radial ·D · sin(αi).

)
(46)

The parameter αi,j describes the radian of the i-th position out of n positions on the
circle and is defined as

αi =
2πrad

n
· i. (47)

This calculation is performed for each turbine from the set of positions. Table 13 shows
the parameter for optimization.

By examining a turbine, c ·n new positions are determined and its objective value is
calculated. The current examined turbine position is then replaced by the best possible
position, which can be one of the newly calculated grid positions or the original position.

Each iteration starts with a turbine order that determines which turbines are exam-
ined one after the other. After all turbines from the wind farm have been examined, a
new iteration starts. The turbine order is determined anew in each iteration.
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Figure 23: Illustration of the local search circle-grid calculation with the current tur-
bine position represented in blue. The dashed circles c1,c2 and c3 around
the turbine represent the circular grids, with a setting of c = 3. The radial
distance is defined as `radialD with factor `radial = 1. Each circle is equipped
with n test positions shown as red dots p1, p2, ..., p8, with a parameter setting
of n = 8. The gray dots represent the other turbines on the site.

Parameter Definition
c number of circular grids
n number of grid positions
`radial radial distance factor

Table 13: Parameters for optimization of the circular local search algorithm.

Sorting There are several ways to sort the turbine order. On the one hand you
can sort the order by ascending or descending individual objective score. On the other
hand, the order can be randomly sorted or sorted by the minimal distance of one turbine
to another. Figure 24 shows the AEP improvement in GWh for during the optimization
process, with two different parameter settings (a) c = 1, n = 4, `radial = 1.4 and (b)
c = 3, n = 7, `radial = 1.0. Figure 24a shows that the descending order has the best
AEP improvement followed up with the ascending order. However, the progressions
in Figure 24b for all sorting methods except for the ascending order, do not differ
conspicuously. From this it can be concluded that regardless of the parameter settings,
the AEP improvement is almost the same for all orders. Since the order does not have
a significant influence on the AEP improvement, the order of ascending AEP is chosen
as the default sorting method.
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(a) c = 1, n = 4 and `radial = 1.4
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(b) c = 3, n = 7 and `radial = 1.0

Figure 24: AEP improvement in GWh for the number of turbines checked. Figure (a)
and (b) shows two different parameter settings. Each of the plots illustrates
four different sorting methods of the examination order of the turbines in
different colored lines.

Termination In each iteration all turbines are examined by the circular grid calcula-
tion. When all turbines have been checked, the next iteration starts or the optimiza-
tion aborts based on the termination criterion. The termination criterion is based on
a minimum number of iterations nmin it and a maximum number of iterations nmax it.
Additionally, it is checked whether a convergence criterion is satisfied within this min-
imum and maximum number of iterations. Let us call the current iteration i and the
second last iteration i − 2. The algorithm converges if the relative objective value of
the iteration i and i− 2 is smaller than a minimum improvement value of ε, expressed
as

OBJi −OBJi−2

OBJi−2

< ε, (48)

for i ≥ 2. In other words, the objective value did not improve significantly from itera-
tion i− 2 to iteration i with Nturbines many turbine examinations and thus converges.
As for i < 2, the objective value OBJ0 will be considered instead of OBJi−2. The idea
behind considering the penultimate iteration is to display the decreasing course more
smoothly and to better recognize the convergence behavior of the whole optimization
process.

The determination of the convergence rate ε is important because it ensures that the
generated results are nearly optimal and no great improvements are to be expected in
the following iterations. If the maximum number of iterations has not been reached
and the convergence condition (48) is fulfilled, the optimization is aborted. In the
following we will examine which ε should be chosen, so that we can say that from this
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Figure 25: AEP improvement of the local search algorithm for four different parameter
settings. The solid course represents the simulations before and the dashed
lines represent the Simulations after the convergence criterion is satisfied.
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Figure 26: The convergence rate (OBJi−OBJi−2)/OBJi−2 for four different parameter
settings. The dots of the corresponding line represents the start of a new
iteration. The solid lines show the course before and the dashed lines show
the course after reaching ε = 0.2 · 10−3.

value on there should be no more great improvements. Additionally, the number of
nmin it and nmin it is derived from the examination.

Figure 25 shows the AEP improvement and Figure 26 shows the convergence rate
of four different parameter settings. The convergence rate is defined as (OBJi −
OBJi−2)/OBJi−2. In consideration of the results, the minimum improvement value is
chosen as ε = 0.2 · 10−3, as no significant improvement in AEP is seen in the Figure 25
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starting from the dashed lines onwards. The dashed lines represents the course after
the termination criterion (48) for ε = 0.2 · 10−3 is satisfied.

Additionally, the default number of minimum iterations and maximum iteration is
set as nmin it = 2 and nmax it = 10. The reason for these numbers are based on the fact
that in the convergence rate the objective value of the penultimate iteration i − 2 is
always considered and for the iterations i = 1, 2 the objective value of OBJ0 is used as
the reference. From this it follows that a minimum of 2 iterations should be guaranteed,
as the actual convergence is represented starting by i = 2. The maximum number of
iterations is set to 10, because with the previous 4 sample parameter settings 3 of 4
after the 5-th iteration and 1 of 4 after the 8-th iteration, the convergence criterion
has become effective. With nmax it = 10 it is intended to ensure that nearly all settings
converge within the maximum amount of iterations, but the optimization process will
still terminate at some point. Table 14 shows the termination parameters.

Parameter Definition
nmin it minimum number of iterations
nmax it maximum number of iterations
OBJi objective value of iteration i
ε minimum improvement value

Table 14: Termination parameters of the local search method.

Analysis of possible parameter settings Based on the construction of the algorithm
one can expect higher values for the number of circular grids c and positions n will lead
to better AEP improvements than smaller values of c and n. Nevertheless, for c circles
and n positions, a turbine check will perform c · n simulations and one iteration will
perform c ·n ·nturbines simulations. This leads to the implication that with an increasing
value for c and n the run-time increases accordingly. Although a small number of c
and n is estimated not to provide the best overall AEP improvement, it is reasonable
to assume that the AEP improvement per simulation performed will be better than
for higher values of c and n.

Therefore, it is suggested to construct a double local search and considering two
optimizations with two different parameter settings in order to achieve both a fast run-
time and almost optimal results. The first step of the overall optimization should be
with a parameter setting which results in a fast run-time and a good AEP improvement
per simulation. The second step should consider a parameter setting which leads to
the best overall AEP improvement with the already optimized turbine positions from
the first step.

In the following work the different settings of the parameters c, n and `radial are
examined and tested to determine which setting leads to the best results. Based on
this, the presented analysis will be revisited and the usefulness of a two-step local search
construction will be determined. For the case study the turbine layouts of Sandbank,
DanTysk and Horns Rev 1 are used as input data for the local search algorithm and
the results are presented in Section 4.3.
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4 Case study

This section presents the configurations regarding all patterns and their extensions.
The combinatorial method will be examined and the results of all parameter combina-
tions will be presented. Additionally, a parameter study of the local search algorithm
is carried out. Lastly, the results are discussed in Section 4.3.3, where the multi-step
optimizer is evaluated based on the existing wind parks Anholt, DanTysk, Horns Rev
1, 2 and 3, Rodsand 1, Rodsand 2 and Sandbank. A recommendation regarding the
added features is made based on the results of this case study.

4.1 Configuration of the pattern

All parameters to be optimized for each pattern are examined to find a suitable pa-
rameter setting so that they achieve high objective values like AEP, LCOE, etc. The
study will be carried out with the combinatorial method, where for all patterns the
AEP and LCOE are calculated for each parameter combination.

Based on the results, the best average parameter setting is determined by normalizing
all AEP and LCOE values by the respective maximum AEP value and minimum LCOE
value of the individual wind farm. The corresponding normalized AEP and LCOE
values with the same parameter settings are summed up for all wind farms. The
parameter setting with the best AEP and LCOE value results in the best overall
solution for all three wind farms.

4.1.1 Slanted grid pattern

The parameters considered in the case study are the shearing angle θshearing, row dis-
tance factor `rows and column distance factor `cols, where both parameters are depen-
dent on the rotor diameter D.

Since the slanted grid pattern is defined by four parameters, the case study is per-
formed for a fixed rotation angle θrotation. First, a suitable rotation angle θrotation, which
leads to good AEP and LCOE results will be determined. The result can be seen in
Figure 27a and 27b, where the averages of the five best (solid line) and twenty best
(dotted line) AEP and LCOE values are shown for each rotation angle of all three wind
farms. The rotation angle is shown to have less influence on the AEP and LCOE and
therefore a rotation angle of θrotation = θmain wind + 90 is chosen for the following case
study, which is orthogonal to the incoming wind direction θmain wind.

Next, the parameter study is carried out for the shearing angle θshearing, `rows and
`cols. Figures 28, 30, and 32 shows the AEP [GWh] whereas Figures 29, 31, and 33
shows the LCOE [e/MWh] for all parameter settings of the slanted grid pattern. The
resulting AEP and LCOE of the Sandbank wind farm are noticeably better for either
a small row or column distance, whereas the AEP does not vary between shearing
angles. The Horns Rev 1 wind farms achieves better AEP and LCOE values if the row
and column distances are bigger. However, in case of the DanTysk wind farm a good
choice for the row and column distances depends on the shearing angle.
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(a) AEP [GWh]. (b) LCOE [Euro/MWh].

Figure 27: Average best five (solid line) and best twenty (dotted line) AEP and LCOE
values for different settings of the rotation angle θrotation. The course shows
the results for the three wind farms Sandbank (blue), DanTysk (green), and
Horns Rev 1 (red).

With a rotation angle of θrotation = θmain wind + 90, the setting (1) θshearing = 45,
`rows = 8 and `cols = 1 leads to the best average AEP of all three wind farms. Setting
(2) θshearing = 45, `rows = 8 and `cols = 2 leads to the best average LCOE value. Table
15 shows the AEP and LCOE values with the parameter settings (1) and (2) for all
wind farms. The setting θrotation = θmain wind + 90, θshearing = 45, `rows = 8 and `cols = 1,
is now selected as default setting.

Wind farm Type Setting AEP improvement

Sandbank Best AEP θshearing = 45 `rows = 8 `cols = 1 1 282 GWh

Best LCOE θshearing = 45 `rows = 8 `cols = 2 97.07 e/MWh

Dantysk Best AEP θshearing = 45 `rows = 8 `cols = 1 1 059 GWh

Best LCOE θshearing = 45 `rows = 8 `cols = 2 105.42 e/MWh

Horns Rev 1 Best AEP θshearing = 45 `rows = 8 `cols = 1 556.6 GWh

Best LCOE θshearing = 45 `rows = 8 `cols = 2 53.65 e/MWh

Table 15: Parameter settings with best AEP and LCOE value of the three wind farms
Sandbank, DanTysk and Horns Rev 1.
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Figure 28: AEP in GWh of the Sandbank wind farm for all parameter settings of the
slanted grid pattern.

Figure 29: LCOE in Euro/MWh of the Sandbank wind farm for all parameter settings
of the slanted grid pattern.
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Figure 30: AEP in GWh of the DanTysk wind farm for all parameter settings of the
slanted grid pattern.

Figure 31: LCOE in Euro/MWh of the DanTysk wind farm for all parameter settings
of the slanted grid pattern.
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Figure 32: AEP in GWh of the Horns Rev 1 wind farm for all parameter settings of
the slanted grid pattern.

Figure 33: LCOE in Euro/MWh of the Horns Rev 1 wind farm for all parameter set-
tings of the slanted grid pattern.
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4.1.2 Hexagonal pattern

The parameter settings considered in the case study is the rotation angle θrotation, the
hexagon side distance `dist and the stretching factor νstretch. The main wind direction
exit is θmain wind = 28◦. Figures 34, 36 and 38 show the AEP [GWh] and Figures 35, 37
and 39 show the LCOE [e/MWh] for all parameter settings of the hexagon pattern.
It is noticeable that for large hexagon sides the AEP values decrease, whereas a large
distance between the turbines is thought to reduce the wake effect. However, for large
distances between the turbines, fewer turbines may be placed in a limited area.

The setting (1) θrotation = 4, `dist = 4.6 and νstretch = 1.4 leads to the best average
AEP for all three wind farms. The setting, which leads to the best average LCOE is
(2) θrotation = −32, `dist = 7.3 and νstretch = 1. Table 16 show the AEP and LCOE
values with the parameter setting (1) and (2) for all wind farms.

It is noticeable that the higher AEP values were achieved by increasing the stretch
parameter with a setting of 1.1. In this case, the parameter settings are very different
and for this reason, it is necessary to decide which economic value is more relevant.
Another possibility is to make a compromise and choose a parameter setting with the
restrictions θrotation ∈ [−14, 4], ` ∈ [4.6, 7.3] and νstretch ∈ [1, 1.4]. With this informa-
tion, the parameter setting θrotation = 2, `dist = 5 and νstretch = 1.1 is recommended as
the default parameter setting. With a νStretch = 1.1 the hexagonal grid achieves good
AEP results for all parameter combinations of θRotation and `dist. The choice of the
rotation and the hexagonal side distance is based on putting more weight into a better
AEP.

Wind farm Type Setting AEP improvement

Sandbank Best AEP θrotation = 4 `dist = 4.6 νstretch = 1.4 1389 GWh

Best LCOE θrotation = −32 `dist = 7.3 νstretch = 1 113.7 e/MWh

Dantysk Best AEP θrotation = 4 `dist = 4.6 νstretch = 1.4 1226 GWh

Best LCOE θrotation = −32 `dist = 7.3 νstretch = 1 94.95 e/MWh

Horns Rev 1 Best AEP θrotation = 4 `dist = 4.6 νstretch = 1.4 565 GWh

Best LCOE θrotation = −32 `dist = 7.3 νstretch = 1 52.24 e/MWh

Table 16: Parameter settings with best AEP and LCOE value of the three wind farms
Sandbank, DanTysk and Horns Rev 1.
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Figure 34: AEP in GWh of the Sandbank wind farm for all parameter settings of the
hexagonal grid pattern.

Figure 35: LCOE in Euro/MWh of the Sandbank wind farm for all parameter settings
of the hexagonal grid pattern.
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Figure 36: AEP in GWh of the DanTysk wind farm for all parameter settings of the
hexagonal grid pattern.

Figure 37: LCOE in Euro/MWh of the DanTysk wind farm for all parameter settings
of the hexagonal grid pattern.
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Figure 38: AEP in GWh of the Horns Rev 1 wind farm for all parameter settings of
the hexagonal grid pattern.

Figure 39: LCOE in Euro/MWh of the Horns Rev 1 wind farm for all parameter set-
tings of the hexagonal grid pattern.
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4.1.3 Spiral pattern

The parameters considered in the evaluation are the density factor b, the percentage of
the maximum scaling factor ω and the elliptical stretching factor νstretch. Figures 40, 42
and 44 show the AEP [GWh] and Figures 41, 43 and 45 show the LCOE [Euro/MWh]
for all parameter settings of the spiral pattern. Based on the results, the best overall
parameter setting in order to receive the best AEP for all wind farms is (1) b = 0.45,
ω = 1 and νstretch = 1.7. The parameter setting (2) b = 0.45, ω = 1 and νstretch = 2
will achieve the best LCOE value for all wind farms on average. Table 17 shows the
AEP and LCOE values with the parameter settings (1) and (2) for all wind farms.

As mentioned before, the parameter ω is the scaling factor of the maximum scaling
value amax of the spiral pattern. The maximum scale value is determined by bisection
during the optimization process since it depends on the density value b. Therefore, ω
was introduced to examine whether values smaller than amax can lead to good results.
However, based on the results, a scaling factor of ω = 1 leads to the best results
regarding AEP and LCOE. It was also found that a density factor of b = 0.45 leads to
the best average AEP and LCOE of all three wind farms. Furthermore, the extension
of an elliptical stretching parameter shows good results for νstretch > 1. Although the
Sandbank and DanTysk wind farms show a better AEP when the stretching factor is
between 1.4 and 2.6, on the other hand, the Horns Rev 1 wind farm shows poorer AEP
values compared to a stretch of 0.8 to 1.4. This may be because the Horns Rev 1 wind
farm does not have an elongated rectangular shape like the other two wind farms and
therefore does not benefit much from the stretch, except that the LCOE values are
better for higher stretching values.

With the given information, the parameter setting b = 0.45, ω = 1 and νstretch = 1.85
is recommended as default setting. Thus, a compromise is made for the stretch factor
by taking the mean value for the non-unanimous parameter range of νstretch.

Wind farm Type Setting AEP improvement

Sandbank Best AEP b = 0.45 ω = 1 νstretch = 1.7 1445 GWh

Best LCOE b = 0.45 ω = 1 νstretch = 2 94.58 e/MWh

Dantysk Best AEP b = 0.45 ω = 1 νstretch = 1.7 1306 GWh

Best LCOE b = 0.45 ω = 1 νstretch = 2 94.84 e/MWh

Horns Rev 1 Best AEP b = 0.45 ω = 1 νstretch = 1.7 600.1 GWh

Best LCOE b = 0.45 ω = 1 νstretch = 2 52.13 e/MWh

Table 17: Parameter settings with best AEP and LCOE value of the three wind farms
Sandbank, DanTysk and Horns Rev 1.
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Figure 40: AEP in GWh of the Sandbank wind farm for all parameter settings of the
spiral grid pattern.

Figure 41: LCOE in Euro/MWh of the Sandbank wind farm for all parameter settings
of the spiral grid pattern.
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Figure 42: AEP in GWh of the DanTysk wind farm for all parameter settings of the
spiral grid pattern.

Figure 43: LCOE in Euro/MWh of the DanTysk wind farm for all parameter settings
of the spiral grid pattern.
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Figure 44: AEP in GWh of the Horns Rev 1 wind farm for all parameter settings of
the spiral grid pattern.

Figure 45: LCOE in Euro/MWh of the Horns Rev 1 wind farm for all parameter set-
tings of the spiral grid pattern.
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4.1.4 Contracted honeycomb pattern

The parameters describing the contracted honeycomb are the dimension d and the
number of positions npositions of the npositions × npositions regular grid. The number of
positions npositions of the regular grid is set as a fixed value and does not need to
be optimized. The reason why the value is fixed is because it ensures the minimum
number of positions per dimension. The dimension parameter d is considered in the
optimization, where the regular grid positions, before the transformation, depend on
the choice of d. The values of the regular grid positions have an interval of [−d, d], and
therefore dimension d influences the size of the whole layout and the distance between
each turbine.

Figure 46 shows the AEP [GWh] and Figure 47 shows the LCOE [Euro/MWh] for
the three wind farms with different settings for dimension d. The AEP first starts to
increase and the LCOE starts to decrease steadily until the optimum value is reached.
Then the AEP starts to drop and LCOE starts to grow fast until it reaches a dimension
d where a position inside the site of the wind farm can no longer be calculated.

Based on the results, a dimension of (1) d = 730 results in the best AEP average of
all three wind farms. A dimension of (2) d = 1030 will lead to the best LCOE average.
Table 18 shows the AEP and LCOE values with the parameter settings (1) and (2) for
all three wind farms.

The difference in dimension between setting (1) and setting (2) is large, it must be
weighed up in which areas a compromise should be made. Because of that, a dimension
of d = 740 are recommended as the default setting.

Wind farm Type Setting AEP improvement

Sandbank Best AEP d = 730 1 225 GWh

Best LCOE d = 1 030 114.7 e/MWh

Dantysk Best AEP d = 730 1 117 GWh

Best LCOE d = 1 030 96.04 e/MWh

Horns Rev 1 Best AEP d = 730 582 GWh

Best LCOE d = 1 030 53.19 e/MWh

Table 18: Parameter settings with best AEP and LCOE value of the three wind farms
Sandbank, DanTysk and Horns Rev 1.
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Figure 46: AEP in GWh with different settings of the dimension parameter d of the
Sandbank, DanTysk and Hors Rev 1 wind farm.

Figure 47: LCOE in Euro/MWh with different settings of the dimension parameter d
of the Sandbank, DanTysk and Hors Rev 1 wind farm.

4.2 Configuration of the local search algorithm

This section introduces the parameter analysis for different numbers of circles c, circle
positions n and radial distance `radial. Afterwards, the two-step local search is tested.
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Parameter setting For the case study of the parameter settings different configura-
tions of c, n and `radial are considered. The overall AEP improvement in GWh and
the AEP improvement per simulation are calculated for each combination of c, n, and
`radial. The case study is performed for the Sandbank, DanTysk, and HornsRev 1 wind
farms. The combination of parameter settings that lead to a good AEP improvement
and a reasonable run-time will be recommended to be chosen as the default setting.

The total AEP improvement in GWh is shown in Figure 49, 51 and 53 of the three
wind farms. The relative AEP improvement in MWh/simulation is shown in Figure
50, 52 and 54. It is shown in MWh/simulation because for different c and n, for each
turbine examination c · n many simulations must be performed to calculate the best
position on the circle grid.

Table 19 shows the parameter settings with the best results for all three wind farms.
The AEP improvement of the setting with the best relative AEP improvement in
Sandbank is 67.1 % of the AEP improvement of the respective best overall AEP im-
provement. For the DanTysk wind farm, it is 52.3 % and for Horns Rev 1 it is 39.3
% of the respective best overall AEP improvement. Although the AEP improvement
for smaller c and n is low, the number of simulations is less which results in a faster
run-time of the optimization. With a setting of (1) c = 1 and n = 2 with 80 turbines
per iteration, there are 1 · 2 · 80 = 160 simulations. With (2) c = 3 and n = 6 with
the same number of turbines, there are 36̇ · 80 = 1 440 simulations. So the number of
simulations with the setting (1) is 95 % fewer than with setting (2).

Wind farm Type Setting AEP improvement

Sandbank Rel. AEP c = 1 n = 1.2 `radial = 2.6 15.54 MWh/simulation

Overall AEP c = 3 n = 6 `radial = 2.2 16 680 MWh

Dantysk Rel. AEP c = 1 n = 2 `radial = 2.6 9.68 MWh/simulation

Overall AEP c = 3 n = 5 `radial = 2.2 7 736 MWh

Horns Rev 1 Rel. AEP c = 1 n = 2 `radial = 2.6 6.325 MWh/simulation

Overall AEP c = 3 n = 6 `radial = 2.2 19 700 MWh

Table 19: Parameter settings with best relative AEP and overall AEP improvement of
the three wind farms Sandbank, DanTysk, and Horns Rev 1.

In order to find a superior parameter setting that achieves good results for all three
wind farms, the individual AEP improvements for all settings of c, n, and `radial were
normalized with the respective maximum AEP improvement and all results of the
wind farms were added together. As a result, setting c = 3, n = 6 and `radial = 2.2
results in a good overall AEP improvement and setting c = 1, n = 2 and `radial = 2.6
leads to a good relative AEP improvement. Based on the results of the case study,
the parameter range c = 2, n ∈ [3, 5] and `radial ∈ [2.2, 2.6] will lead to good AEP
improvements with a considerable good run-time. A recommended default setting is
c = 2, n = 4, `radial = 2.2. The recommended c and n values are in the middle of the
range because they still achieve faster run-times than higher parameter values, but
have better AEP improvements than lower c and n values. As for the chosen radial
distance factor `radial, it is noteworthy that no matter what value `radial has, it does
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not directly affect the run-time but only the AEP improvement. Therefore, we choose
`radial = 2.2 because it leads to good overall AEP improvements for all three wind
farms. Figure 55 shows the optimized positions of the DanTysk and Sandbank layout,
where the original layout was used as the input layout for the local search algorithm.

Two-step local search As mentioned in the analysis of possible parameter settings in
Section 3.2.1, higher numbers of c and n will have an overall greater AEP improvement,
whereas the relative AEP improvement is better for small c and n. However, the results
show that a radial distance `radialD in the medium range is better than smaller or larger
distances.

The idea of the construction of a two-step local search will perform the given layout
of the input position of the given wind farm with the parameter setting with the best
relative AEP improvement.

The two-step local search starts the optimization with the parameter setting that
leads to the best relative AEP improvement. After the first step is terminated, the
optimized positioning is passed to the second step, where the optimization is performed
with the parameter setting that leads to the best overall AEP improvement. For
simplicity, we denote the setting with the best relative AEP improvement as the fastest
setting and the setting with the best overall AEP improvement as the optimal setting.

Figure 48a shows the result of the two-step local search for the wind farms Sandbank,
DanTysk, and Horns Rev 1. As shown in the Figure, the two-step local search results
in a better AEP improvement than the fastest setting, but never exceeds the optimal
setting. Figure 48b shows the number of simulations for the setting with the best AEP
and the best relative AEP improvement, as well as the two step-local search. The
number of simulations required for the two-step local search exceeds the number of
simulations of the two individual settings.
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Figure 48: AEP Improvement [GWh] and the number of simulations of the setting with
best relative AEP, the best overall AEP, and the two-step local search.
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Figure 49: AEP improvement in GWh of the Sandbank wind farm for all parameter
settings after applying the local search algorithm.

Figure 50: Relative AEP improvement in GWh per simulation of the Sandbank wind
farm for all parameter settings after applying the local search algorithm.
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Figure 51: AEP improvement in GWh of the DanTysk wind farm for all parameter
settings after applying the local search algorithm.

Figure 52: Relative AEP improvement in GWh per simulation of the DanTysk wind
farm for all parameter settings after applying the local search algorithm.
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Figure 53: AEP improvement in GWh of the Horns Rev 1 wind farm for all parameter
settings after applying the local search algorithm.

Figure 54: Relative AEP improvement the in GWh per simulation of the Horns Rev
1 wind farm for all parameter settings after applying the local search algo-
rithm.
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Figure 55: Optimized positions of the three wind farm layouts of Horns Rev 1, Dan-
Tysk, and Sandbank. The blue dots represent the wind turbines and the
gray dashed lines the side boundaries. The places marked with a red pen-
tagon represent the restricted area, wreck, or substations.

4.3 Evaluation of the multi-step optimization algorithm

This Section will evaluate the wind farms Sandbank, DanTysk, Horns Rev 1/2/3,
Rodsand 1/2, and Anholt with the implemented multi-step optimization. The structure
of the multi-stage optimization algorithm was presented in Section 3.2, where in the
first step the pattern method is applied, and lastly the local search algorithm is used
as a refinement.

First, the data and settings of the remaining wind farms are presented in Table 20
and 21. With these settings, the following evaluations are performed. Then, the results
of the applied patterns and the combination of pattern and local search are presented
for the respective wind farms.

4.3.1 Wind farms

Table 20 and Table 21 show the collected data of the wind farms Anholt, Horns Rev
2, Horns Rev 3, Rodsand 1 and Rodsand 2 (Nysted 1 and 2). The collected data from
Sandbank, DanTysk and Horns Rev 1 was introduced in Section 2.5 in Table 1. The
evaluation of the multi-step optimization will be carried out, based on these settings.
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Parameter Anholt Horns Rev 2 Horns Rev 3
Wind data FINO3 (2010–2017) FINO3 (2010–2017) FINO3 (2010–2017)
Wind speed losses `wind 100 % 98.5 % 98.5 %
Turbine type Siemens SWT-3.6-120 Siemens SWT-2.3-93 Vestas V164-8MW
Number of wind turbines Nturbines 111 91 49
Rotor diameter D 120 m 93 m 164 m
Hub height z 88 m 69 m 102
Surface roughness z0 0.2 · 10−3 m 0.2 · 10−3 m 0.2 · 10−3 m
Cut-in speed ucut-in 4 m/s 4 m/s 4 m/s
Cut-out speed ucut-out 32 m/s 25 m/s 25 m/s
Wake effect losses `wake 100 % 90.99 % 99.99 %
Max power Pmax 3.6 MW 2.3 MW 8 MW
Power curve losses `power 100 % 98.8 % 98.8 %
Plant performance losses `performance 100 % 88.5 % 88.5 %
Interest rate rrate 0.75 % 1 % 1 %
Project lifetime Nlifetime 25 years 25 years 25 years
Operation costs per 1
MW

CMWoperation 150 000 e 150 000 e 150 000 e

Annual operation and
maintenance cost

CO&M 63 Mio. e 31.7 Mio. e 58.8 Mio. e

Project management cost Cproject 68 Mio. e 25 Mio. e 57 Mio. e
Number of substations Nsubstation 1 1 1
Substation cost Csubstation 66.7 Mio. e 48 Mio. e 65 Mio. e
Cable laying cost Claying 556 000 e/km 556 000 e/km 556 000 e/km
Cable material Cmaterial [131,400] e/m [131,400] e/m [131,400] e/m
Connection cost Cconnect 66 266 e/turbine 66 266 e/turbine 66 266 e/turbine
Cable costs Ccabling 146.7 Mio. e 62 Mio. e 93 Mio. e
Turbine cost Cturbine 8 Mio. e/turbine 2.7 Mio. e/turbine 15.4 Mio. e/turbine
Overall turbine cost NturbineCturbine 888 Mio. e 241 Mio. e 755 Mio. e
Foundation cost Cfoundation 154.5 Mio. e 71.9 Mio. e 140.6 Mio. e
Total capital costs Cinvest 1 323.9 Mio. e 447.7 Mio. e 1111.2 Mio. e

Table 20: Collected data of the three wind farms Anholt, Horns Rev 2 and Horns Rev 3.
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Parameter Rodsand 1 Rodsand 2
Wind data FINO3 (2010–2017) FINO3 (2010–2017)
Wind speed losses `wind 98.5 % 98.5 %
Turbine type Bonus B82/2300 Siemens SWT-2.3-93
Number of wind turbines Nturbines 72 90
Rotor diameter D 82.4 m 93 m
Hub height z 69 m 69 m
Surface roughness z0 0.2 · 10−3 m 0.2 · 10−3

Cut-in speed ucut-in 3.5 m/s 4 m/s
Cut-out speed ucut-out 25 m/s 25 m/s
Wake effect losses `wake 99.9 % 99.9 %
Max power Pmax 2.3 MW 2.3 MW
Power curve losses `power 98.8 % 98.8 %
Plant performance losses `performance 88.5 % 88.5 %
Interest rate rrate 2.75 % 2.75 %
Project lifetime Nlifetime 25 years 25 years
Operation costs per 1 MW CMWoperation 150 000 e 150 000 e
Annual operation and maintenance cost CO&M 24.8 Mio. e 31 Mio. e
Project management cost Cproject 14 Mio. e 18 Mio. e
Number of substations Nsubstation 1 1
Substation cost Csubstation 135 Mio. e 180 Mio. e
Cable laying cost Claying 650 000 e/km 550 000 e/km
Cable material Cmaterial [131,400] e/m [131,400] e/m
Connection cost Cconnect 66 266 e/turbine 66 266 e/turbine
Cable costs Ccabling 50 Mio. e 64 Mio. e
Turbine cost Cturbine 2 Mio. e/turbine 2.7 Mio. e/turbine
Overall turbine cost NturbineCturbine 144 Mio. e 243 Mio. e
Foundation cost Cfoundation 52.7 Mio. e 67 Mio. e
Total capital costs Cinvest 274 Mio. e 409 Mio. e

Table 21: Collected data of the two wind farms Rodsand 1 and Rodsand 2.
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4.3.2 Results of the multi-step optimization

The first step of the optimization is applied on each wind farm, where the parameter
setting of the individual pattern is used to calculate the positions which were deter-
mined in Section 4.1. In the following the results of the eight wind farms will be
presented.

Anholt The AEP and LCOE values achieved by the individual pattern methods and
the multi-step optimization with local search are shown in Figure 56. The multi-step
optimization with the spiral grid pattern has achieved the best AEP and LCOE values,
whereas the LCOE values of the multi-step optimization with different pattern methods
do not vary significantly. Table 22 shows the calculated results.
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Figure 56: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Anholt wind farm. The
multi-step optimization with the spiral grid as first step achieved the best
AEP and LCOE values.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 111 1 823 69.41 2 095 9.725 9.647
Slanted + LS 7 992 1 988 64.25 2 518 11.07 8.689
Hexagonal 111 1 817 69.42 2 088 9.747 9.629
Hexagonal + LS 7 992 1 984 64.41 2 506 11.01 8.724
Spiral 111 2 001 64.06 2 544 11.09 8.673
Spiral + LS 3 552 2 015 63.71 2 577 11.18 8.613
Honeycomb 111 1 575 79.86 1 437 7.319 11.88
Honeycomb + LS 7 992 1 961 64.9 2 455 10.91 8.792

Table 22: Results of the Anholt wind farm, with AEP [GWh], LCOE [e/MWh], NPV
[Mio. e], IRR [%] and payback period [years]. The abbreviation LS stands
for local search.
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DanTysk The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 57. Based on
the results, the multi-step optimization with the spiral grid pattern has obtained the
best AEP and LCOE values. However, the economic values obtained by the pattern
do not differ greatly except the multi-step optimization with the honeycomb grid as
the first step. The AEP value is noticeably low compared to the other values. Table
23 shows the calculated results.
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Figure 57: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the DanTysk wind farm. The
single-step spiral grid achieved the best AEP results and the mutli-step with
the slanted grid achieved the best LCOE value.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 80 1 269 104.6 -88.51 1.869 22.4
Slanted + LS 5 760 1 314 101.8 -35.93 2.402 20.89
Hexagonal 80 1 235 107.3 -136.6 1.369 23.99
Hexagonal + LS 5 760 1 312 102.1 -41.56 2.348 21.04
Spiral 80 1 307 102.7 -53.64 2.232 21.36
Spiral + LS 3 840 1 316 102.1 -41.65 2.35 21.04
Honeycomb 80 1 140 115.8 -274 -0.1637 30.23
Honeycomb + LS 5 760 1 293 103.1 -61.7 2.145 21.6

Table 23: Results of the DanTysk wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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Horns Rev 1 The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 58. From the
results of the individually applied patterns, the AEP and LCOE achieved by the multi-
step optimization with the spiral grid is the best. The slanted grid has obtained the
worst AEP and LCOE. The results of the multi-step optimizer do not show a big
difference. Table 24 shows the calculated results.
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Figure 58: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Horns Rev 1 wind farm. The
best AEP value was achieved by the multi-step optimizer with honeycomb
grid as the first step. The best LCOE was achieved by the multi-step
optimization with the hexagonal grid as the first step.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 80 560.2 61.7 497 15.92 6.59
Slanted + LS 5 760 606.3 57.32 578 17.66 5.979
Hexagonal 80 571.9 60.4 519 16.43 6.4
Hexagonal + LS 5 760 607.3 57.13 581 17.75 5.949
Spiral 80 600.6 57.75 569 17.49 6.034
Spiral + LS 3 200 606.6 57.28 579 17.68 5.972
Honeycomb 80 584.6 59.37 539 16.81 6.266
Honeycomb + LS 5 120 607.6 57.28 580 17.66 5.978

Table 24: Results of the Anholt wind farm, with AEP [GWh], LCOE [e/MWh], NPV
[Mio. e], IRR [%] and payback period [years]. The abbreviation LS stands
for local search.
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Horns Rev 2 The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 59. The multi-
step optimization with the spiral grid pattern achieved the best AEP and LCOE. The
honeycomb grid has obtained the worst AEP and LCOE. The results of the multi-step
optimizer do not show a big difference. Table 25 shows the calculated results.
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Figure 59: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Horns Rev 2 wind farm.
The best AEP and LCOE value was achieved by the multi-step optimization
with the spiral grid as first step.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 91 789.8 68.71 892 11.81 8.323
Honeycomb + LS 6 552 828 66.2 982 12.48 7.933
Hexagonal 91 794.1 68.72 897 11.74 8.366
Hexagonal + LS 6 552 825.6 66.26 977 12.49 7.929
Spiral 91 822.8 66.61 968 12.35 8.004
Spiral + LS 5 096 829.7 66.01 987 12.55 7.892
Honeycomb 91 774.8 70.34 847 11.26 8.666
Honeycomb + LS 6 552 827.7 66.19 981 12.49 7.926

Table 25: Results of the Horns Rev 2 wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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Horns Rev 3 The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 60. From the
results of the individually applied patterns, the AEP and LCOE achieved by the multi-
step optimization with the spiral grid is the best. The honeycomb grid has obtained
the worst AEP and LCOE. However, the difference of the achieved AEP of all patterns
lies between less than 10 GWh of AEP. The results of the multi-step optimizer do not
show a big difference. Table 26 shows the calculated results.
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Figure 60: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Horns Rev 3 wind farm.
The best AEP was achieved by the spiral grid multi-step optimizer. The
best LCOE was achieved by the slanted grid multi-step optimization.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 49 1 365 83.29 1 104 7.134 12.29
Slanted + LS 3 528 1 542 74.96 1 529 8.896 10.48
Hexagonal 49 1 433 79.5 1 279 7.94 11.41
Hexagonal + LS 3 528 1 545 74.97 1 532 8.877 10.5
Spiral 49 1 532 75.41 1 505 8.791 10.58
Spiral + LS 1 960 1 548 75.01 1 534 8.849 10.53
Honeycomb 49 1 311 86.42 969.8 6.513 13.06
Honeycomb + LS 3 528 1 540 75.01 1 526 8.884 10.49

Table 26: Results of the Horns Rev 3 wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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Rodsand 1 The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 61. Based on the
results, the multi-step optimization with the spiral grid pattern has obtained the best
AEP and LCOE values, whereas the slanted grid has obtained the worst results. The
AEP and LCOE values of the multi-step optimization with different pattern methods
do not vary significantly. Table 27 shows the calculated results.
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Figure 61: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Rodsand 1 wind farm. The
best AEP was achieved by the spiral grid multi-step optimization and the
best LCOE was achieved by the slanted grid multi-step optimization.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 72 540.1 78.15 404.8 12.11 8.876
Slanted + LS 5 184 591.4 72.95 498.3 13.47 8.016
Hexagonal 72 554 76.89 427.8 12.39 8.69
Hexagonal + LS 5 184 591.1 72.73 500.3 13.59 7.948
Spiral 72 584.9 73.8 484 13.2 8.18
Spiral + LS 3 456 592.1 72.78 500.7 13.55 7.975
Honeycomb 72 575.3 74.95 464.1 12.84 8.395
Honeycomb + LS 4 032 591.1 72.95 498 13.48 8.01

Table 27: Results of the Rodsand 1 wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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Rodsand 2 The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 62. Based on the
results, the multi-step optimization with the spiral grid pattern has obtained the best
AEP and LCOE values. The values of the slanted grid, hexagonal grid and honeycomb
grid shown in Figure 62 do not vary significantly. Likewise, no major differences can be
seen in the results of the multi-step optimizer. Table 28 shows the calculated results.
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Figure 62: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Rodsand 2 wind farm.
The best AEP was achived by the slanted grind and spiral grid multi-step
optimizaiton. The best LCOE value was achieved by the slanted grid multi-
step optimizer.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 90 766.3 73.98 631.5 12.58 8.563
Slanted + LS 6 480 821.8 69.57 742.2 13.88 7.786
Hexagonal 90 779.1 73.19 653.1 12.76 8.45
Hexagonal + LS 6 480 820.5 69.58 740.9 13.9 7.778
Spiral 90 812.1 70.76 716.1 13.44 8.038
Spiral + LS 3 600 821.8 69.84 738.2 13.75 7.859
Honeycomb 90 767.3 74.37 627.1 12.39 8.686
Honeycomb + LS 6 480 816.4 70.19 728.2 13.65 7.914

Table 28: Results of the Rodsand 2 wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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Sandbank The AEP and LCOE values achieved by the individual pattern methods
and the multi-step optimization with local search are shown in Figure 63. Based on
the results, the multi-step optimization with the spiral grid pattern has obtained the
best AEP and LCOE values, whereas the honeycomb grid has obtained the worst
results. The AEP and LCOE values of the multi-step optimization with different
pattern methods do not vary significantly. Table 29 shows the calculated results.
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Figure 63: AEP and LCOE values achieved by the individual patterns and the multi-
step optimization with local search (LS) for the Sandbnak wind farm. The
spiral grid mutli-step optimization achieved the best AEP value and the
slanted grid multi-step optimization achieved the best LCOE value.

Algorithm Simulations AEP LCOE NPV IRR
Payback
period

Slanted 72 1 258 122.2 -425.7 -1.194 36.19
Slanted + LS 5 184 1 319 117.5 -315.7 -0.3821 31.34
Hexagonal 72 1 263 122.2 -426.1 -1.169 36.03
Hexagonal + LS 5 184 1 319 117.6 -353.1 -0.3955 31.41
Spiral 72 1 311 118.6 -371.3 -0.5575 32.29
Spiral + LS 2 880 1 322 117.7 -356.5 -0.4072 31.47
Honeycomb 72 1 180 129.3 -527 -2.38 46.29
Honeycomb + LS 5 184 1 296 119.2 -378.2 -0.6705 32.93

Table 29: Results of the Sandbank wind farm, with AEP [GWh], LCOE [e/MWh],
NPV [Mio. e], IRR [%] and payback period [years]. The abbreviation LS
stands for local search.
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4.3.3 Discussion of results

From the presented results, it can be concluded that the multi-step optimization
achieves better results in all economic values than the individual pattern. It is notice-
able that for all wind farms the local search refinement always terminates by reaching
the maximum iteration if the algorithm starts with a hexagonal grid or slanted grid
pattern. For all wind farms, the spiral grid always ends when the convergence criterion
is met. Sometimes this is also the case for the contracted honeycomb grid. One reason
for this may be that the layout passed to the local search does not provide a good
position distribution that is close to the optimum, so that the local search itself takes
longer to converge.

Based on Figures 56 to 63, the improvement in AEP and LCOE achieved by the
multi-step optimization is significant for all patterns except for the spiral pattern. In
all figures regarding the multi-step optimization with the spiral pattern as the first
step it can be seen that the local search achieved only a minimal improvement. The
average AEP improvement achieved by the multi-step optimization is 9.975 GWh and
the average LCOE improvement is 0.66 e/MWh. Given the information that the local
search on the spiral pattern converges quickly (a small number of simulations) and has
the smallest improvements in comparison to all other patterns, one can conclude that
the spiral pattern calculates the best positional distribution.

Although the multi-step optimizer achieves improved economic values, the results
are sometimes not better than the original wind farm layout. If only the application of
the individual pattern should be considered, the calculated economic values are worse
than the original layout. The minimum average AEP was achieved by Anholt, which is
91.4% of the AEP of the original layout. The maximum average AEP was achieved by
Rodsand 1 with 97.5% of the AEP calculated from the original layout. In comparison,
the average AEP achieved by the multi-step optimization is approximately 0.2 % to 1.4
% better than the AEP achieved by the original layout. Therefore, there is potential
to improve the AEP if the input layout is already close to the optimal positioning.
One possibility would be to determine the best parameter settings for each wind farm
individually, instead of using one default setting for all wind farms. So there is the
possibility to achieve a bigger improvement, but this could increase the run-time of
the optimization process. As for the LCOE value, the deterioration of the average
LCOE from the pattern methods and the multi-step lies between 0.3 % and 14.9 %.
This may be because in the local search only one objective function is considered as an
evaluation and therefore the LCOE is not considered in the optimization of the AEP.

The conclusion is that the multi-step optimization achieves better results compared
to the individual optimization algorithm. Additionally, the quality of the result from
the last step (local search) depends on the quality of the input positioning. The closer
it is to the optimum positioning, the better is the refinement of the local search.
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5 Conclusion and future work

In the context of this thesis, a multi-stage optimizer was implemented and evaluated,
which starts with a pattern method and ends with a local search algorithm as refine-
ment. Besides the revision of the existing pattern methods, the hexagonal and spiral
grid was extended by a vertical stretching parameter. During the evaluation of the
patterns, the results showed that an improvement of the AEP and LCOE values was
achieved by the extensions of the stretching parameter. Regarding the pattern method,
two algorithms were presented which determine an optimal parameter setting in a given
interval range. Among the methods to determine the optimal parameter settings are
the combinatorial method and the downhill simplex. The user can determine which
of these methods can be used in the optimization process, thus offering more options
in optimization. As for the combinatorial method, all parameter combinations of the
respective patterns were investigated for the Sandbank, DanTysk and Horns Rev 1
wind farms. A standard parameter setting was derived from the examination. A local
search has been implemented, based on the circular grid methods, which is used as
the last step to refine the previously generated positions. The local search showed an
improvement when starting on a given input layout. Depending on the input layout
of the local search, an AEP improvement between 4.1% and 10.1% was observed. To
ensure the accuracy of the results obtained, the offshore wind farm model was first
validated with the OpenWind software. The extensions and the multi-step optimizer
were tested and simulated on eight existing wind farms.

Future work During the work on the thesis we became aware of the following topics,
which can be further investigated.

• Convergence behavior of the downhill simplex
During the evaluation of the downhill simplex, the results have shown that the
algorithm converges towards a local optimum. For this reason, further algorithms
should be used to determine an optimal parameter loading, e.g. the Newton-
Raphson or Simulated Annealing Algorithm, because they are able to handle
local optima better. Another possibility would be to extend the algorithm with
a multi-start because it only works with the initialized simplex points. Thus,
different start points can be used to investigate further possibilities for parameter
settings.

• Multi-objective local search
In the local search, you can specify the target function to be maximized. In
this way, the positions with a better objective value are selected. One possibility
would be to introduce a multi-objective in the local search, whereby, for example,
AEP and LCOE are to be improved simultaneously and not just one value.
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