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Abstract

The direct conversion of solar irradiation into electric power is only possible with solar
cells. Their basic principle follows a common idea: Sun light is absorbed within an
optically active material. Absorption leads to generations of free charge carriers which
are separated by polarity, and transported towards different contacts. The potential
difference on contacts can be used for electrical work and thus, electricity is generated.
Current cells need further optimization to reach their theoretical limits which is finan-
cially feasible for most parts only using simulations.
The treatment of light absorption is done using different models. At first, we use an
incoherent model based on the Lambert-Beer law. It is derived from first principle
using the Boltzmann transport equation for photon distributions. An implementation
is discussed which uses a multi-layer setup in one dimension on uniformly distributed
grids for wavelength and position spaces. The optical simulation’s goal is the calcula-
tion of a charge generation rate’s profile along the cell’s depth. The influence of the
input parameters’ discretization as well as the positional discretization upon the gen-
eration rate is investigated. An anti-reflection coating is used to reduce the reflection
at the front interface. The incoherent Lambert-Beer implementation is tested against
a coherent light model solving the full Maxwell’s equations using a finite difference
scheme – the so-called Yee algorithm. It is implemented for a two-dimensional multi-
layered structure and the comparison is done by averaging out one dimension.
Charge transportation within semiconducting layers is treated by the semiconductor’s
drift-diffusion equations. They are being derived from first principle using the Boltz-
mann transport equation and assuming multiple approximations for the underlying
electron distribution. Within this thesis an implementation is proposed which solves
the one-dimensional drift-diffusion equations using the finite difference method. The
optical absorption, and electrical charge transportation models couple as the absorp-
tion’s generation rate is a source term within the charge transportation’s drift-diffusion
equations.
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1. Introduction

Human population is in constant need for energy. Electrical energy is one of the
most useful forms as we can use it for almost anything. Up to now the main energy
sources are fossil fuels : coal, oil, natural gas, and nuclear. These sources are available
only in limited amounts and their energy production relies heavily on combustion
which produces Greenhouse gases that accelerate climate change. Nuclear power plants
inhibit the threat of a nuclear radiation incident, or problems that come along with
nuclear waste. This lead to the research and development of a new class of energy
sources – the so-called renewables : wind, biomass, hydroelectric, and solar. As solar
irradiation is the most abundant energy source on Earth it should yield a reliable source
for our energy needs. The only direct conversion of solar radiation towards electrical
energy is given by photovoltaic cells.

Figure 1.: A sketch of a solar
cell showing its operating prin-
ciple [43]. Sunlight is trans-
mitted through the anti-reflec-
tion coating, and absorbed in the
base which generates electron-hole
pairs. Charge transportation to-
wards the contacts results in us-
able voltage differences.

A photovoltaic cell generates electrical energy
by harvesting solar radiation during a multi-step
process. The sun emits light via a wavelength-de-
pendent spectrum. It propagates through space
without interaction but once it hits Earth’s at-
mosphere parts of it are strongly absorbed or re-
flected whereas others are almost ideally trans-
mitted onto sea level. The sunlight enters pho-
tovoltaic devices with additional losses which
can be minimized by using anti-reflection coat-
ings (ARC). As the sunlight’s photons propagate
through the cell’s structure they have a non-van-
ishing probability for absorption by bounded
electrons. In the absorption process the photon
will interact with the bounded electron to form
an (excited) electron-hole pair.
To produce electrical currents the different charges
(electrons and holes) need to be separated and ex-
tracted along different paths. In fact, the extrac-
tion should happen because of an internal process
such that the charges can still perform physical
work. As gravitational force, and temperature
gradients are usually neglected for solar cells the driving forces are purely by elec-
trical, and chemical gradients. In conventional solar cells one uses semiconducting
materials – such as silicon (Si), or gallium arsenide (GaAs) – to cause charge separa-
tion. By the process of doping one can force large differences of Fermi energies at the
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terminals which result into voltage differences that can be used to perform work.
For the research and development of photovoltaic devices one relies heavily upon

numerical simulations. The cost for producing high tech prototypes for solar cells
is often economically not feasible as well as time consuming. By using numerical
simulations one can work on each part of the product by its own. The simulations will
yield satisfying results as long as the numerical models are accurate enough. Especially
for the optimization of material parameters one often falls back to simulations as one
can do a whole batch run for a range of parameters.
Simulations for solar cells are usually split up into two processes. At first the optical
absorption will be simulated and the resulting generation rate for electron-hole pairs
can be computed. Then the electrical charges will be propagated by the transport
simulation. Each step is quite involved and can be performed up to arbitrary precision
from one to three dimensions. Often simulation in one or two spatial dimension is
sufficient but some device geometries require simulation in three dimensions.
The optical simulation can be performed using many different models. On the one-
hand side one can treat light incoherently and apply the Lambert-Beer law which
yields the absorption profile in one dimension. Another possibility is to solve Maxwell’s
equations rigorously for propagation of light in space-time by using algorithms such
as introduced by Kane Yee in 1966 [55]. The different algorithm and especially the
increase in dimensions introduces numerical challenges as the systems of equations
one has to solve tend to become large very quickly. Another problem arises when
working with heterostructures which incorporate different materials in each layer. This
introduces discontinuities in material parameters across the structure which result into
regions where variables tend to change by different orders of magnitude.
The electrical simulation can be solved for different approximations, such as the drift-
diffusion, or the hydrodynamical model. The models are compromised of a system of
coupled partial differential equations where higher order approximations add additional
variables, and equations to the system.
The inner working principles for solar cells have been studied. The process of trans-

forming sun light into electrical energy is a two-step process which is not analytically
solvable except for the simplest test cases where most parameters have been set con-
stant. The goal of this work is to solve a solar cell in total and for this purpose we
needed to rely on simulation software. We tested several tools but none could fulfill
the requirements of open-source code, exhaustive documentation, and being feature-
rich. Thus, we have implemented our own model from scratch using the MATLAB®

programming environment.
The application is modular implemented such that it could easily be extended by other
models and represent a large array of possible cells. The application is able to calculate
conventional silicon solar cells but other materials such as gallium arsenide are also
available.
In Chapter 2 we will start to tackle the absorption problem of solar cells. We

will point out the current state of optical simulations as well as the general physical
background which is needed for further discussions. Thereafter we introduce our im-
plementation of the one-dimensional Lambert-Beer model. This will include the total

2
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numerical schemes we used. In the next section we run several case studies where we
compare our model to existing software.
Chapter 3 will discuss the topic of charge transport in semiconductors. We start by
noting the current state of the art. Then we will introduce the drift-diffusion model
which governs charge transport. The model will be derived from the underlying Boltz-
mann transport equation in detail. After explaining the physical background we dive
into our implementation of the drift-diffusion model. The model will be discussed in
detail and the numerical schemes will be highlighted. Thereafter we present case stud-
ies made from our implementation.
With Chapter 4 we will finish by giving a summary of the presented work and an
outlook for possible future work.
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2. Absorption of Sun Light

2.1. State of the art

Optical simulation of solar cells can be achieved by the Lambert-Beer model. It is
implemented within general purpose device modeling applications such as Synopsys’
Sentaurus™ [44], Silvaco’s Atlas™ [41], and COMSOL Multiphysics® [3]. Apart from
these full-blown industry-standard tools there are programs especially written for solar
cells. The Helmholtz-Zentrum Berlin has published a feature-rich Windows gui-tool
AFORS-HET [47]. It can run numerical simulations for various input spectra and do
advanced electrical transport simulations within heterostructures. The problem is that
some numerical schemes are not fully documented such that the user does not know
which numerical method is being used.

2.2. Physical models

The goals of optics are to determine the propagation of light in space-time and its
interaction with media. For different length scales one can treat light in different
ways.
Whenever the characteristic length scale of a structure is large compared to the light’s
wavelength one can use the approximations by geometrical optics [5]. In geometrical
optics one treats light as single rays. For smaller length scales one needs to include
the wave-like nature of light thus the wave model of light. The wave-like behavior is
based upon the electromagnetic description of light via Maxwell’s equations.
To acquire a detailed understanding of light one needs to extend the optical models
by means of quantum mechanics wherein one treats electromagnetic waves as being
comprised of small particles – photons. Thus, the underlying model is called photon
model.

2.2.1. Geometrical optics and photon model

For structures with length scales considerably larger than the light’s wavelength one
can treat light as propagating rays. This simplifies the treatment highly and the two
resulting phenomenons to consider are reflection and refraction.
For the mathematical treatment one defines material specific parameters which de-

fine the interaction of light with one specific material. Let n ≥ 1 be the refractive
index which indicates the material’s phase velocity, and let κ ≥ 0 be the extinction
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n1

n2

Normal to SurfaceIncident Reflected

Refracted

θ1 θ1

θ2

Figure 2.: Typical interaction process of a light ray at an interface governed by the
geometrical optic model. The incident ray coming from a medium with
refractive index n1 is partly reflected by the law of reflection. The remainder
of the ray is refracted into the medium with refractive index n2. This sketch
represents the case n2 > n1 which leads by Snell’s law to θ2 < θ1.

coefficient which indicates the rate of intensity loss as the wave propagates through
that material. Now, the complex refractive index n ∈ C is defined as

n := n− iκ . (2.1)

For most materials the values for n and κ can be found in the literature, e.g. the
“Refractive index database” [30].
In simple scenarios in geometrical optics one looks at a planar interface in between

two homogeneous materials. Light rays will travel straight through homogeneous ma-
terials and at the interface reflection, and refraction will occur. This process is sketched
in Figure 2.
Some parts of the light’s intensity will be reflected at the interface (“reflection”) and the
exact fraction is given by the reflectance R. The remaining part will be transmitted
into the attached material which is given by the transmittance T . For the special case
of a normal incident ray coming from a material with complex reflective index n1 and
going into a material n2 the fractions are given by [5, p. 244]

R =

∣∣∣∣
n1 − n2

n1 + n2

∣∣∣∣
2

, (2.2)

T = 1−R , (2.3)

which are derived from the more general Fresnel equations [5, pp. 238, 244]. One
should note that refractive indices ni of actual materials are wavelength-dependent.
This results into reflectance, and transmittance being wavelength-dependent as well.
Refraction happens when a light ray is transmitted from one medium to another.

Let ni be the refractive indices, and θi the angle counted from the surface normal, see
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Figure 2. The transmitted ray will bend at the interface according to Snell’s law [5, p.
237]

sin θ1

sin θ2

=
n2

n1

.

As the light ray propagates through the material its intensity I is partly absorbed
for non-vanishing extinction coefficient κ. This leads to a drop in intensity which is
given by the Lambert-Beer law [5, p. 227]

I(x, λ) =I0 exp(−αx) (2.4)

α :=
4πκ

λ
, (2.5)

where α = α(λ) is the attenuation coefficient, I0 = I0(λ) the initial intensity distribu-
tion, and x ≥ 0 the penetration depth. An in-depth derivation is given in Section 2.2.2.
The absorption of light is theoretically explained by quantum mechanics wherein

light is treated as a stream of photons. Each photon has a specific energy Eγ which is
determined by its wavelength λ

Eγ =
hc

λ
, (2.6)

where the Planck constant h, and speed of light c are defined in the appendix.
Absorption is interpreted as the annihilation of a photon by the medium which gen-
erates so-called electron-hole pairs1. In first approximation one can assume that all
the absorbed energy is used for the creation of electron-hole pairs which leads to the
(spectral) generation rate g [21, p. 108]

g(x, λ) :=

∣∣∣∣∣
1

Eγ(λ)

∂I

∂x
(x, λ)

∣∣∣∣∣

=
λ

hc
α(λ)I0(λ) exp

(
−α(λ)x

)
,

where the change in intensity ∂I
∂x

was scaled by the photon’s energy Eγ to get a particle
count.
For the (total) generation rate G = G(x) one needs to integrate the spectral generation
rate g over the whole spectrum. As will be explained in Section 3.2 the excitation of
electrons in semiconductors needs a minimal amount of energy Egap which leads to a
vanishing generation rate above a critical wavelength λmax by using equation (2.6)

λmax :=
hc

Egap
.

1For a more detailed discussion of electron-hole pairs confer to Section 3.2.1.
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Thus, the (total) generation rate G is given by

G(x) =

∫ λmax

0

g(x, λ) dλ

=

∫ λmax

0

λ

hc
α(λ)I0(λ) exp

(
−α(λ)x

)
dλ . (2.7)

2.2.2. From Boltzmann transport equation towards the
Lambert-Beer law

A model for light absorption can be gained by postulating a particle transport mech-
anism using the Boltzmann transport equation for photons. The photon distribution
f = f(x,p, t) for photons at position x, with momentum p, and time t follows a
Boltzmann transport equation

∂tf + (v · ∇x)f +
(
F · ∇p

)
f =

(
df

dt

)

coll
. (2.8)

Here the velocity v, force F, and the change in net number density induced by collisions(
df
dt

)
coll

were used. By considering massless photons, and no general relativistic effects
one can neglect the momentum derivative

∂tf + (v · ∇x)f =

(
df

dt

)

coll
. (2.9)

The number of photons at position x, time t, of frequency (ν, ν+dν), and unit direction
n̂ with solid angle spread dω is given by [29, p. 36]

f(x, n̂, ν, t) dω dν .

The photon number crossing an area element dA within time (t, t+dt), and of velocity
v = cn̂ is

f(c dt)(n̂ · dA) dω dν .

Finally, the energy transport by photons of energy Eγ = hν is [29, p. 36]

dE = (hν)(cf cos θ dA dω dν dt) ,

where we introduced the angle θ in-between the area dA, and velocity direction n̂ by
cos θ dA := n̂ · dA. Using the definition of intensity [29, p. 1]

dE = I cos θ dA dω dν dt ,

one can readily gather the relation of photon distribution and intensity

I = chνf . (2.10)
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The change in photon number is given by the energy of emitted photons Eemit minus
the absorbed ones Eabs, and scaled by the photon’s energy [29, p. 36]

(
df

dt

)

coll
=
Eemit − Eabs

Eγ
=
j − κI
hν

, (2.11)

where the emission coefficient j, and absorption coefficient κ are used.
Substituting the relations (2.11), and (2.10) into the Boltzmann transport equation (2.9)
yields the (time-dependent) radiative transfer equation [29, p. 36]

1

chν

(
∂tI + c(n̂ · ∇x)I

)
=
j − κI
hν

.

Generally, one studies the time-independent radiative transfer equation [29, p. 36]

(n̂ · ∇x)I = j − κI .
The reduction towards a one-dimensional model uses a dimension scaling parame-
ter µ [29, p. 36]

µ
dI

dx
= j − κI .

By neglecting emission within our media we end up with the Lambert-Beer law
dI

dx
= −αI , α = α(ν) :=

κ

µ
.

2.2.3. Spectrum and coherency

A light source emits electromagnetic radiation at different wavelengths. The wavelength-
intensity distribution is a key parameter to distinguish between different light sources.
This distribution is usually referred to as the light source’s spectrum.
Our sun emits light with a spectral distribution which is close to an ideal black body
light source of around 5800 K. Parts of its emitted spectrum are absorbed as it enters
Earth’s atmosphere. Thus the light at sea level differs strongly from the ideal black
body spectrum. For comparison purposes standardized spectra “AM1.5” were defined
by the solar industry which resemble the average spectrum at sea level [37]. The AM1.5
spectrum comes in two flavors: one with just the direct illumination coming from a
small solid angle around the sun (AM1.5d), and the other with the total integrated
intensity from the half sphere’s surface (AM1.5g). Figure 3 compares the ideal black
body spectrum to the AM1.5 spectra.
On the other hand, a light source emits waves which interfere with each other. For

interference one needs to calculate the superposition of electric, and magnetic field
strengths but in real world applications light sources are not ideal. This implies that
one introduces the coherency effect wherein each wave from the same light source
has a maximal interference length – the so-called coherence length. For waves which
have traveled farther from the source than the coherence length one treats them as
being incoherent, that is to say that interference does not play a role any more. Thus,
one does not superimpose electric, and magnetic field strengths but rather adds their
intensities.
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Figure 3.: Different spectra resulting from the sun’s radiation are displayed. An ideal
black body spectrum for a sun-like source of temperature T = 5772 K shin-
ing into a solid angle of angular diameter α = 1919′′ is shown [27]. The ex-
traterrestrial, global, and direct spectra are defined by the standards AM0,
AM1.5g, and AM1.5d [37].

2.2.4. Anti-reflection coating

As the sun light reaches the solar cell it is partially reflected at the top interface. One
can optimize the top interface’s refractive index to decrease the frontal reflection. This
is called creating an anti-reflection coating (ARC) which is usually compromised of a
mixture of different glass plates.
A bare air-silicon interface has more than 30% reflection for most of the sun’s spectrum.
Even in the simple case of using just one glass plate one can heavily reduce the reflection
for important parts of the sun’s spectrum. Figure 4 shows the different reflections
of a bare air-silicon, air-standard glass-silicon, and air-ARC-silicon interfaces. For
simplicity, we assumed that the incident light is perpendicular to the interface.
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Figure 4.: The result of an anti-reflection coating is illustrated. The bare air-silicon
interface reflects very highly compared to air-glass-silicon. The reflectance
can be minimized by choosing a specific refractive index. For a refractive
index of around nARC = 2.3 the reflectance at the sun spectrum’s peak can
be minimized. Hence the name anti-reflection coating (ARC). The typical
AM1.5g spectrum is overlayed in the background by transformed units.

2.3. Optical model – 1D Lambert-Beer

A one-dimensional model for the simulation of incoherent light similar to the “Classical
optical model” by Krč and Topič [21, p. 22] has been implemented. The treatment
of incoherent light is done by propagating intensity distributions through the struc-
ture. The solar cell structure is modeled as a multi-layer system consisting of an anti-
reflection coating (ARC) at the top, then multiple semiconducting layers of different
materials, and a rear contact layer.

2.3.1. Sun light

One of the main ingredients for any optical model is the incident light spectrum. We
choose the sun as our light source and the industry standard spectrum AM1.5g, or
AM1.5d. The AM1.5 spectra were shown before in Figure 3. The incoming spectrum
will be denoted as I+

inc = I+
inc(λ).

2.3.2. Cell’s structure and light path

The cell is modeled as a multi-layer system. It is compromised of an anti-reflection
coating at the front, multiple layers used for absorption, and a metallic rear layer. A
sketch is given in Figure 5.
Already as light enters the solar cell some parts are reflected and only the remainder
is transmitted into the structure. The transmitted part I+

in,1 = I+
in,1(λ) depends on the
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ARC
Layer 1 Layer 2 Layer (N − 1)

Rear Contact

I+inc I+in,1 I+out,1 I+in,2 I+out,2 I+in,N−1

I−out,N−1I−out,1 I−in,1 I−out,2 I−in,2

x1 x2 x3 xN−1 xN

Figure 5.: The model for the solar cell’s structure is sketched. Compromising of a
frontal anti-reflection layer (ARC), (N − 1) bulk layers, and a metallic rear
layer. The intensity distribution I is propagated through each layer up to
the rear layer and then propagated backwards in a second pass. Interface
positions are given by (xi)i.

transmittance Tfront = Tfront(λ), see equation (2.2), of the anti-reflection coating,

I+
in,1 := TfrontI

+
inc .

The transmitted part travels through the bulk material. The bulk’s layers are num-
bered from 1 at the top to N−1 at the bottom and the domain is split up into interface
positions x1 < x2 < · · · < xN where layer i extends from xi up to xi+1.
Within each layer parts of the spectrum are absorbed. The intensity I = I(x, λ)

decreases because of absorption according to the Lambert-Beer law, see equation (2.4).
Within each layer i it is given by

I(x, λ) = I+
in,i exp

(
−αi(x− xi)

)
, x ∈ (xi, xi+1) ,

where the initial intensity of layer i is given by I+
in,i = I+

in,i(λ), and αi = αi(λ) is its
attenuation coefficient.
Once the spectrum passes an interface position xi its intensity is reduced by reflection.
This is included by definitions of the outgoing spectrum I+

out,i−1 of layer i− 1, and the
incoming spectrum I+

in,i of the next layer

I+
out,i := I+

in,i exp
(
−αi(xi+1 − xi)

)
for i = 1, . . . , N − 1 ,

I+
in,i := Ti−1,i I

+
out,i−1 for i = 2, . . . , N − 1 .

Here Ti−1,i is the transmittance between layer i− 1 and i, see equation (2.3).
The above formulated equations are used for a model wherein we propagate only the

transmitted part and neglect the reflected parts. This is done for all layers 1 through
N − 1 and at the last layer we will calculate the reflected part instead

I−in,N−1 := Rrear I
+
out,N−1 ,

where the reflectance at the interface of layer (N − 1), and the rear is Rrear.
Now, we will use the reflected spectrum as initial data for a backwards propagating
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spectrum (denoted by a minus sign as superscript). The propagation through the bulk
layers is handled in a similar manner as for the forward propagating spectrum but the
wave will not be reflected at the front again

I−out,i := I−in,i exp
(
−αi(xi+1 − xi)

)

I−in,i−1 := Ti−1,i I
−
out,i

}
for i = 2, . . . , N − 1 .

To underline the physical reasoning as to why we neglect the reflected parts in the
cell’s bulk we will do some example calculations. As a standard test case one looks at
a silicon-gallium arsenide interface (data taken from [35, 33])

nSi(λ = 500 nm) = 4.299− 0.070i

nGaAs(λ = 500 nm) = 4.307− 0.427i

=⇒ R ≈ 0.17% .

Thus, for wavelengths around the sun spectrum’s peak that interface shows negligible
reflectance R. Whereas the reflection of a silver back contact with either material is
significantly higher (data taken from [31])

nAg(λ = 500 nm) = 0.041− 3.159i

=⇒ RSi-Ag ≈ 94% , RGaAs-Ag ≈ 81% .

2.3.3. Anti-reflection coating

The anti-reflection coating’s (ARC) purpose is to minimize the reflection at the front
surface. For a single ARC layer one needs to choose its refractive index nARC as the
geometric mean of the surrounding air’s nair and the bulk’s first layer nbulk = nbulk(λ) [5,
p. 326]. As the bulk material’s refractive index is wavelength-dependent we choose a
value at the wavelength λ0 = 550 nm which corresponds roughly to the sun spectrum’s
peak

nARC :=
√
nair · nbulk(λ0) .

The ARC’s total reflectance R which resembles multiple reflections inside the ARC
layer is given by [26, p. 205]

R =
n2

ARC

(
n2

air − n2
bulk

)
−
(
n2

air − n2
ARC

)(
n2

ARC − n2
bulk

)
sin2 θ

n2
ARC

(
n2

air + n2
bulk

)
−
(
n2

air − n2
ARC

)(
n2

ARC − n2
bulk

)
sin2 θ

=
r2

1 + r2
2 + 2r1r2 cos(2θ)

1 + r2
1r

2
2 + 2r1r2 cos(2θ)

,

with





r1 :=
nair − nARC

nair + nARC
, r2 :=

nARC − nbulk

nARC + nbulk

θ :=
2πnARCdARC

λ
, dARC :=

λ0

4nARC
.

Figure 4 displays the minimizing result of this ARC layer compared to the bare air-
silicon or air-glass-silicon interface.
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ARC
Layer 1 Layer 2 Layer (N − 1)
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x1 x2 x3 xN−1 xN
zm1, zm1+1, . . . zm2, . . . zm3, . . . zmN−1

, . . . zmN

Figure 6.: The solar cell’s bulk layers have interfaces at positions (xi)i=1, ... ,N . The total
length is discretized uniformly by positions (zi)i=1, ... ,M , and the interfaces
are approximated by xi ≈ zmi .

2.3.4. Discretizations

Different input parameters such as the Sun’s spectrum or silicon’s refractive index are
only given at discrete wavelengths. We will discuss their discretizations in this section.

2.3.4.1. Spectrum

The AM1.5 spectra are given in the wavelength range of λmin = 280 nm up to λmax =
4000 nm. It uses a uniform discretization step width of ∆λ = 0.5 nm below λ = 400 nm,
and ∆λ = 1 nm for larger wavelengths. Data sets for other material parameters were
not as densely discretized, and because the spectra are peaked within the visible range,
λ = (390–700) nm, we choose to use only a subset of the spectra given by

λmin = 300 nm , λmax = 1199 nm .

This defines the wavelength’s discretization λ = (λk)k, and the incident intensity’s
I0 =

(
I0(λk)

)
k
.

2.3.4.2. Position

The cell’s bulk is composed of an N − 1 layer system with interface positions x1 <
x2 < · · · < xN as depicted in Figure 6. We discretize the total length byM equidistant
points z1 < z2 < · · · < zM which is far denser than the number of interface positions,
i.e. M � N . The interface positions within the bulk (xi)i=2, ... ,N−1 are replaced by
approximations

(
zmi
)
i=2, ... ,N−1

with

mi := min

{
j ∈ {1, . . . ,M}

∣∣∣∣
∣∣xi − zj

∣∣ = min
k=1, ... ,M

|xi − zk|
}
,

which are also illustrated in Figure 6. Thus, the layer i is given by the following
position discretization zmi < zmi+1 < · · · < zmi+1

.
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Material Data obtained Source
n κ ∆λ [nm]

Silver (Ag) X X 10 [31]
Aluminum (Al) X X 5 [32]
Amorphous silicon (a-Si) X X 5 [47]
Crystalline silicon (c-Si) X X 2-75 [34, 9]
Silicon nitride (Si3N4) X ≈ 10 [36]
Hydrogenated amorphous silicon (a-Si:H) X X ≈ 50 [21, pp. 117-120]
P-type hydrogenated amorphous silicon (p a-Si:H) X X ≈ 50 [21, pp. 117-120]
N-type hydrogenated amorphous silicon (n a-Si:H) X X ≈ 50 [21, pp. 117-120]

Table 1.: Different materials are included in our program. This list shows each mate-
rial, and their obtained optical parameters from its source. The parameters
include the refractive index n, and the extinction coefficient κ. Each param-
eter is wavelength-dependent and the discretization is not the same across
different sources. Some are given by a uniform step width ∆λ whereas others
have varying accuracies which are denoted by an approximation sign “≈”.
Crystalline silicon was merged from two different data sets.

2.3.4.3. Complex refractive index

The bulk’s materials are partly characterized by each layer’s complex refractive in-
dex ni. The complex refractive index consists of the refractive index n, and the ex-
tinction coefficient κ, see equation (2.1). The attenuation coefficient α depends upon
the extinction coefficient via equation (2.5) and each of these material parameters is
strongly wavelength-dependent.
Our implementation includes varies different materials such as silicon, and gallium

arsenide. Table 1 gives a full list of available materials, and the sources where we have
gathered the data from.
In all cases the data were given on far too coarsely discretized wavelength grids. To
fit the fine grid defined by our incident spectrum, see Section 2.3.4.1, we needed to
interpolate the data sets. For this purpose we used cubic spline interpolation.

2.3.5. Generation rate

Absorption and transmission lead to a decrease in intensity. The intensity drop caused
by absorption is assumed to generate electron-hole pairs by a generation rate G = G(x)
according to equation (2.7). The generation rate is comprised of the forward G+ =
G+(x) as well as the backward moving part G− = G−(x)

G = G+ +G− .
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Each generation rate G+, G− consists of an integral which needs to be discretized. For
a position zj within layer i, i.e. zj ∈ [zmi , zmi+1

), this is done as follows

G+(zj) =
∑

k: λk≤λmax
i

λk
hc

αi(λk) I
+
in,i(λk) exp

(
−αi(λk)

(
zj − zmi

))
∆λ ,

with λmax
i :=

hc

Egap
i

,

where ∆λ denotes the spectral resolution, and the layer i’s band gap is given by Egap
i .

The generation rate G− is discretized in a similar manner with the obvious change in
interface position.

2.4. Case studies

We have implemented an optical model to simulate the absorption process governed
by the Lambert-Beer law in one dimension. Amongst others, a validation of our im-
plementation will be done in this section as a multi-step process. At first we will
check that the anti-reflection coating (ARC) is implemented well and produces fitting
reflectance values. Thereafter we will validate the absorption process and its resulting
generation rate.

2.4.1. ARC’s reflectance

The frontal reflection routine will be tested by two different set-ups. An air-silicon
interface as well as an air-ARC-silicon interface are used for the calculation of spectral
reflectances given the incident AM1.5d spectrum.
Krč et al. [21, p. 203] have implemented a model for optical simulations which is

commercially available. They published data which they have gathered from sample
runs.
As the data is accessible only from plots we needed to digitalize them. For this purpose
we have used the software engauge [24]. The extraction process is not done in an ideal
fashion which leads to the introduction of a further error source. This digitalization
error is rather large and we approximated it by a constant systematic error of 0.5% of
each axis’ length. Thus, the reference data has an estimated wavelength error ελ, and
reflectance error εR of

ελ = 0.5% · 800 nm = 4 nm , εR = 0.5% · 0.6 = 0.003 .

Both simulations were done with similar parameter set-ups. An overview is given in
Table 2. The exact refractive indices that Krč et al. used were not specified such that
we used publicly available data as indicated in the table. Figure 7 shows the reference
data compared to the data obtained by our implementation. The upper plot gives the
raw data and in the lower shows pointwise errors.
The two implementations result into slightly different reflectance values for the simple
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Parameter Air-silicon Air-ARC-silicon

Incident spectrum AM1.5d AM1.5d
Air’s refractive index nair 1 1
Air’s extinction coefficient κair 0 0
ARC’s material – Si3N4

ARC’s depth dARC – 70 nm
ARC’s refractive index nARC – (see Table 1)
ARC’s extinction coefficient κARC – (see Table 1)
Bulk’s material Si Si
Bulk’s refractive index nbulk (see Table 1) (see Table 1)
Bulk’s extinction coefficient κbulk (see Table 1) (see Table 1)
Minimal wavelength λmin 400 nm 400 nm
Maximal wavelength λmax 1199 nm 1199 nm
Wavelength step width ∆λ 1 nm 1 nm

Table 2.: Parameters used to simulate an air-silicon, and an air-ARC-silicon front inter-
face. The air, and bulk are characterized by their refractive indices nair, nbulk,
and extinction coefficients κair, κbulk. An ARC layer is specified by its ma-
terial, depth dARC, and refractive index nARC. The uniform wavelength dis-
cretization is given by λmin, λmax,∆λ.

“bare” air-silicon interface as can be seen from the middle error plot. The difference
of both results was measured using scaled Lp-norms and their values are displayed in
Table 3. The errors are below 1% for all norms which show good agreement of the
data in all aspects. By observing the middle error plot one can argue that the seen
difference might solely result from the errors introduced by the digitalization process.
The lower plot depicts the pointwise difference of Krč’s data to our own implementa-
tion’s. Here a relative error would diverge as the data should tend to zero and even
small differences result into a large relative error. The error marks tend around the
zero mark line for most of the time except for smaller wavelengths. The Lp-norms from
Table 3 are around 2%-5% which is larger than from the bare interface. This could
again result from the fact that we might use different material parameters compared
to the implementation by Krč.

2.4.2. Generation rate – constant model

At first the generation rate will be validated for a test case of constant parameters,
i.e. wavelength-independent values. Thus the generation rate has an exact solution
which can be expressed analytically. As a reference we have chosen the GUI program
AFORS-HET by the Helmholtz Zentrum Berlin [47].
We will consider a layer-structure in the form of air-silicon-air. The silicon layer’s

depth L is uniformly discretized by M nodes. The optical parameters of refractive
index and extinction coefficient are given by the wavelength-independent constants
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Figure 7.: Reflectance values for a bare air-silicon, and an air-ARC-silicon interface
were computed. The upper figure shows the reference data obtained from the
book by Krč [21, p. 203] as well as from our own simulation. The reference
data has been taken from published plots which introduced a “digitization”
error and is estimated by error bars in the lower two plots. Data for the
bare interface is analyzed by its relative error in the middle plot and the
relativized digitizing error has been overlayed. The lower plot shows the
pointwise error for the ARC interface together with the digitizing error.
Only some data points are shown in the error plots for visibility.
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p-Norm

∥∥∥R(bare)
Sim −R(bare)

Ref

∥∥∥
p∥∥∥R(bare)

Ref

∥∥∥
p

∥∥∥R(ARC)
Sim −R(ARC)

Ref

∥∥∥
p∥∥∥R(ARC)

Ref

∥∥∥
p

1 0.003 0.025
2 0.004 0.027
∞ 0.009 0.046

Table 3.: Reflectances at an air-silicon interface R(bare)
Sim , and at an air-ARC-silicon in-

terface R(ARC)
Sim were calculated. Reference data R(bare)

Ref , R
(ARC)
Ref were obtained

from Krč [21, p. 203]. The errors for each interface type were calculated using
Lp-norms and scaled by the reference reflectance’s norm.

nair, κair for the air layers, and respectively nSi, κSi for the silicon layer. The spec-
trum’s irradiance I is taken to be the constant I(λ) ≡ I0. The wavelength interval
is discretized with a constant step width ∆λ in between λmin, λmax. Furthermore, we
specify silicon’s band gap by Egap and all parameters’ values are explicitly stated in
Table 4.
The reference program needed some further tweaking to represent the desired model.
The air and silicon layer were set as incoherent. As the program needs contacts, and
interfaces at the front, and back they were set as plane, non-absorbing, and non-re-
flecting interfaces. The absorbing silicon layer was also set as incoherent and all the
recombinations processes were disabled.
The generation rate is given by the general equation (2.7). For the case of constant

parameters it simplifies to

G(x) = C

∫ λ̃max

λmin

exp

(
−Λ

λ

)
dλ ,

with





C :=
αSiI0

Eγ
=

4πkSiI0

hc

λ̃max :=
hc

Egap
< λmax

Λ := 4πkSix ,

where we have used definitions (2.5), (2.6).
The integral can be expressed via its antiderivative F by

∫ λ̃max

λmin

exp

(
−Λ

λ

)
dλ = F

(
λ̃max

)
− F (λmin) ,

with F (λ) := λ exp

(
−Λ

λ

)
+ Λ Ei

(
−Λ

λ

)
,

where the special exponential integral function Ei has been introduced

Ei(x) := −
∫ ∞

−x

e−t

t
dt , x 6= 0 .
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Parameter Value

Length L 1 µm
Discretization points M 1000
Air’s refractive index nair 1
Air’s extinction coefficient κair 0
Bulk’s refractive index nSi 4
Bulk’s extinction coefficient κSi 1
Bulk’s band gap Egap 1.124 eV
Spectral irradiance I0 1.5 W

m2 nm

Wavelength’s step width ∆λ 1 nm
Wavelength’s lower limit λmin 300 nm
Wavelength’s upper limit λmax 1199 nm

Table 4.: The constant model’s parameters are defined in this table. An air-silicon-air
system is looked at with refractive indices nair, nSi, and extinction coefficients
κair, κSi. The silicon’s length L is discretized by M equidistant points, and
its band gap is given by Egap. The spectrum is given by a flat profile of I0

with the wavelength discretization of λmin, λmax,∆λ.

Thus the exact solution for this scenario is given by

G(x) =





C

(
F
(
λ̃max

)
− F (λmin)

)
, x > 0

C
(
λ̃max − λmin

)
, x = 0 .

(2.12)

Now we can do a three-way validation of our model compared to the reference data
obtained from AFORS-HET as well as to the exact solution. In the upper plot of
Figure 8 one can see the raw data of the exact solution, AFORS-HET, and from our
own simulation. As the documentation of the reference program did not mention which
quadrature rule they used for the general generation rate integral (2.7) we implemented
a midpoint and a trapezoidal rule. The lower plot of Figure 8 shows the relative error
w.r.t. the exact solution. We deduced from it that AFORS-HET also implemented the
midpoint rule.
In general the results show excellent agreement of the reference data and our sim-
ulation with the midpoint rule implementation. Even as the trapezoidal rule shows
better results when compared to the exact solution, i.e. the relative error has a smaller
absolute value, we will still be using the midpoint implementation for the next valida-
tions. The reason being that we will be using AFORS-HET as our source of reference
data. Furthermore, if more accurate results are needed one can easily switch to the
trapezoidal rule within our implementation.
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Figure 8.: An air-silicon-air layer system is treated with constant optical parameters.
The total length L is uniformly divided byM points. The spectrum is taken
to be constant as well with an irradiance I0 and all values are specified in
Table 4.
The upper plot shows the raw generation rate of the exact solution (2.12),
reference data obtained from [47], and our simulation using midpoint, and
trapezoidal integration rules.
The lower plot shows their relative error w.r.t. the exact solution.
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Figure 9.: An air-silicon-air layer system is treated with constant optical properties.
The total length L is uniformly divided by M points. As incident spectrum
the AM1.5g spectrum is chosen with wavelength limits λmin, λmax, and uni-
form step width ∆λ. All constant values are specified in Table 4.
The upper plot shows the raw generation rate of reference data by
AFORS-HET [47], and by our simulation. The lower plot shows the rel-
ative error of both data sets.

2.4.3. Generation rate – AM1.5

As our next step we will check our implementation with the real-world spectrum
AM1.5. As the spectrum does not have a closed-form we cannot find an exact so-
lution and can only validate against the reference program AFORS-HET [47].
The simulation is done for the same air-silicon-air layer setup as in the previous sec-

tion. The material parameters can be reviewed again from Table 4 with the important
change that the irradiance I is not anymore the constant value I0. As irradiance we
have chosen the standard solar spectrum AM1.5g which was discussed in Section 2.2.3.
The wavelength limits λmin, λmax, and discretization step width ∆λ are specified in
Table 4.
The data obtained from the reference program, and from our implementation are

displayed in Figure 9. The upper plot shows the raw data and their relative error is
shown in the lower plot. One can see the excellent agreement of both data sets as the
relative error has a small order of magnitude.
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Figure 10.: An air-silicon-air layer system is treated with wavelength-dependent opti-
cal properties. The total length L is uniformly divided by M points. We
have chosen a constant incident light spectrum. All constant values are
specified in Table 4.
The upper plot shows the raw generation rate of reference data by
AFORS-HET [47], and by our simulation. The lower plot shows the relative
error of both data sets.

2.4.4. Generation rate – crystalline silicon

To resemble real-world materials our implementation also handles non-constant optical
material parameters. The two important parameters to note are the refractive index
n, and the extinction coefficient κ, see Section 2.2.1.
We will test our implementation by a similar model as before consisting of a one layer

air-silicon-air setup. The simulation and discretization constants are the same as before
which were given in Table 4. As layer material we have chosen crystalline silicon which
leads to wavelength-dependent refraction index nSi = nSi(λ), and extinction coefficient
κSi = κSi(λ). The AFORS-HET program is used as reference again.
The results obtained from the reference program, and our own implementation are
displayed in the upper plot of Figure 10. One can see the good agreement of both data
sets as one checks the relative error in the lower plot. The relative error is in the order
of 10−6 which sounds reasonable as the reference program only works with an accuracy
of 10−7.
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Figure 11.: An air-silicon-air layer system is treated with wavelength-dependent opti-
cal properties. The total length L is uniformly divided by M points. As
incident spectrum the AM1.5g spectrum is chosen with wavelength limits
λmin, λmax, and uniform step width ∆λ. All constant values are specified
in Table 4.
The upper plot shows the raw generation rate of reference data by
AFORS-HET [47], and by our simulation. The lower plot shows the relative
error of both data sets.

2.4.5. Generation rate – varying model

The combination of wavelength-dependent material parameters and spectrum will be
looked upon in this section. The general setup is chosen as before to be a one-layer
system consisting of air-silicon-air and the simulation constants are the same as in
Table 4. The spectrum is set to be the AM1.5g and the material is crystalline silicon.
Both data sets were taken from the AFORS-HET program and interpolated to fit into
the wavelength range’s discretization specified in Table 4.
Figure 11 displays the raw data of our implementation, and AFORS-HET in the

upper plot. The lower plot shows the relative error which lets us conclude that both
programs produce very similar results.
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Parameter Value

Length L 0.1 µm
Spatial nodes M 1000
Bulk material c-Si
Incident spectrum AM1.5g
Minimal wavelength λmin 300 nm
Maximal wavelength λmax 1199 nm
Step width ∆λ (0.5, . . . , 100)nm

Table 5.: Simulations were run to test the dependence of generation rate upon the
wavelength discretization. The exact values used are shown here. The step
width of ∆λ = 0.5 nm represents the exact spectrum and it was varied with
logarithmically spaced steps from 1 nm to 100 nm.

2.4.6. Wavelength’s sensitivity

The spectrum and material parameters have been sampled by a uniform wavelength
discretization of ∆λ = 1 nm. This discretization choice is arbitrary and we will test
the final generation rate’s sensitivity on this parameter.
As incident light spectrum we have chosen the standard AM1.5g. The structure

was chosen to be a one-layer system of crystalline silicon with length L. The spatial
position is uniformly discretized by M nodes. The incident spectrum is propagated
once through the whole structure without any reflection effects.
The AM1.5g spectrum is defined by a piecewise uniformly discretization of ∆λ =
0.5 nm for wavelengths below λ = 400 nm and ∆λ = 1 nm for larger wavelengths. The
material parameters have different discretizations depending on material and source,
see Section 2.3.4.3. The data sets were interpolated by cubic splines in the range of λmin

up to λmax by different constant step widths ∆λ. The exact values used are gathered
in Table 5.
The computed generation rates are shown in the left picture of Figure 12. The data

sets seem to match for step widths below ∆λ = 47 nm and we will use the following
scheme to measure the accuracy. The solution obtained from the discretization by the
AM1.5 spectrum is treated as the “exact” solution G∗. Generation rates G = G(∆λ)
obtained for larger step widths ∆λ are measured by the following norms2 | · |˜̀p

|G|˜̀p :=
‖G∗ −G‖`p
‖G∗‖`p

, p = 1, 2,∞ . (2.13)

This definition arose from the idea that G∗ is viewed as our exact solution and one
wants to measure the “difference” introduced by using a coarser grid. We have decided
to use the `p-norms as they measure sizes of vectors, and by dividing through ‖G∗‖`p
we normalize it towards an average error. We have explicitly not chosen Lp-norms as

2The functions | · |˜̀p are not norms in the mathematical sense but rather measuring functions of the
relative distance towards the element G∗. Nonetheless we will call them norms for convenience.
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Figure 12.: The left image shows the generation rate for different step widths of the
wavelength discretization. We have scaled the generation rates by the
maximal value of the “exact” graph which has been calculated using the
AM1.5g spectrum’s discretization (∆λ = 0.5 nm, 1 nm). Generation rates
using coarser discretizations are also shown.
The right plot shows the errors of generations rate using different step
widths calculated by the specialized norms | · |˜̀p , see equation (2.13).

they can be closely approximated by our normalized `p-norms for uniform grids which
are a lot easier to compute.
The right plot of Figure 12 displays these values of |G|˜̀p for different grids. One can
see that there is a large error introduced as one uses grids with step widths above
two nm. We conclude that one should use the finest available grids as even for simple
layer setups the errors tend to become large very fast.

2.4.7. Position’s sampling rate

The generation rate has been calculated along the depth of the solar cell by using a
uniformly distributed grid. In previous runs the node number M was set fixed to 1000
and we will investigate if this number is reasonable.
For this purpose we have done simulations similar to the one from Section 2.4.6. The

cell is again modeled by a single crystalline silicon layer of length L with a uniform
grid of M nodes. As incident spectrum we have chosen the standard “AM1.5g” in
between λmin, and λmax (see Section 2.3.4.1) which is propagated once through the
whole structure. The exact values are gathered in Table 6.
To investigate the generation rate’s convergence rate we have calculated a generation
rate G∗ on a very dense grid using M∗ nodes. The generation rate G∗ is treated as the
“exact” solution and other generation rates will be compared to it. For the purpose of
comparing we define a norm | · |L̃p similar to the one defined in equation (2.13) but
using integral Lp-norms instead. Let the generation rates using only M � M∗ nodes
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Parameter Value

Length L 0.1 µm
Spatial nodes M 10,20,50,100,500,1000,5000
“Exact” node M∗ 105

Bulk material c-Si
Incident spectrum AM1.5g
Minimal wavelength λmin 300 nm
Maximal wavelength λmax 1199 nm
Step width ∆λ 0.5 nm

Table 6.: Simulations were run to test the dependence of generation rate upon the
spatial discretization. The exact values used are shown here. The positional
node number M∗ represents the exact solution.

be given by G = G(M) such that

|G|L̃p :=
‖G∗ −G‖Lp
‖G∗‖Lp

, p = 1, 2,∞ . (2.14)

We have interpolated the generation ratesG(M) to fit the finer grid ofG∗ by using cubic
splines. The integrals within the L1, L2-norms were approximated by a trapezoidal
integration rule.
In Figure 13 one can see the raw generation rate using only M = 10, 20 nodes com-

pared to the “exact” solution using M∗ = 105 nodes.
The convergence rate will be calculated using the introduced measuring functions
| · |L̃p , see equation (2.14). Their obtained values are displayed within a double loga-
rithmic plot in Figure 14. We have fitted linear polynomials fp = fp(x; ap, bp)

fp(x; ap, bp) = apx+ bp , p = 1, 2,∞ , (2.15)

to the logarithmic data sets
(
logM, log |G(M)|L̃p

)
M

such that the following should
hold

fp(logM) ≈ log |G(M)|L̃p , p = 1, 2,∞ .

The fitted polynomials are shown on top of the data points in Figure 14 and their
residuals are also displayed. The polynomials agree good with the data sets, and their
residuals show no obvious or strong dependencies. Together with the statistical fitting
characteristics from Table 7 one can conclude that the double logarithmic data points
show linear dependencies.
From Table 7 one can gather that the convergence rate for the error (calculated by
| · |L̃p) is around 4.4 computed by the L1-norm, respectively 4.3 by the L2-norm, and
3.9 by the L∞-norm.
We con now answer our initial question using the errors | · |L̃p shown in Figure 14.

Even a node numberM = 100 would have given a solution with errors below 10−5. We
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Figure 14.: The upper plots show the calculated values from measuring functions | · |L̃p
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their fits by functions fp of type (2.15) are given by “L̃p Fit”. The lower
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data sets

(
logM, log |G(M)|L̃p

)
M
.

27



Chapter 2. Absorption of Sun Light 2.4. Case studies

Parameter L̃1 L̃2 L̃∞

p-norm p 1 2 ∞
Fit parameter ap -4.38 -4.34 -3.89
Fit parameter bp 4.34 5.49 4.89
Lower bound a−p -4.48 -4.39 -3.97
Upper bound a+

p -4.28 -4.29 -3.82
Lower bound b−p 3.77 5.19 4.48
Upper bound b+

p 4.91 5.78 5.30
Residual sum of squares RSS 0.440 0.119 0.228
Coefficient of determination R2 0.999 1.000 1.000
Degrees of freedom DoF 7 7 7
Adjusted R2 R2

adj 0.999 1.000 1.000
Root-mean-square error RMSE 0.251 0.130 0.180

Table 7.: The linear polynomials fp have two parameters ap, bp, see equation (2.15).
The values obtained from fitting the polynomials to the double logarithmic
data sets

(
logM, log |G(M)|L̃p

)
M

are shown here. Their 95% confidence in-
tervals are given by (a−p , a

+
p ), (b−p , b

+
p ). For each fit the standard statistical

parameters (RSS,R2, Dof,R2
adj, RMSE) are also given.

conclude that for simple one-layer structures the high node number M = 1000 is not
worth the time consumption as the material data sets introduce far greater errors.
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2.5. Lambert-Beer vs. Yee model

2.5.1. Wave model of light

A more accurate approach than possible by geometrical optics for the propagation
of light is given by electrodynamics. Within electrodynamics light is treated as an
electromagnetic wave which is governed by Maxwell’s equations. Maxwell’s equations
are a system of coupled, partial differential equations and in differential form using the
SI unit system they are given as [15, p. 2]

∇ ·B = 0 , ∇× E +
∂B

∂t
= 0 (2.16)

∇ · E =
ρ

ε0
, ∇×B− 1

c2

∂E

∂t
= µ0J , (2.17)

The independent variables are given by position x and time t. The dependent variables
are the electric field E = E(x, t), magnetic field B = B(x, t), displacement field
D = D(x, t), and magnetizing field H = H(x, t). As source terms there are the electric
charge density ρ = ρ(x, t), and electric current density J = J(x, t). Constants to the
partial differential equations are the the vacuum permittivity ε0, vacuum permeability
µ0, and speed of light c. Their values are given in the appendix.
To solve the equations one has to introduce material laws

D = D(E,H) , B = B(E,H) .

The so-called linear non-dispersive materials are given by the following simplification

D = εE , B = µH ,

where we introduced the electric permittivity ε, and magnetic permeability µ. In
general, both quantities are position-dependent tensors ε = ε(x), µ = µ(x) ∈ R3×3.
Usual approximations are given by isotropic materials ε = ε(x), µ = µ(x) ∈ R, or
homogeneous materials ε, µ ≡ const.
The Maxwell’s equations are subject to a compatibility condition acting on the source
terms which can be interpreted as a charge conservation law [48]

∂ρ

∂t
+∇ · J = 0 . (2.18)

Another constitutive law is Ohm’s law

J = σE + Jappl ,

for a given conductivity σ = σ(x) > 0, and applied current density Jappl = Jappl(x).
After Fourier-transformation one works with position x, and frequency ω dependent

fields E = E(x, ω),H = H(x, ω). The generation rate G = G(x) can be calculated
via [25]

G(x) =

∫

ΩAM1.5

ε′′|E|2
2~

dω , (2.19)
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where ε′′ = Im ε is the imaginary part of the electric permittivity ε of the semicon-
ducting material, and

∫
ΩAM1.5

· dω represents a weighted integration over the incident
AM1.5 spectrum in frequency domain.

2.5.2. Yee model

The Maxwell’s equations (2.16) and (2.17) can be solved by a scheme introduced in
1966 by Kane Yee [55]. It approximates the Maxwell’s equations with a second or-
der accurate scheme by central finite differences in space-time. The time and space
steppings are carefully chosen to ensure numerical stability. The electric and magnetic
fields are solved for on a staggered space grid by a fully explicit scheme.
The idea to simulate the absorption by this rigorous Maxwell solver is quite differ-

ent to the absorption by the Lambert-Beer model. Here the cell is illuminated only by
monochromatic light sources. For each source the electric, and magnetic field strengths
E,B are solved for and then the generation rate is calculated via equation (2.19). Fi-
nally, the generation rates are averaged using weights from the incident light spectrum.

2.5.3. Lambert-Beer vs. Yee model

The Yee model should yield promising results, and the comparison to the simpler
Lambert-Beer model is of great interest. We have implemented a rigorous Maxwell
solver on the basis of the Yee model which solves the Maxwell’s equations in two
dimensions. By averaging one can get one-dimensional results which will be compared
to the results from our Lambert-Beer implementation.
Our general setup was chosen to be a single layer crystalline silicon cell of length L.

As incident spectrum we choose the standard AM1.5g spectrum in the range of λmin

to λmax.
The Lambert-Beer simulation (dubbed “O1LB”) used a rear contact made of silver.
The material parameters were interpolated by cubic splines to fit the discretization of
the AM1.5 spectrum (see Section 2.3.4.1) which is quite dense – using step widths in
the order of ∆λ = 1nm. The depth of the cell is uniformly sampled by M nodes.
The Yee implementation (dubbed “FDTD”) is run for an ideally conductive back layer
which is important as it is an approximation to the silver rear contact layer of the
O1LB setup. The material parameters, and incident spectrum are spectrally resolved
by a different node numbers N . The Lambert-Beer simulation uses node numbers of
around N = 1000. For the Yee implementation we will only be able to run simulations
in the order of N ≈ 100 because the computations were consuming too much resources
– more than 300 GB of RAM were needed to run the simulation for N = 100. All
parameters’ values are gathered in Table 8.
Figure 15 shows the calculated generation rates by comparison. Both generation

rates show the same overall behavior and are of the same order of magnitude but there
is still a significant difference between both. We should definitely acknowledge that we
assumed different back contact materials. This results from the fact that our FDTD
implementation could not handle real-world metals and rather approximated them by
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Parameter Value

General setup
Incident spectrum AM1.5g
Bulk material c-Si
Length L 1 µm
Wavelength minimum λmin 300 nm
Wavelength maximum λmax 1199 nm

Lambert-Beer
Rear material Ag
Spectral step width ∆λ 0.5, 1 nm
Spectral nodes N 1000
Positional nodes M 1000

FDTD
Rear material perfect electric conductor
Spectral nodes N 100
Positional nodes M 500

Table 8.: Simulations were run by the Lambert-Beer model, and by the Yee imple-
mentation (“FDTD”). Parameters for the general setup as well as for each
simulation are given here.

perfect electric conductors, i.e. their conductivity σ is infinite. The definite reasons for
the difference were not clear to our group and further analysis is still needed.
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Figure 15.: Generation rates obtained from a Lambert-Beer, and Yee’s method sim-
ulation are shown. The simulation setups are described in Table 8. The
generation rates were scaled by the maximum of both data sets, and the
position is also normalized. The left image shows both data sets on linear
scales, and the right within a double logarithmic plot.
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3. Charge Transport in
Semiconductors

3.1. State of the art

Electrical charge transport within semiconductors can be modeled by the drift-diffusion
equations. First simulations were done by Scharfetter et al. in 1967 [12]. Their pur-
pose was to determine radiation’s effect upon performance for outer space applications.
In 1976 conventional silicon solar cells had efficiencies of around 11.8%. Simulations
by Fossum helped to reveal cell design criteria and necessary material parameter re-
finements to possibly increase efficiencies above 20% [10]. Two-dimensional modeling
became available in 1982 as Gray published his application SCAP2D [11]. The ap-
plications so far have all been using finite difference discretization schemes whereas
the first finite element method program PC1D was available in 1985 [39]. It has been
widely adopted in the photovoltaic industry and turned open-source in mid 1990’s.
Up to today, it is still the most widely used simulation program in the photovoltaics
community despite being just one-dimensional and using out-dated models [38].
Today simulations are used on a broader field but often with specialized goals. For
full device modeling the most widely used tools in the industry are Synopsys’ Sen-
taurus™ [44], Silvaco’s Atlas™ [41], and COMSOL Multiphysics® [3]. For specialized
simulations resulting from specific tasks many researchers develop their own applica-
tions (e.g., Deceglie for nanophotonic light-trapping [4], exciton flow in organic solar
cells [45]).
Apart from these general purpose device modeling applications there are programs

especially written for solar cells. The Helmholtz-Zentrum Berlin has published a fea-
ture-rich Windows gui-tool AFORS-HET [47]. It can run numerical simulations for
various input spectra and do advanced electrical transport simulations within het-
erostructures. The problem is that lots of numerical schemes are not fully documented
such that the user does not know which numerical method is being used.

3.2. Semiconductors

3.2.1. Physical understanding

Solid matter can roughly be grouped into 3 categories: metals, insulators, and semi-
conductors. Their electric conductivity behavior is used for classification and Fig-
ure 16 shows a sketch of the general temperature dependence. The overall trend
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is that metals have a very high conductivity, insulators a negligible, and semicon-
ductors a conductivity strongly increasing with temperature. A simple explanation
for this behavior is given in solid-state physics in terms of their band structure.

Metal

Semiconductor

Insulator

Temperature

C
on

d
u
ct
iv
it
y

Figure 16.: A schematic sketch of
the conductivity’s temperature de-
pendence for metals, insulators,
and semiconductors.

To understand the concept of band structures one
should look at the simple test case of a single hy-
drogen atom. By quantum mechanical calcula-
tions one can show that the energy eigenstates
are discrete. When grouping multiple hydrogen
atoms together into a periodic potential one does
not get discrete energy eigenstates anymore nor a
complete spectrum but rather disjoint intervals of
allowed and forbidden energy levels. These inter-
vals are called the solid’s band structure.
The general characterization by solid-state

physics is given in terms of the highest filled en-
ergy state. The energy states are filled from the
bottom to the top and for metals the highest state
is right within a partially filled band. For insula-
tors and semiconductors the band (“valence band”)
is fully filled and there is a gap to the next band.
This band gap is a forbidden region without any possible electron states. Insulators
and semiconductors differ in their size of the forbidden region between the filled va-
lence band and the first empty one – called conduction band. Typically for band gaps
smaller than 4 eV one thinks of semiconductors and for larger values of insulators [49].
Figure 17 shows the different schemes of band structures.
The band picture holds only in an averaged sense that the electrons distribution

among the energy states is given in this kind of band structure. By quantum mechanics,
electrons actually follow the Fermi distribution f(E, T ) for energy E at temperature
T with respect to the Fermi level1 EF [14, p. 144]

f(E, T ) :=

(
exp

(
E − EF
kBT

)
+ 1

)−1

=


exp

(
E
EF
− 1

kBT
EF

)
+ 1



−1

. (3.1)

Figure 18 shows the Fermi distribution for different temperatures and one can clearly
see that the distribution smears out for increasing temperatures. From this follows
that electrons at the top of the valence band have a non-vanishing probability to have
an energy which is larger than the bottom of the conduction band such that the elec-
trons will get pushed above the band gap. This process is called thermal excitation
and depicted within Figure 19.
The thermal excitation of electrons is the reason why semiconductors can conduct elec-
tricity better at higher temperatures. The resulting electron density in the conduction

1 The Fermi level EF describes the energy needed to add one electron to the system, and at ther-
modynamic equilibrium it represents a hypothetical energy level with 50% probability of being
occupied.
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Figure 17.: A schematic plot of energy bands for different materials is shown. The
energy bands have two characteristics: their shading, and horizontal di-
mension. The shading denotes the density of states which is the number of
filled electron states at a given energy. Its scale goes from unfilled (white)
up to filled (black). The horizontal dimension depicts the total number of
electron states for a given energy level which explicitly includes filled as
well as unfilled states. The dashed line denotes the Fermi level EF.
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Figure 18.: The Fermi distribution f given by equation (3.1) is shown. Its dependence
on the ratio of temperature T , and Fermi level EF is clearly visible.
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Figure 19.: Possible excitation processes within a solar cell are shown. An electron (e-)
is excited from within the valence band into the conduction band and thus,
creating a hole (h+) in the valence band. The conduction band is denoted
by its minimal energy EC , and the valence band by its maximal energy EV .
In radiative excitation the process is triggered by an incoming photon (γ)
whereas lattice vibrations (phonons) trigger thermal excitations.

band is called the intrinsic carrier concentration ni which depends on the specific ma-
terial and strongly on temperature. For silicon Misiakos et al. [23] have published a
model which approximates experimental data on the range from 78 K up to 340 K with
no more than 5% error. Their model is given by

ni(T ) = 5.29 · 1019

(
T

300 K

)2.54

exp

(
−6726 K

T

)
1

cm3 ,

with a value at room temperature of ni(300 K) = (9.7± 0.1)× 109 1
cm3 .

Apart from the thermal excitation process there exists radiative excitation where elec-
trons get pushed above the energy gap by absorbing energy from incoming photons.
The absorption process is shown in Figure 19. To calculate this one needs detailed
input of the optical processes which is usually done via numerical simulations, see Sec-
tion 2.2.
Every excitation process is treated as increasing the occupation number of electrons
within the conduction band and decreasing the valence band’s number. Thus there is
one electron missing inside the valence band – interpreted as a hole – which acts as
another free but positive charge. Electrons in the conduction band and holes in the
valence band are treated as charge carriers which can freely move around.
The electrons in the conduction band are in a meta-stable state and by a non-vanishing
probability the electron will relax back down into the valence band. This motion can
be interpreted as an annihilation of the electron with a hole, thus a process called
recombination. There are three major types of recombination: radiative, Shockley-
Read-Hall, and Auger. General sketches are shown in Figure 20.
Radiative recombination is in principle a reversed absorption process in which an elec-
tron from the conduction band, and a hole are annihilated and the energy difference
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Figure 20.: Possible recombination processes within a solar cell are shown. Elec-
trons (e-) in the conduction band are in a meta-stable state and recombi-
nation with holes (h+) from the valence band are possible. The conduction
band is denoted by its minimal energy EC , and the valence band by its
maximal energy EV . Radiative recombination is a reverse radiative excita-
tion process. Shockley-Read-Hall (SRH) recombination uses defect states
of energy ET within the band gap to mediate the recombination. Auger
recombination is a three particle interaction process. A high energy hole or
electron recombines and the excess energy is given off to another electron
or hole. Only the electron-hole-electron interaction is sketched here.

is given off directly in form of photons. This process dominates the recombination in
direct band gap semiconductors2 such as gallium arsenide.
Another recombination process is possible if the periodic structure of the semiconduc-
tor’s lattice is broken. These asymmetries are called lattice impurities. The impurities
create new energy states in the forbidden region which help conduction electrons to
move down into the valence band using energetically smaller steps. As the energy
differences of each step are smaller, it is easier to exchange the energy with phonons
(interaction with the lattice vibrations) or photons. This process is known as Shockley-
Read-Hall recombination.
The third process, Auger recombination, is the reversed impact ionization. Here the
conduction electron, and hole annihilate and the freed energy is absorbed by a third
carrier. The third carrier’s excitation energy is subsequently dissipated by generating
new phonons.
The equilibrium concentration of carriers within the semiconductor can be altered by

a process called doping. Herein one substitutes single atoms in the crystal lattice with
atoms of a different element. Substituting it with an element of a higher group3 will

2Electron states at the top of the valence band, and bottom of the conduction band are characterized
by a specific crystal momentum out of the first Brillouin zone. In case they are the same the
material is of direct band gap type, otherwise indirect band gap type. An important implication is
that in a direct band gap semiconductor an electron can directly emit photons whereas in indirect
ones they need to interact with traps, or phonons first.
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Figure 21.: The doping process adds intermediate energy states into the forbidden
region. For n-type doped materials one uses elements that have one more
electron than the lattice’s element. Thus, it adds easily one electron to
the conduction band and the newly introduced energy states are close to
the conduction band’s edge. For p-type doping it works the opposite way.
Graphic taken from [42].

directly lead to more electrons in the conduction band. Vice-versa with less electrons
it adds more holes to the semiconductor. The substituted elements are called donor
atoms, and respectively acceptor atoms. Donor and acceptor atoms can be interpreted
as creating energy states within the forbidden region which ease the process of jumping
the band gap, see Figure 21.
Usually one dopes single regions only with donors or acceptors which results into a so-
called n-type or p-type semiconductor. In n-type region there is an excess of electrons
which are then called the majority carriers and minority carriers for holes. The
naming scheme is reversed in a p-type region. The Law of Mass Action states that at
equilibrium the product of electron density n0 and hole density p0 is a constant

n0 · p0 = n2
i = const .

As the doping densities usually exceeds the intrinsic density by several orders of mag-
nitude one can approximate the majority density by the doping density. Therefore, let
ND be the donor density, and respectively NA the acceptor density, which leads to the
following results for either n- or p-type regions

n-type: n0 ≈ ND =⇒ p0 ≈
n2
i

ND

p-type: p0 ≈ NA =⇒ n0 ≈
n2
i

NA

.

3Element groups refer to the columns of the periodic table of elements. Groups represent elements
which have the same amount of electrons in their outer most shell and thus, similar properties.
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For comparison purposes, in crystalline silicon the atom density is about 5× 1022 1
cm3

and doping concentration might be in the range of 1013 1
cm3 to 1018 1

cm3 . For doping
concentrations above 1018 1

cm3 one calls it degenerately doped and is usually abbreviated
with being a “n+” or “p+” region.

3.2.2. Unipolar semiconductor model

Macrophysical models for semiconductors can be derived from a basic approach by
treating the local charges via smeared out density distributions. The averages of these
densities will lead to macrophysical equation systems which one can readily solve by
numerical means.
In a first approximation we will only look at the electron charges and neglect holes –
thus the unipolar model. This simplifies the notation by a great deal and the extensions
towards an electron-hole model are straight-forward calculations of similar type. We
will derive the drift-diffusion equations from the Boltzmann equation via a perturbation
expansion called Hilbert expansion. It is mathematically rigorous and does not depend
on physical intuitions as compared to the usual moment method. Furthermore, we will
be doing the following approximations in detail

• diffusion scaling of the Boltzmann transport equation,

• low density approximation of the collision operator,

• parabolic band approximation,

• electrostatic approximation of an isotropically medium.

3.2.2.1. Semiconductor Boltzmann equation

From physical reasoning we know that semiconductors contain large numbers of elec-
trons in their conduction band, see Section 3.2.1. Thus, we employ a statistical ap-
proach of treating electrons via a continuous density n = n(x, t) and its distribution
f = f(x,k, t) for position x, time t, and momentum k [17, p. 46]

n(x, t) =

∫

B1

f(x,k, t)
dk

4π3
, (3.2)

where the integration is taken over the first Brillouin zone4 B1.
Now, f changes along a trajectory Γ =

{(
x(t),k(t)

)}
due to convective, and electric

effects given by df
dt

∣∣∣
Γ
. But we assume that its change balances the change due to

collisions of particles – given by the operator Q = Q[f ] ,

Q[f ]
!

= df
dt

= ∂tf + ẋ · ∇xf + k̇ · ∇kf .

4Semiconductors are treated as solids with arrays of atoms arranged within a periodic lattice. The
momenta need to be periodic as well and one often looks at a specific unit cell – the first Brillouin
zone [17, p. 4].
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For band energy ε = ε(k), and electrostatical potential V = V (x, t) one can state the
semi-classical equations of motion for electrons in a semiconductor as [17, p. 21]

~v := ~ẋ =∇kε, ~k̇ = e∇xV =: −eE .

Together one gets the semiconductor Boltzmann equation, which is usually stated along
with initial data finit

∂tf +
1

~
∇kε · ∇xf −

e

~
E · ∇kf = Q[f ] (3.3)

for x ∈ Ω ⊂ R3, t > 0, k ∈ B1 ⊂ R3

with f( · , · , 0) = finit .

The position x belongs to the set Ω which represents the device’s geometry.

3.2.2.2. Knudsen number

To derive macroscopic equations one looks at asymptotic behavior of the general Boltz-
mann equation (3.3). It can be scaled differently depending on the desired limiting
test case. For the transformation via scaling we need to introduce the following scal-
ing constants (usually denoted with a “hat” symbol) and scaled variables or functions
(subscript “s”) [17, p. 47]

x = λxs ,

v = v̂vs , v̂ =

√
kBT

m∗
,

k = k̂ks , k̂ =
m∗v̂

~
,

V = UTVs , UT =
kBT

e
,

t = τts ,

ε = ε̂εs , ε̂ = kBT ,

λC = v̂τC ,

E = ÊEs , Ê =
UT
λ
,

f(x,k, t) = fs(xs,ks, ts) ,

Q[f ] =
1

τC
Qs[f ] .

Here the positional scaling constant λ represents a characteristic length scale (e.g.,
device’s length), m∗ is given by the effective electron mass, τ is a time which will be
set later on, and τC is the average time between two consecutive collisions. The aver-
age collision time τC together with the average velocity v̂ define the average distance
between two collisions, the so-called mean free path λC .
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We assume that the transport is dominated by scattering processes such that the
distance between two consecutive collisions is much smaller than the characteris-
tic device’s length scale. This gives rise to the definition of the Knudsen number
Kn = α := λC

λ
� 1 which is just the scaled mean free path. The Knudsen number will

be used as a scaling constant for the general Boltzmann equation (3.3).
Concerning the time scaling constant τ there are two standard approaches. The hy-
drodynamical scaling sets τ equal to τC

α
and the diffusion scaling is given by τ = τC

α2 .
The specific scaling to choose depends on the equilibrium states associated with the
collision operator [17, p. 47].

3.2.2.3. Diffusion scaling

The scaling constants and functions introduced in the previous section together with
the diffusion scaling plugged into equation (3.3) lead to the (diffusion) scaled semicon-
ductor Boltzmann equation [17, p. 47]

(
1

τ
∂tsfs

)
+

1

~

(
ε̂

k̂
∇ksεs

)
·
(

1

λ
∇xsfs

)
− e

~

(
ÊEs

)
·
(

1

k̂
∇ksfs

)
=

1

τC
Qs[fs]

⇐⇒ α2∂tsfs +

(
v̂τCα

2

λ

)
∇ksεs · ∇xsfs −

(
eÊτCα

2

~k̂

)
Es · ∇ksfs = Qs[fs]

⇐⇒ α2∂tsfs + α(∇ksεs · ∇xsfs − Es · ∇ksfs) = Qs[fs]
(3.4)

for xs ∈ Ωs ⊂ R3, ts > 0, ks ∈ Bs ⊂ R3

with fs( · , · , 0) = finit,s ,

with the straightforward scalings of Ωs, Bs, finit,s.

3.2.2.4. Low density approximation for the collision operator

The low density approximation is important for many semiconductor devices as the
value of the density distribution f is under most circumstances quite small

0 ≤ f(x,k, t)� 1 .

The usual collision integral term Q[f ] of the semi-classical Boltzmann equation is
given by [17, p. 47]

Q[f ](x,k, t) =

∫

B1

S(x,k′,k)f ′(1− f)− S(x,k,k′)f(1− f ′) dk′ (3.5)

with abbr.: f = f(x,k, t), f ′ = f(x,k′, t) , (3.6)

where S(x,k′,k) is the transition probability between the states (x,k) and (x,k′). For
the low density approximation the quadratic terms in f are ignored which yields the
low density collision integral term QL[f ] [22, p. 33] ,

QL[f ](x,k, t) =

∫

B1

S(x,k′,k)f ′ − S(x,k,k′)f dk′ .
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By physical reasoning collisions should not alter the total particle number at any given
point and time. Thus, a collision operator is called conservative if and only if its
integral over k-space vanishes. One can readily check – by using the scattering rate’s
symmetric nature in k,k′ – that QL is truly a conservative collision operator, i.e.

〈
Q[f ]

〉
=

∫

B1

QL[f ](x,k, t) dk = 0 . (3.7)

In the low density approximation one uses a Maxwellian distribution M as approxi-
mation for the thermal equilibrium distribution feq [22, p. 33]. This is commonly done
for Fermi-Dirac distributions in the limit of high temperature and low particle density

feq(x,k, t) = M(k) ,

with M(k) := C exp

(
− ε(k)

kBT

)
, C :=

(∫

B1

exp

(
− ε(k)

kBT

)
dk

)−1

,

where ε(k) represents the state’s energy.
Starting off with the so-called principle of detailed balance which asserts that the local
scattering probability vanishes for all states (x,k), (x,k′) in thermal equilibrium. Thus
in the low density approximation this yields [22, p. 33]

S(x,k′,k)f ′eq = S(x,k,k′)feq

=⇒ S(x,k′,k)M(k′) = S(x,k,k′)M(k) . (3.8)

After realizing that the Maxwellian does not vanish for any wave vector k one can do
the general ansatz [22, p. 34]

S(x,k,k′) = φ(x,k,k′)M(k′) . (3.9)

Plugging equation (3.9) into equation (3.8) yields a condition on φ: it should be
symmetric in k,k′. This function φ is the called collision cross-section.
Using equation (3.9), and the symmetry property of φ gives the final form for the low
density collision term

QL[f ](x,k, t) =

∫

R3

φ(x,k,k′)
[
M(k)f(x,k′, t)−M(k′)f(x,k, t)

]
dk′ . (3.10)

It is important to note that the integration domain has been extended to the whole
space which is commonly done and convenient for further computations [17, p. 34].

3.2.2.5. Parabolic band approximation

Another approximation is needed – the parabolic band approximation. Therein, one
assumes that the conduction electrons’ energies ε are close to the conduction band
minimum EC [22, p. 85] ,

ε(k) = EC +
~2

2m∗
|k|2 .
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With the energy scaling introduced in Section 3.2.2.2 this reads as follows

εs(ks) =
ε(k̂ks)

ε̂
= EC,s +

1

2
|ks|2 with EC,s :=

EC
ε̂
.

3.2.2.6. Hilbert expansion

The Hilbert expansion is an expansion of solutions of the Boltzmann equation (3.4).
The distribution f is expanded in powers of the Knudsen number α [22, p. 87] ,

f = f0 + αf1 + α2f2 +O
(
α3
)
.

Substituting this expansion into the Boltzmann equation (3.4) and solving for different
powers of α will yield a new equation system.
The leading order term results from comparing the coefficients of α0 ,

0 = QL[f0] .

Now, f0 is within the kernel of the collision operator. Jüngel [17, p. 82] has shown that
for a cross section φ = φ(x,k,k′) which is positive, and symmetric in k,k′ the kernel
is spanned by Maxwellians. Thus, we know the leading order term of the solution is
given by

f0(x,k, t) = ñ(x, t)M(k) ,

M(k) = C exp

(
−|k|

2

2

)
, C =



∫

R3

exp

(
−|k|

2

2

)
dk

4π3



−1

=
(
2π3
)−1/2

.

Here the constant C was chosen such that the unspecified function ñ represents the
scaled electron density ns.
The next order of coefficient α1 leads to

Q[f1] =∇kε · ∇xf0 − E · ∇kf0

= Mk · (∇xn+ nE) , (3.11)

where the identities ∇kε = k, and ∇kf0 = −nMk are used which have been derived
from the parabolic band approximation.
A technical proposition by Jüngel [17, p. 101] states that solutions hi = hi(k) of

Q[hi] = M(k)ki , i = 1, 2, 3 , (3.12)

exist and uniqueness is guaranteed for functions satisfying 〈hiS〉 = 0 where we intro-
duced the integral over k-space – denoted by 〈 · 〉. Since equation (3.11) is a linear
combination of (3.12) with coefficients independent of k and by using the linearity of
Q one can argue that the solution f1 is uniquely given by

f1 = h · (∇xn+ nE) . (3.13)
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We need another propositions by Jüngel [17, p. 103] which assumes some technical
assumptions about the collision cross section φ, i.e. regularity assumptions, and invari-
ance w.r.t. isometric operations. Then there exists a non-negative function µ0(x) ≥ 0,
such that for solutions hi of equation (3.12) the following holds

∫

R3

k⊗ h
dk

4π3
= −µ0(x)I3 , (3.14)

where k⊗ h denotes a (3× 3)-matrix with entries (k⊗ h)i,j = kihj.
The first moment of f1 leads to the definition of the current density J where we make
use of equation (3.14)

J :=− 〈kf1〉
=−

〈
k
(
h · (∇xn+ nE)

)〉

=− 〈k⊗ h〉 · (∇xn+ nE)

=µ0(∇xn+ nE) . (3.15)

Finally, collecting coefficients of the order α2 gives

∂tf0 + v · ∇xf1 − E · ∇kf1 = Q[f2] . (3.16)

Taking the integral over k-space of equation (3.16), using the statements above, and
the conservative property (3.7) of Q yields

〈
Q[f2]

〉
= ∂t 〈f0〉+∇x · 〈vf1〉 − E · 〈∇kf1〉 = 0

⇐⇒ ∂tn−∇x · J = 0 . (3.17)

Equation (3.17) is a conservation law for the density n. The current density J is
compromised of the diffusion current µ0∇xn, and the drift current µ0nE where µ0

is called the (scaled) electron mobility. Equation (3.17) makes up the so-called drift
diffusion model.

3.2.2.7. Poisson’s equation

So far, the electric field E = E(x, t) in equation (3.15) has been treated constant which
is not accurate. It stems not only from external contributions but rather from inter-
nal charge distributions. The charge distribution ρ = ρ(x, t) is given by the electron
density, and doping contributions C = C(x) resulting from donors as well as acceptors
ND = ND(x), NA = NA(x)

ρ(x, t) = e
(
−n(x, t) + C(x)

)
, C(x) = ND(x)−NA(x) .

This charge distribution induces the electric field E by Gauss’s law (one of Maxwell’s
equations)

∇ ·
(
εE
)

= ρ ,
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where the dielectric tensor ε has been introduced. For isotropically materials one can
approximate this tensor by a constant ε.
Furthermore, in the electrostatic approximation of slowly changing magnetic fields, and
electric currents one can express the electric field by a scalar potential V = V (x)

E = −∇V
=⇒ ∇2V = −ρ

ε
. (3.18)

Equation (3.18) is called the (electrostatic) Poisson’s equation.
Its non-dimensionalization is done by scaling introduced in Section 3.2.2.2 together
with a possible density scaling

n(x, t) = n(λxs, τ ts) =: Ĉns(xs, ts)

C(x) = C(λxs) =: ĈCs(xs) ,

with Ĉ := max
x∈Ω

∣∣C(x)
∣∣ .

Poisson’s equation (3.18) is given in its scaled form as

∇2
xV = −ρ

ε

⇐⇒ 1

λ2
∇2

xs(UTVs) = −eĈ
ε

(Cs − ns)
⇐⇒ λ2

D∇2
xsVs = (ns − Cs) , (3.19)

where the (scaled) Debye length λD :=
√

UT ε

λ2eĈ
has been introduced.

3.2.2.8. Semiconductor equations

Equations (3.15), (3.17), and (3.19) make up the (scaled) semiconductor equations in
low-density, and small field approximation

∂tn−∇ · J = 0 , J = µ0(∇n− n∇V )

λ2
D∇2V = n− C ,

where the gradient ∇ is w.r.t. position x. The independent variables are given by
time t, and position x. The dependent variables one wants to solve for are the electron
density n = n(x, t), and electrostatic potential V = V (x, t). The external parameters,
and constants are the doping density C = C(x), the Debye length λD = const, and the
electron mobility µ0 = µ0(x).
Furthermore, one should note that for notational convenience the scaling index “s” on
each term has been omitted.
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3.2.2.9. Mobility

To numerically solve the drift-diffusion model one needs accurate models for the ma-
terial parameters. The charge mobility µ is one important material parameter which
has non-linear dependencies.
The charge’s mobility is limited by interaction processes. The most commonly used ef-
fects are the interaction with thermally generated lattice vibrations (phonons), ionized
impurities, and carrier-carrier interaction. Selberherr has approximated this mobility
by an overall constant µ∗ = 1430 cm2

V s
[40, p. 80]. It is important to note that the

mobility saturates for high electric field, and Caughey et al. have proposed a model to
include the saturation [2] ,

µ = µ∗

(
1 +

(
µ∗|E|
vsat

)β)−1/β

, (3.20)

where the saturation velocity vsat, and β were introduced as new parameters. Different
authors have published different fitting data for these parameters and we will be using
the original data by Caughey et al. [2] ,

β = 2 , vsat = 1.1× 107 cm

s
.

The values presented here are for electrons only and one should keep in mind that all
parameters (µ∗, vsat, β) depend on the carrier type.

3.2.3. Bipolar semiconductor model

The charge current flow in semiconductors is only treated in the lowest approximation
as being compromised exclusively of electrons. As explained in Section 3.2.1 for each
electron which has been excited above the band gap there exists a hole in the valence
band. These holes contribute to the current flow as well with a positive charge.
The treatment of holes is very similar to the treatment of electrons from before. The
starting point are Boltzmann distribution functions f (see equation (3.2)) but to dif-
ferentiate between electron and hole specific values one introduces subscripts “n” for
electrons, resp. “p” for holes

n(x, t) =

∫

B1

fn(x,k, t)
dk

4π3
, p(x, t) =

∫

B1

fp(x,k, t)
dk

4π3
.

For each distribution function one derives a Boltzmann transport equation similar to
equation (3.3) but there are two differences to note. One being the obvious different
electrical charge sign of holes which will lead to a sign change for the drift term.
The other one being that one can also include a generation-recombination term which
couples both transport equations.
This model leads to the so-called bipolar Boltzmann semiconductor equation system
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which reads in their unscaled form as [17, p. 92]

∂tfn + vn · ∇xfn −
e

~
E · ∇kfn = Qn[fn] + In[fn, fp] ,

∂tfp + vp · ∇xfp +
e

~
E · ∇kfp = Qp[fp] + Ip[fn, fp] ,

and shortened with typical abbreviations

∂tfj + vj · ∇xfj +
qj
~
E · ∇kfj = Qj[fj] + Ij[fn, fp] , j = n, p , (3.21)

for x ∈ Ω ⊂ R3 , t > 0 , k ∈ B1 ⊂ R3 ,

with fj( · , · , 0) = fj,init ,

where the particle type’s charge qj = ±e was defined (positive for holes, and negative
for electrons). The generation-recombination of electron-hole pairs is included within
the generation-recombination operators Ij = Ij

[
fn, fp

]
(x,k, t) [17, p. 92]

In
[
fn, fp

]
(x,k, t) =

∫

B1

g
(
x,k,k′

)
(1− fn)

(
1− f ′p

)
− r
(
x,k,k′

)
fnf

′
p dk′ ,

Ip
[
fn, fp

]
(x,k, t) =

∫

B1

g
(
x,k′,k

)(
1− f ′n

)(
1− fp

)
− r
(
x,k′,k

)
f ′nfp dk′ ,

with abbr.: fj = fj(x,k, t), f
′
j = fj(x,k

′, t) .

Here the local generation rate g = g(x,k,k′) was introduced which describes the rate
of creation of an electron in state (x,k), and a hole in (x,k′). Similarly, r(x,k,k′)
is the local recombination rate of electron-hole pairs. The factors of fj have their
meaning that the probability for generation-recombination is larger if the state is filled,
respectively for a factor (1− fj) the state should be empty.
The collision operators Qj[fj] are both given as before by equation (3.5).

3.2.3.1. Bipolar diffusion scaling

The scaling process is quite similar to the one done in Section 3.2.2.2. The differ-
ences are subtle but important. One introduces another time scale τR which de-
scribes the average time between two consecutive generation-recombination events.
This τR is of the order of 1× 10−9 s which is a lot bigger than the average collision
time τC ≈ 1× 10−12 s [22, p. 86].
A scaling overview is given by the following

vj = v̂vj,s , v̂ =

√
kBT

m∗n
,

λC = τC v̂ , λR = τRv̂ ,

x = λ0xs , λ0 =
√
λCλR ,

α =
λC
λ0

=

√
τC
τR

,
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k = k̂ks , k̂ =
m∗nv̂

~
,

t = τRts ,

E = ÊEs , Ê =
UT
λ0

,

fj(x,k, t) = fj,s(xs,ks, ts) ,

Qj[f ] =
1

τC
Qj,s[f ] ,

Ij[fn, fp] =
1

τR
Ij,s[fn, fp] .

Similar to the unipolar scaling one is using the parabolic band approximation again.
The band structure approximation of holes differs from the electron’s one [22, p. 85]

εn(k) = Ec +
~2

2mn

∣∣k2
∣∣ ,

εp(k) = Ev −
~2

2mp

∣∣k2
∣∣ .

Velocities in those bands are defined as before [22, p. 85]

vn(k) =
1

~
∇kεn =

~
mn

k ,

vp(k) =
−1

~
∇kεp =

~
mp

k .

The scaling velocity v̂ leads to the following scaled dependencies [22, p. 85]

vn,s(ks) = ks, vp,s(ks) =
mn

mp

ks

=⇒ vj,s(ks) = βjks , βn := 1 , β = βp :=
mn

mp

.

Scaling the system (3.21) gives
(

1

τR
∂tsfj

)
+
(
v̂vj,s

)
·
(

1

λ0

∇xsfj

)
+
qj
~

(
ÊEs

)
·
(

1

k̂
∇ksfj

)

=

(
1

τC
Qj,s[fj]

)
+

(
1

τR
Ij,s[fn, fp]

)

⇐⇒ τC
τR
∂tsfj +

v̂τC
λ0

vj,s · ∇xsfj +
qjÊτC

~k̂
Es · ∇ksfj

= Qj,s[fj] +
τC
τR
Ij,s[fn, fp]

⇐⇒ α2∂tsfj + α(vj,s · ∇xsfj −
qj
e
Es · ∇ksfj)
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= Qj,s[fj] + α2Ij,s[fn, fp] , (3.22)

which is called the scaled bipolar Boltzmann semiconductor equation system.

3.2.3.2. Bipolar Hilbert expansion

For the bipolar model one can do a Hilbert expansion similar to the one done in the
unipolar model’s case. We start by expanding in terms of the Knudsen number α for
each distribution fj ,

fj = fj,0 + αfj,1 + α2fj,2 +O
(
α3
)
, j = n, p ,

where we will drop the scaling index “s” from now on for notational convenience.
Inserting these expansions into the Boltzmann system (3.22) and collecting coefficients
for powers of α gives [17, p. 110] ,

α0 : 0 = Qj[fj,0] =⇒ fj,0 = jMj

α1 : vj · ∇xfj,0 −
qj
e
E · ∇kfj,0 = Qj[fj,1]

with Jn := µ0,n(∇xn+ nE) , Jp := −βµ0,p(∇xp− pE) (3.23)
=⇒

〈
kfn,1

〉
= −Jn , β

〈
kfp,1

〉
= Jp

α2 : ∂tfj,0 + vj · ∇xfj,1 −
qj
e
E · ∇kfj,1 = Qj[fj,2] + Ij[fn,0, fp,0]

=⇒ ∂t
〈
fj,0
〉

+ βj∇x ·
〈
kfj,1

〉
=
〈
Ij[fn,0, fp,0]

〉
=: U (3.24)

=⇒
{
∂tn−∇ · Jn = U

∂tp+∇ · Jp = U ,
(3.25)

where the total generation-recombination term U = U(x, t) has been introduced. The
equations (3.23) and (3.25) represent the bipolar scaled drift-diffusion equations.

3.2.3.3. Generation-recombination

The generation-recombination term U from system equation (3.25) can be calculated
if one assumes the following relation between the local generation rate g, and recom-
bination rate r [17, p. 92] ,

r(x,k,k′) = exp

(
εn(k)− εp(k′)

kBT

)
g(x,k′,k) .

Substituting this relation into the definition (3.24) of U yields [17, p. 111]

U(n, p) = A
(
np− n2

i

)
, (3.26)

with





ni = ni(Egap, T )

A = A(x) := n−2
i

∫

R3

∫

R3

g(x,k,k′) dk dk′ .
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3.2.3.4. Bipolar semiconductor equations

Poisson’s equation from the uni- and bipolar system differ only by the newly included
positive hole charge density p = p(x, t) ,

ρ(x, t) = p(x, t)− n(x, t) + C(x)

=⇒ λ2
D∇ · E = −λ2

D∇2V = ρ

⇐⇒ λ2
D∇2V = n− p− C . (3.27)

This completes the scaled, bipolar semiconductor equation system which are made up
of equations (3.23), (3.25) and (3.27).

3.2.4. Model reduction

The scaled, bipolar semiconductor equation system derived beforehand can be sim-
plified which leads to an easier numerical handling. The simpler test cases could be
incrementally extended to represent the full model once again.

3.2.4.1. Unipolar model: electrons only

Holes and electrons are included in the equation system but as a first test case one
can only solve the system for one charge carrier. We chose electrons which are often
rather looked at. This leads to the following equation system





∂tn−∇ · J = U

µ0(∇n− n∇V ) = J

λ2
D∇2V = n− C ,

(3.28)
(3.29)
(3.30)

where the index “n” on the current density has been dropped.

3.2.4.2. Steady state

The temporal behavior is usually not sought after in the context of solar cells as
there are no fast changing environmental conditions. Therefore, one neglects the time
dependence 




−∇ · J = U

µ0(∇n− n∇V ) = J

λ2
D∇2V = n− C .

3.2.4.3. Generation-recombination

As a further simplification one can neglect the generation-recombination of electron-
hole pairs which is not physically meaningful but serves as an easy test case





∇ · J = 0

µ0(∇n− n∇V ) = J

λ2
D∇2V = n− C .

(3.31)
(3.32)
(3.33)
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Sonneneinstrahlung

x

yz

Figure 22.: A coordinate choice for the solar cell is shown. The x-direction denotes the
depth of the cell whereas y-, and z-directions at x = 0 describe the cell’s
inlet for incoming solar radiation. One will assume translational invariance
in y-, and z-direction for a one-dimensional model. Basic graphic taken
from [8].

3.2.4.4. One-dimensional

Up to now the model has been treated as being three-dimensional but for many pur-
poses one can approximate solar cells quite well with only one or two dimensions. For
the reduction down to a one-dimensional model we assume translational symmetry
in y-, and z-direction – directions perpendicular to the incident light as depicted in
Figure 22. Thus, the density n, and potential V will simplify to

Ω = Ωx × R2 , Ωx ⊂ R
n(x, y, z) = n(x) , V (x, y, z) = V (x) .

Using these approximations one can readily derive the following one-dimensional,
scaled semiconductor equation system





−J ′ = U

µ0

(
n′ − nV ′

)
= J

λ2
DV

′′ = n− C .

3.2.5. Boundary conditions

The device is defined within the bounded domain Ω ⊂ R3 and we need to derive bound-
ary and initial conditions. For the bipolar semiconductor equation systems (3.25),
(3.27) the conditions are phenomenologically derived from physical intuition about the
system in its thermal equilibrium state.
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3.2.5.1. Thermal equilibrium state

The state where electrons and holes are in thermal equilibrium suggests that there
should not be any net flows [17, p. 112]

∂tn = ∂tp = 0 and Jn = Jp = 0 in Ω .

Thus, using the bipolar semiconductor equations the generation and recombinations
should balance each other (see equation (3.26))

U = A
(
np− n2

i

) !
= 0

=⇒ np = n2
i , (3.34)

and the vanishing current flow gives (cf. equation (3.23)) [17, p. 113]




0
!

=∇n+ nE=n∇(log n− V )

0
!

=∇p− pE=p∇(log p+ V ) .

From this one can deduce
{

log n− V = c1 = const
log p+ V = c2 = const

=⇒
{
n = exp(c1 + V )

p = exp(c2 − V ) .

The constants ci can be determined by using equation (3.34)

np = n2
i =⇒ c1 + c2 = 2 log ni ,

and by employing the fact that the potential V is only defined up to a constant [17,
p. 113]

Ṽ := V + γ , γ := log(ni)− c1

=⇒





n = exp
(
c1 + Ṽ

)
= ni exp(V )

p = exp
(
c2 − Ṽ

)
= ni exp(−V ) .

(3.35)

Substituting theses equation (3.35) into Poisson’s equation (3.27) gives a characteristic
equation for the potential

λ2
D∇2V = n− p− C

= ni
(
exp(V )− exp(−V )

)
− C

=
ni
2

sinh(V )− C . (3.36)
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The boundary ∂Ω is split up into two disjoint subsets: a Dirichlet part ∂ΩD, and a
Neumann part ∂ΩN [22, p. 105] ,

∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ .

On the Dirichlet part one prescribes Dirichlet boundary conditions [17, p. 113]

n = nD, p = pD, V = VD on ∂ΩD ,

and similarly, on the Neumann part one prescribes Neumann boundary conditions for
the current densities Jj, and electric field E = −∇V ,

Jj ·N =∇V ·N = 0 on ∂ΩN ,

which is the same as when applying the definitions (3.23) of Jj ,

∇n ·N =∇p ·N =∇V ·N = 0 on ∂ΩN ,

where the unit outward vector N on the surface ∂Ω has been introduced.
The boundary functions nD, pD, VD still need to be derived. This is done with

physical reasoning as the Dirichlet boundary part represents Ohmic contacts. On
Ohmic contacts we assume vanishing charges, equilibrium densities, and we also include
that the voltage is a superposition of an externally applied voltage Vappl, and the
internally built-in potential Vbi which stems from the doping [17, p. 113]

0 = ρ = pD − nD + C

nDpD = n2
i

VD = Vappl + Vbi





on ∂ΩD .

By substitution one can find the densities’ solutions [17, p. 114]

nD =
1

2

(
C +

√
4n2

i + C2

)
, pD =

1

2

(
−C +

√
4n2

i + C2

)
.

The vanishing charge density leads to an equality similar to the Poisson’s equation (3.36)
for the built-in potential

0 = 2ni sinh(Vbi)− C

⇐⇒ Vbi = arsinh

(
C

2ni

)
.

Furthermore, we have to specify initial conditions [22, p. 106]

n( · , 0) = ninit , p( · , 0) = pinit in Ω .

3.3. Electrical model

The modeling process of electrical transport mechanism within semiconducting layers
will be explained in this section.
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3.3.1. One-dimensional finite differences

The one-dimensional drift-diffusion transport model introduced in Section 3.2.4 will
be discretized in space by a finite difference scheme.

3.3.1.1. Equidistant grid

The position x ∈ [0, 1] along the depth of the cell is discretized with an equidistant
grid of step width ∆x ,

0 = xL = x0 < x1 < · · · < xN+1 = xR = 1

∆x = xi+1 − xi =
1

N + 1
.

Each variable will be discretized within this equidistant grid, especially the electrons’
density n and potential V ,

ni = n(xi) , Vi = V (xi) ∀ i = 0, . . . , N + 1 .

3.3.1.2. Poisson’s equation

The one-dimensional Poisson’s equation (3.33) discretized by finite differences yields

λ2Vi−1 − 2Vi + Vi+1

(∆x)2 = (n− C)i +O
(

(∆x)2
)
. (3.37)

The voltage V and density n are under Dirichlet boundary conditions at the left and
right interfaces

n(xL) = nL , n(xR) = nR (3.38)
V (xL) = VL , V (xR) = VR . (3.39)

The approximation (3.37) and the boundary conditions (3.38), (3.39) lead to a linear
equation system for the voltage V ,

AV = b , (3.40)

where the matrix A is the usual finite difference approximation matrix for second
derivatives

A :=




−2 1

1
. . . . . .
. . . . . . 1

1 −2



∈ RN×N ,

and the vectors V and b are given by

V := (V1, . . . , VN)T ∈ RN
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b := (b1, . . . , bN)T ∈ RN

bi :=





(
∆x
λ

)2
(ni − Ci)− VL , i = 1(

∆x
λ

)2
(ni − Ci)− VR , i = N(

∆x
λ

)2
(ni − Ci) , else.

3.3.1.3. The Continuity Equation

The continuity equation (3.31) is discretized along the equidistant grid by a finite
difference scheme centered around the discretization points

−Ui = J ′i =
Ji+1/2 − Ji−1/2

∆x
+O(∆x) (3.41)

with J(xi+1/2) =: Ji+1/2 = µi+1/2

(
n′i+1/2 − ni+1/2V

′
i+1/2

)
. (3.42)

The naive approach to discretize all the off-grid terms within Ji+1/2 leads to stability
problems which can either be tackled by refining the grid, or following the ideas by
Scharfetter and Gummel [12]. At first, they approximated the electric field V ′i+1/2 and
mobility term µi+1/2 with finite differences. Then they assumed that the divergence of
J is zero everywhere except at the discretization points xi. This leads to an ordinary
differential equation for n which is given by

(
n′(x)− αn(x)

)
= const for x ∈ [xi, xi+1] , (3.43)

with

{
n(xi) = ni , n(xi+1) = ni+1

α := Vi+1−Vi
∆x

.

The solution of equation (3.43) is

n(x) =
ni+1 − ni

exp(α∆x)− 1

[
exp
(
α(x− xi)

)
− 1
]

+ ni ∀x ∈ [xi, xi+1] .

Substituting the solution n back into the current Ji+1/2 leads to

Ji+1/2 = µi+1/2

(
n′i+1/2 − ni+1/2V

′
i+1/2

)

= µi+1/2 α
ni+1 − ni exp(α∆x)

exp(α∆x)− 1

= µi+1/2
Vi+1 − Vi

∆x

ni+1 − ni exp(Vi+1 − Vi)
exp(Vi+1 − Vi)− 1

=
µi+1/2

∆x

[
B(Vi+1 − Vi)ni+1 −B(Vi − Vi+1)ni

]
(3.44)

=
µi+1/2

∆x

[
Bi+1,ini+1 −Bi,i+1ni

]
,

where the Bernoulli function B and its shorthand notation Bi,j were used

B(x) :=

{
x

ex−1
, x 6= 0

1 , x = 0
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Bi,j := B(Vi − Vj) ∀ i, j = 0, . . . , N + 1 .

Finally we can plug the solution (3.44) for Ji+1/2 into the approximation (3.41) of the
continuity equation

Ui =
1

(∆x)2

[
µi−1/2

(
−B(Vi−1 − Vi)ni−1 +B(Vi − Vi−1)ni

)

− µi+1/2

(
−B(Vi − Vi+1)ni +B(Vi+1 − Vi)ni+1

)]

=
1

(∆x)2

[
− µi−1/2Bi−1,ini−1 +

(
µi−1/2Bi,i−1 + µi+1/2Bi,i+1

)
ni

− µi+1/2Bi+1,ini+1

]
. (3.45)

Equation (3.45) together with the boundary conditions (3.38), and (3.39) lead to a
linear equation system for the density n ,

Dn = d (3.46)
D = D(V ) ∈ RN×N , n ∈ RN , d = d(V ) ∈ RN ,

where the matrix D has a tridiagonal structure with entries
(
Di+1,i

)
i

= −
(
µ3/2B2,1, . . . , µN−1/2BN,N−1

)
∈ RN−1

(
Di,i

)
i

=
(
µ1/2B1,0 + µ3/2B1,2, . . . , µN−1/2BN,N−1 + µN+1/2BN,N+1

)
∈ RN

(
Di,i+1

)
i

= −
(
µ3/2B1,2, . . . , µN−1/2BN−1,N

)
∈ RN−1 .

The right-hand side d is given by

di =





(∆x)2U1 + nLµ0.5B0,1 , i = 1

(∆x)2UN + nRµN+0.5BN+1,N , i = N

(∆x)2Ui , else.

The mobility terms µi+0.5 will be evaluated using their definition given in equation (3.20)
and approximated by finite differences

µi+1/2 = µT


1 +

(
µT
∣∣Ei+1/2

∣∣
vsat

)2



−1/2

Ei+1/2 = −∇V (xi+1/2) ≈
Vi − Vi+1

∆x

=⇒ µi+1/2 = µT


1 +

(
µT

∆x vsat

)2

(Vi − Vi+1)2




−1/2

.
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3.3.2. Newton’s method

The equation systems (3.40), (3.46) are linear in either n, or V but non-linear in the
other one. Thus we need to employ Newton’s method for finding solutions.

3.3.2.1. Definitions

The equation systems (3.40), (3.46) can be gathered into one function

F : R2N → R2N ,

(
V
n

)
7→
(
F1

F2

)
=

(
AV − b
Dn− d

)
.

Newton’s method can be depicted with the following flow chart where upper indices
are now used for the Newton’s method iteration step.

1. At step k = 0 use an initial guess Vk,nk.

2. Run k = 1, . . . ,M iterations of the following type.

a) Calculate the Jacobian J := F′ for the iteration Jk := J(Vk,nk) ∈ R2N×2N .

b) Solve a linear equation system for sk ∈ R2N ,

0 = Fk + Jksk with Fk := F(Vk,nk)

=⇒ sk = −
(
Jk
)−1

Fk .

c) Update the approximation
(
Vk+1

nk+1

)
:=

(
Vk

nk

)
+ sk .

3.3.2.2. The initial guess

Newton’s method starts the iteration with an initial guess for the solution. The current
implementation works with a stack of three different doping layers. The density is
initialized as

ninit(x) = nL − d0

(
tanh

(
x− x1

s

)
− tanh

(
x− x2

s

))
, x ∈ [0, L]

d0 = nL
1− 1/100

2
, s = 20 nm ,

which assumes a specific doping profile, see equation (3.47).
The voltage is initialized by a linear interpolation of the boundary conditions

Vinit(x) = VL +
VR − VL

L
(x− xL) , x ∈ [0, L] .
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3.3.2.3. The Jacobian

The Jacobian J of F will be calculated in this section. At first we note that it consists
of four blocks

J =

(
∂F1

∂V
∂F1

∂n

∂F2

∂V
∂F2

∂n

)
.

The first two blocks are readily computed

∂F1

∂V
= A

∂F1

∂n
= −

(
∆x

λ

)2

IN .

The next block ∂F2

∂V
can be split up

∂F2

∂V
=
∂Dn

∂V
− ∂d

∂V
.

To simplify the following computations concerning the first term we will need auxiliary
variables

ζ−i :=
∂µi−1/2Bi−1,i

∂Vi
= µi−1/2B

(i)
i−1,i + µ

(i)
i−1/2Bi−1,i , Z− :=

(
ζ−1 , . . . , ζ

−
N

)

ζ+
i :=

∂µi+1/2Bi,i+1

∂Vi
= µi+1/2B

(i)
i,i+1 + µ

(i)
i+1/2Bi,i+1 , Z+ :=

(
ζ+

1 , . . . , ζ
+
N

)

η−i :=
∂µi−1/2Bi,i−1

∂Vi
= µi−1/2B

(i)
i,i−1 + µ

(i)
i−1/2Bi,i−1 , H− :=

(
η−1 , . . . , η

−
N

)

η+
i :=

∂µi+1/2Bi+1,i

∂Vi
= µi+1/2B

(i)
i+1,i + µ

(i)
i+1/2Bi+1,i , H+ :=

(
η+

1 , . . . , η
+
N

)
,

where we used the Bernoulli function’s derivative

B′(x) =




−1+(x−1)ex

(ex−1)2
, x 6= 0

−1/2 , x = 0

B
(k)
i,j :=

∂B(Vi − Vj)
∂Vk

=
(
δi,k − δj,k

)
B′(Vi − Vj) ∀ i, j, k = 0, . . . , N + 1 .

After some straight-forward calculations the first term reveals a tridiagonal structure
consisting of the diagonal vectors D(j), j = −1, 0, 1 ,

(
∂Dn

∂V

)

i,i+j

=

{
D

(j)
i , j = −1, 0, 1

0 , else,
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and the diagonal terms can be expressed via the auxiliary variables

D(1) = Z−(2:end) ◦ n(1:end−1) −H−(2:end) ◦ n(2:end) ∈ RN−1

D(0) =
(

0,−Z−(2:end) ◦ n(1:end−1)

)
+
(
H− + Z+

)
◦ n−

(
H+

(1:end−1) ◦ n(2:end), 0
)
∈ RN

D(−1) = −Z+
(1:end−1) ◦ n(1:end−1) + H+

(1:end−1) ◦ n(2:end) ∈ RN−1 .

Here extensive use was made of the Hadamard Product ( · ◦ · ), and a vector slicing
notation which are defined in the appendix by equations (A.1) and (A.2).
The second term of the ∂F2

∂V
-block yields

(
∂d

∂V

)

ij

=





nLζ
−
1 , i = j = 1

nRη
+
N , i = j = N

0 , else.

and the last block follows easily

∂F2

∂n
= D .

3.4. Case studies

The previous sections have introduced a model which describes the transport of elec-
trical charges in semiconductors. We have implemented a model which solves the
equation system from Section 3.2.2.8. This section runs our implementation for vari-
ous test cases – this includes tests for constant, and varying mobilities.
A solar cell depends strongly upon its doping profile C, see Section 3.2.2.7. For

testing purposes we will restrict ourself to a standard n+nn+ profile consisting of
piecewise constant values

C(x) =





n0 for x0 ≤ x < x1

n1 for x1 ≤ x ≤ x2

n0 for x2 < x ≤ x3 ,

(3.47)

such as depicted in Figure 23.

3.4.1. Constant mobility

As a first test case we will look at a model of constant mobility (µ = const) and van-
ishing source term (U = 0). We consider a single layer silicon cell of length L. The
standard three layer doping profile from equation (3.47) is assumed and its interface
positions are given by xi, i = 0, . . . , 3, and doping values by ni, i = 0, 1, 2. The applied
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Figure 23.: The density profile of a n+nn+ diode. The positions (xi)i, and densities
(ni)i are defined by equation (3.47).

voltages at the left, and right interfaces are denoted by Vappl,L, Vappl,R.
Professor Jungemann implemented a model for this specific test case [18]. Some pa-
rameters were clearly stated while others had to be read off from graphs or be guessed.
The simulation’s parameters are collected in Table 9.
Jungemann published his results only in graphical form such that we needed to ex-

tract his results by a digitalization procedure. We employed the program “engauge” [24]
which introduced an error source. The error is approximated as 0.5% of the axis length.
A comparison of densities published by Jungemann and calculations by our imple-

mentation is shown in Figure 24. One can see the raw data as well as an absolute error
plot. Let nSim be the density from our implementation, respectively nRef Jungemann’s
density, and let the error be denoted by e := nRef − nSim. Then, scaled Lp-norms for
the error yield

‖e‖Lp
‖nRef‖Lp

=





0.006, p = 1

0.009, p = 2

0.044, p =∞ .

These values for the p = 1, 2 norms are below 1% which shows good agreement of
both datasets in the overall picture. The larger error of the p = ∞ norm stems from
differences around the interface positions x1, x2. This might be the result of unclear
parameters for the reference model, and a small error results from the digitalization
procedure as well. Around the interfaces the density has a high valued slope and the
step width should be smaller to yield high resolution results.
The potential resulting for this test case has also been published by Jungemann.

We extracted it again with the engauge application. In Figure 25 one can see the raw
potential data of our implementation, and Jungemann’s as well as their relative errors.
The data show good agreement and the errors are in the error range introduced by the
data extraction program.
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Figure 24.: The electron density resulting for a n+nn+ doping profile is shown and
simulation parameters are collected within Table 9. Upper figure shows
the raw data from our simulation, and the data from Jungemann’s im-
plementation taken as reference values [18]. The lower figure displays the
difference of both data sets.
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Parameter Value Clearly stated

Length L 600 nm X
Step width ∆x 1 nm X
Interface positions (xi)i=0, ... ,3 (0, 101, 502, 600) · 1 nm (X,7,7,X)

Doping concentrations (ni)i=0,1,2 (500, 3, 500) · 1015 cm−3 (X,7,X)

Applied voltage (left) Vappl,L 0 V X
Applied voltage (right) Vappl,R 3 V X
Newton iterations M 200 7

Mobility µ 1350 cm
s

7

Thermal voltage UT 26 mV 7

Table 9.: The constant mobility models is simulated for a layer of Length L with uni-
form discretization step width ∆x. The structure is defined by its doping
profile with interface positions (xi)i, and doping concentrations (ni)i as was
discussed equation (3.47). The Newton method is M -times iterated. The
values represent the model published by Professor Jungemann [18], but not
all values were clearly stated. The positions x1, x2, and density n1 were hard
to be read off from graphs. Furthermore, the values for M,µ, UT were not
given at all.
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Figure 25.: The potential resulting for a n+nn+ doping profile with simulation pa-
rameters collected in Table 9. Upper figure shows the raw data from my
simulation, and the data from Jungemann’s implementation taken as ref-
erence values [18]. The lower figure shows their relative error.
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Parameter Value

Length L 600 nm
Step width ∆x 3 nm
Interface positions (xi)i=0, ... ,3 (0, 1, 5, 6) · 100 nm

Doping concentrations (ni)i=0,1,2 (500, 2, 500) · 1015 cm−3

Applied voltage (left) Vappl,L 0 V
Applied voltage (right) Vappl,R (0, 1, . . . , 5) · 1 V
Newton iterations M 200
Thermal voltage UT 26 mV

Thermal mobility µ∗ 1430 cm2

V s

Saturation velocity vsat 1.1× 107 cm
s

Table 10.: Simulation parameters for a model of varying mobility are shown. The
structure is described by its interface positions xi, and doping concentrations
ni as was discussed equation (3.47). The spatial discretization uses a uniform
grid of step width ∆x. The values represent a test case of a Monte Carlo
solver published by Professor Jungemann [19], and the mobility values were
taken from Selberherr [40, p. 95].

3.4.2. Varying mobility

Our implementation of the drift-diffusion equations also handles potential-dependent
mobilities µ = µ(V ). This has been introduced in equation (3.20). The implementa-
tion will be validated with a test case presented in a book by Professor Jungemann [19].
Jungemann implemented a Monte Carlo solver for the one-dimensional drift-diffusion
equations which creates an issue as our model is based upon finite difference approxi-
mations. The validation will be a positive only test that is to say, if the Monte Carlo
solver’s data agree with the data from our model then our implementation is validated
but there is no conclusion in the case of disagreement.
Jungemann’s setup for a potential-dependent mobility is similar to the one intro-

duced in Section 3.4.1 and we have listed the simulation’s parameters in Table 10.
The data has been read out from graphs within his book in a similar manner as in the
section before which introduces an error source again.
The simulation has been run for different voltage offsets at the right interface. The

data sets by Jungemann and from our implementation are shown for applied voltages
Vappl,R = 0 V, 2 V, 4 V, 5 V in Figure 26. The figure shows the raw data sets from both
implementations for each applied voltage within a logarithmically scaled plot as was
done in Jungemann’s book. Below each figure with raw data a residual plot of the
logarithmically scaled data is shown. The residuals r = r(x) are shown in the form

r = (log10 n)Ref − log10(nSim) ,

where (log10 n)Ref is given by the reference value which was read out from a logarithmic
plot and nSim is the data resulting from our implementation. One can see that both
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data sets agreement well inside the error bounds given from the data extraction routine.

Similarly, Figure 27 shows the comparison of the book’s potential data and of our
implementation’s. The data sets do differ in the order of 5% relative error which
seemed acceptable for us if one considers that we compare a Monte Carlo solver to our
scheme using finite differences.

3.4.3. Optical and electrical coupling

The optical, and electrical simulations can be coupled by considering the generation
rate G of electron-hole pairs. It is the result of optical absorption and acts as a source
term for the drift-diffusion equation system, see equation (3.28). Recombination is still
not taken into account.
We present here a simulation for a simple one-layered silicon cell with a bare air-

silicon front interface, and a silver back contact. The bulk layer is of length L and po-
sition-dependent functions will be sampled by a uniformly distributed grid consisting
of M nodes.
As incident spectrum we consider the usual AM1.5g spectrum. The total intensity has
been scaled to represent different amounts of incident light. This is done by using an
overall scaling factor s which is measured in units of 1 Sun. Here 1 Sun denotes the
standard illumination of the AM1.5g spectrum, and 0 Sun denotes no incident light.
Electronically the cell is modeled for a n+nn+ diode consisting of the usual doping
profile, see equation (3.47). It consists of interface positions (xi)i, and doping den-
sities (ni)i. The cell is not under any externally applied voltages Vappl such that the
illumination’s effect is more easily visible. The exact values are gathered in Table 11.
The effect of shining different incident illuminations on a cell is shown in Figure 28.

The upper row shows raw data whereas the lower row shows the difference resulting
from using incident illumination versus no illumination. One should note here the
overall “smallness” of the illumination’s effect as the differences are in the order of
10−4 for the density, resp. 10−3 for the potential. Furthermore, the effect of the in-
cident illumination is symmetric on density and potential w.r.t. position space which
needs further investigation. This is is why we have compared our simulation to refer-
ence data gathered from the AFORS-HET program. Figure 29 shows a comparison of
our simulation, and the reference data in the following form: The upper row displays
raw density, and potential data for different illuminations. Whereas the difference of
reference, and our simulation for each illumination are shown in the lower row. The
density shows good agreement for most positions except around the interface positions
where the reference solution is actually discontinuous. The difference does not change
as we increase the illumination, and we conclude that the reference program probably
includes higher order physical effects which have a stronger impact here than the illu-
mination. For the potential one should note that both data sets are only defined upto
a global shift. The potentials were shifted such that their minima are exactly at zero,
and then normalized such that the overall maximum is exactly one. This gives reason
to the large error at the outer edges. Concerning the illumination one can see that its
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(d) Right applied voltage Vappl,R = 5V

Figure 26.: Electron densities from simulations are compared to the Monte Carlo im-
plementation by Jungemann [19]. The subfigures (a) to (d) show densities
for different right applied voltages Vappl,R. The densities are shown as log-
arithmic data as was done in the book by Jungemann and the error is
w.r.t. these logarithmic data sets.
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(c) Right applied voltage Vappl,R = 4V
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Figure 27.: Potentials from simulations are compared to the Monte Carlo implemen-
tation by Jungemann [19]. The subfigures (a) to (d) show potentials for
different right applied voltages Vappl,R and the errors of both data sets.
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Parameter Value

Structure
ARC layer –
Bulk material Silicon
Bulk length L 1 µm
Spatial nodes M 1000
Rear contact Silver
Optics
Spectrum I0 AM1.5g
Scaling s (0, 0.1, . . . , 1) · 1 Sun
Transport
Interface positions (xi)i=0, ... ,3 (0, 1, 9, 10) · 100 nm

Doping concentrations (ni)i=0,1,2 (500, 1, 500) · 1015 cm−3

Applied voltage (left) Vappl,L 0 V
Applied voltage (right) Vappl,R 0 V
Newton iterations N 200
Thermal voltage UT 26 mV

Thermal mobility µ∗ 1000 cm2

V s

Saturation velocity vsat 1.1× 107 cm
s

Table 11.: Numerical parameters used for the coupled simulation.

effect is only visible in the inner range.
Altogether, our coupled model as well as the reference program AFORS-HET showed
symmetric behavior. This is intuitively not clear as the illumination is a strongly non-
symmetric influence on the system. The reference program gave results differing to
our simulation’s which is probably caused by hihger order effects as it includes ad-
vanced physical effects for the charge transportation, e.g. Schottky contacts, bandgap
narrowing.
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Figure 28.: The charge transport simulation’s result for the coupled model are shown.
The simulation corresponds to parameters given in Table 11. Different in-
cident intensities were used which are given by an overall scaling factor in
units of 1 Sun which represents the full AM1.5g spectrum.
The upper row shows the raw data for density, and potential. Both are
scaled by their maximal value resulting from no illumination, and the po-
sition is scaled by the total length. The lower row shows the differences of
using a coupled model with incident illumination compared to a cell in the
dark.
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Figure 29.: The charge transport simulation’s result for the coupled model are com-
pared to results obtained from the reference program AFORS-HET. The
simulation corresponds to parameters given in Table 11. Different incident
intensities were used which are given by an overall scaling factor in units
of 1 Sun which represents the full AM1.5g spectrum.
The upper row shows the raw data for density, and potential. The den-
sity has been scaled by its maximal value whereas the potentials were first
shifted such that their minima were zero, and finally normalized into the
range [0, 1]. The position is scaled by the total length. In the lower row
the differences from of our simulation w.r.t the reference data is shown for
each illumination.
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Within this thesis the two physically governing processes of photovoltaic devices were
regarded. On the one hand the optical absorption of different incident spectra was
discussed using a Lambert-Beer model. As the Lambert-Beer model is an incoherent
light model, and inherently one-dimensional we implemented another coherent wave
model using the Yee algorithm.
On the other hand, the electrical charge transport within semiconductors was also
regarded in this thesis. A drift-diffusion model describing the charge transportation
was implemented.

Conclusion

The absorption of sun light is of utmost importance in photovoltaic devices. Light
can be modeled at different accuracies: for incoherent light the Lambert-Beer model is
usually used. For higher accuracies, and higher dimensions one can solve the Maxwell’s
equations directly using the Yee algorithm.
The Lambert-Beer model was studied by using a self-made solver written in MATLAB®.
An anti-reflection coating was introduced and tested against reference data. We were
able to significantly lower the reflection in the overall spectrum as well as diminishing
it altogether around the solar spectrum’s peak. Light absorption within the solar cell’s
bulk layers generates electron-hole pairs. The generation rate strongly depends on the
materials used, and the incident spectrum. We investigated the generation rate for
constant spectra, and material parameters as well as for cases of varying data. The
simulations’ results were compared to data obtained from a reference program and
errors lay within reasonable ranges.
For incident solar spectrum we used the industry standards AM1.5g,d which are spec-
trally defined on a fine grid by step widths of around ∆λ = 1 nm. In contrast the
obtained material parameters were given on much coarser grids often with step widths
above ∆λ = 50 nm. To calculate electron-hole generation rates one needs to define an
underlying grid. The dependence of the calculated generation rates upon grids using
different step widths was investigated. We concluded that even for simple setups one
should use the fine grid defined by the incident solar spectrum.
The calculated generation rates were sampled in position space using a uniformly dis-
tributed grid. We measured errors introduced by using different node numbers. The
convergence order in different Lp-norms (p = 1, 2,∞) were all estimated to be around 4.
Our analysis showed that for single layer cells one can achieve relative accuracies of
below 10−5 with node numbers as low as N = 100.
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For comparison purposes between coherent and incoherent light models we have imple-
mented a rigorous Maxwell solver based on the Yee algorithm. For a single layer bulk
system the calculated generation rates differed in their decaying rates. This result is
still open for discussion and it could be the result from not implementing the exact
same test cases for both models.

The second process within solar cells is the charge transport. The transport process
can be modeled by the drift-diffusion equations which is an approximation to the gen-
eral Boltzmann transport equation in semiconductors. Within this thesis the derivation
has been done in great detail and the approximations needed were highlighted.
The drift-diffusion equations were implemented in a one-dimensional unipolar model.

As the equations depend largely on the electron mobility µ we have run simulations
for constant as well as varying mobilities. A test case for constant mobility was run
against data obtained from a published reference and the varying mobility was run
against a Monte Carlo solver for the Boltzmann transport equation. Every simulation
showed good agreement.
The interesting case of coupling between the optical, and electrical model was also

regarded. Our test case showed differences for a cell under illumination compared to
a cell in the dark which were rather small, and symmetrical. These surprising results
might be caused by our specific test case as we were using very thin sheets of cells.

Outlook

For an incoherent light model in higher dimensions one could extend the Lambert-Beer
model using a ray tracing algorithm. They have been used as early as 2006 [53] to
simulate absorptions within solar cells. Their resolution, and computational cost are
supposedly in between Lambert-Beer models, and Yee’s implementations [21].
The interfaces of cells are of great interest as specially constructed ones can signif-

icantly increase efficiencies. To tackle such textured interfaces one needs the above
mentioned ray tracing or Yee models. Baker et al. [1] extended the usual planar in-
terfaces to textured structures. They modeled different possible interfaces such as
regular upright pyramids, regular inverted pyramids, random upright pyramids, and
grooves. The truly newly introduced idea in their paper has been to parametrize the
one-dimensional generation rate in a clever way. Instead of using the usual coordinate
z describing the depth of the cell they introduce a parameter ζ describing the distance
from the frontal surface. By using this ζ they were able to run detailed analysis of
differently structured interfaces.
The incident illumination for conventional cells is just on one side but for high

efficiency cells one can also think about bifacial illumination. This changes the overall
layout of textured interfaces as has been shown by Wöhrle et al. [51]. The rear sides
should be pyramidal textured for rear illumination exceeding 250 W

m2 as opposed to
a planar interface for lower illumination where they have assumed the normalized
frontal illumination of 1000 W

m2 . Furthermore, even negligible rear illumination already
changed the optimal rear contact spacing. Wöhrle et al. have done their simulations
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using a transfer matrix model by the Sentaurus Device software for textured front sides,
and planar rear sides. The bulk’s absorption was simulated by Sentaurus Device’ ray
tracer, and textured rear interfaces by an external ray tracer.
Ray tracing is computational expensive and one would like to yield similarly good

results by less computational expensive approximations. Fell et al. [7] have intro-
duced a model which needs just lumped input parameters. They suggested to use
the wavelength-dependent external front surface transmission Text, as well as the path
length enhancement Z as input parameters. This yields a rapid speed improvement
and they also showed that the newly introduced errors for cells under usual working
conditions are not significant.
Eisenlohr et al. [6] have introduced a new technique to efficiently compute the absorp-

tion in two dimensions given front and rear sided interfaces which operate in different
optical regimes. One instance might be a silicon cell with pyramid frontal surface, and
rear sided grating textures. The pyramidal front might be efficiently computed using
ray tracers while the rear would need full FDTD simulation. The idea from Eisenlohr
et al. has been to outsource the interfaces into single computations. This is done by
grouping incident light into bins for ranges of solid angles. For each bin the interaction
with the textured surface is computed using the desired model, e.g. ray tracers, and
FDTD. This interaction is saved within a matrix that will act on the incident power
density – saved within a vector according to the distribution along the solid angles’.
The light will be propagated within the structure as incoherent light by the known
Lambert-Beer model. The model by Eisenlohr et al. has also been extended into the
third dimension [46] and their models are called Optical Properties of Textured Optical
Sheets (OPTOS).
Different cell layouts can be analyzed by their overall efficiency and by using free

energy loss analysis (FELA) one can compare the effect of different loss mechanisms
on the resulting efficiency. This opens the door for optimization processes. Wöhrle
et al. [52] have simulated a back-contact back-junction solar cell and optimizing with
FELA increased the efficiency from 20.1% towards 21.2%.

The drift-diffusion implementation used in this work could be extended in multiple
ways. On the one hand one can include a greater class of possible doping densities
which involves a more general approach for initial guesses of Newton’s method. On the
other hand, one can extend the solver towards higher dimensions. Here, dimension two
is of great interest as solar cells can often be well approximated by a two-dimensional
structure. Also, the implementation uses a unipolar model and the inclusion of hole
charges is necessary to represent broader classes of semiconducting devices.
The Boltzmann transport equation yields the drift-diffusion equations as lowest or-
der diffusive approximation and for greater accuracy one could also include higher
orders. This would lead to energy-transport, or SHE models [17]. A different scaling
of the Boltzmann transport equation leads to hydrodynamical models which can be
interpreted as an approximation in-between Boltzmann transport, and drift-diffusion
model [17].
One could also implement a Monte Carlo solver for the Boltzmann transport equations
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within semiconductors as has been done by Jacoboni and Reggiani [16]. This would
help to validate the above mentioned models as one could provide reference solutions.
For very thin cells one could also use models from quantum mechanics. This would
yield equivalents of the afore-mentioned models, such as quantum drift-diffusion, or
quantum energy-transport model [17].
One could also work towards implementing perovskite solar cells which have been

in the focus of research for the last years. Their efficiencies have currently increased
from around 4% in 2009 [20] to above 22% in 2017 [54]. Simulations have been run by
Huang et al. [13] with standard drift-diffusion solvers and only little modifications.
Organic materials are also of great interest as they promise low production cost, and
open up flexible design choices. Current developments have also shown good results
with possible efficiencies far above 10% [56]. Equations derived for inorganic materials
are usually prone to errors as organic materials show different characteristics, such as
relatively low carrier mobilities. A recent publication by Neher et al. [28] has shown
simulation results, and comparison to an analytical model as well as introducing a new
figure of merit α specific for organic solar cells.
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A. Definitions and Constants

The Hadamard product defines the element-wise product of vectors which is often used
in computer science. It is given by [50]

∀ v = (vi)i, w = (wi)i ∈ Rn : v ◦ w := u = (ui)i ∈ Rn (A.1)
with ui := viwi ∀ i = 1, . . . , n .

An example is

v := (v1, v2, v3), w := (w1, w2, w3) =⇒ v ◦ w = (v1w1, v2w2, v3w3) .

Within the thesis extensive use was made of a vector slicing notation. Its definition
is given by

∀ v = (vi)i ∈ Rn ∀ k, l ∈ N, k ≤ l ≤ n : v(k:l) := (vk, vk+1, . . . , vl) , (A.2)

and a shorthand notation for the last entry

v(k:end) := (vk, vk+1, . . . , vn) .

An example is as follows

v := (v1, v2, v3) =⇒ v(1:2) = (v1, v2), v(2:end) = (v2, v3) .

Especially, note that the first element is indexed by i = 1.
Physical constants were used throughout computations within this thesis. Table 12

shows a list of values that were used.

Constant Value

elementary charge e 1.602 176 487× 10−19 C
Planck constant h 6.626 068 96× 10−34 Js
(reduced) Planck constant ~ := h

2π
1.054 571 628× 10−34 Js

speed of light c 299 792 458 m/s
vacuum permeability µ0 4π × 10−7 Vs/Am
vacuum permittivity ε0 8.854 187 817× 10−12 As/Vm

Table 12.: A list of constants which were used in this thesis. Values were taken from
Demtröder [5, p. 496].
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