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ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.
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Abstract

Increasing the share of renewable energy while maintaining a high degree of
self-sufficiency is a major challenge within energy system design for cities.
This work uses a two-stage stochastic program, formulated as a mixed inte-
ger linear program to optimise the energy system of a city under additional
constrains of self sufficiency. Multiple uncertainties have to be addressed
during optimal design of energy systems. Energy production from solar and
wind power as well as energy demand are considered uncertain. A tech-
nique aggregating historical data into typical periods is used for scenario
generation. Using a case study of a city in western Germany, the effects of
either using typical days or typical weeks during scenario generation and
different self-sufficiency enforcing strategies and levels on the resulting op-
timal design were examined. Longer typical periods seem to increase the
flexibility in the operating schedule regarding storage components. With
more aggressive strategies and higher levels of self-sufficiency, we observe a
displacement of varying and uncertain energy sources by stable and deter-
ministic ones.
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Sets and indices
k ∈ K Power producing components {pv,wind,biogas,hydro}
l ∈ L Energy storing components {pump,h, ch4,bat}
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1. Introduction

Global carbon emissions are rising, cf. Figure 1.1, causing a rise in atmospheric tem-
perature, which has severe effects on the environment like loss of biodiversity and an
increased frequency of natural disasters [31].

Figure 1.1: Annual carbon emissions [53].
Since the beginning of the 20th century, annual carbon emissions have
been increasing exponentially, leading to a severe increase of atmospheric
temperature, frequency of natural disasters and loss of biodiversity.

57 % of green house gas emissions are caused by energy production for industry
and electricity [52]. Reducing shares of high carbon energy sources like coal can help
to bring down carbon emissions significantly. Increasing energy production from low
carbon, renewable sources is needed to close the gap in production. Therefore the
EU [14] as well as the German government [11] have introduced goals to increase the
market shares of renewable energy sources.

Solar power is readily available, enough to theoretically fulfil the energy demands of
the entire world [33]. But its supply is fluctuating and not known far in advance. Other
renewable energy sources like wind and hydroelectricity also face uncertainty in their
power output. Storage technologies need to be included to guarantee supply security, by
storing excessive energy from sunny days for night hours or days with unexpected high
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demand. Diversifying energy sources, taking uncertainty into account and including
storage technologies are essential when trying to meet renewable energy targets.

Another impeding factor for the widespread adoption of renewable energy is its high
cost, compared to traditional non-renewable technologies. Technological innovation
and economy of scale can bring down such costs. However, factoring in the price of
different renewable technologies when designing a diverse energy system, can guide
the design process to select the most low cost combination of renewable technologies.
This can bring down the cost of renewable energy without the need to wait for future
cost reduction via technological innovation. Choosing cost reduction as a prime ob-
jective during design of energy systems can minimise costs and therefore facilitate the
transition to renewable energy.

Besides a variability in time, the availability of renewable energy varies from location
to location. Large transmission lines that bring renewable energy from wind and sun
rich areas to other parts of the country are needed. High costs and long planning
times for transmission lines present challenges for renewable energy. Full or partial
self-sufficiency on a per city basis, by producing electricity locally, mitigates the need
for large transmission lines.

With the above-mentioned challenges and advantages, designing an energy system
that is diverse, uses storage and produces energy locally for local consumption can aid
in the transition to renewable energy. Such a system is called a distributed energy
system (DES), and a city that utilises such a DES is called a smart city. This work
develops a method for designing a DES for a city under the uncertainty of electricity
demand and available power. The method incorporates the goal of self-sufficiency while
keeping the cost of the DES as low as possible.

1.1. State of the Art

Designing a DES under constraints of self-sufficiency while minimising its cost can
be formulated as an optimisation problem. The nature of an optimisation problem is
to find solutions for a set of decisions that optimises a given objective function [42].
Additionally, the decisions are subject to a set of constraints.

In the case of DES design, the decisions mainly consist of selecting what technologies
should be used and what their installed capacities inside the system should be. The
constraints capture the behaviour and technical restrictions of the DES, as well as ad-
ditional constraints like available resources and special design goals like self-sufficiency.
The objective function evaluates the DES design and is most commonly of an eco-
nomic nature, but can also incorporate environmental factors like the designs carbon
footprint.

It is also important to include the operation of the DES. During operation a schedule
for the DES has to be decided. The schedule dictates which components are switched
on, at what part loads each component operates, or how much energy is charged or
discharged into storage components. These operational decisions can influence the
overall costs, for example overproduced energy can be sold for revenue. Furthermore,
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constraints like self-sufficiency can only be enforced during system operation. Therefore
the consideration of possible operating schedules in design optimisation is imperative.

The problem of facing uncertainty during optimisation can be tackled by using
stochastic programming [9]. In a stochastic program, some parameters are consid-
ered uncertain. Only probability descriptions are known, most often as probability
distributions. These distributions are discretised into a finite set of scenarios, each
with its own probability. The goal of the stochastic program is to find a solution that
is feasible for all possible scenarios and optimises the expected value of the objective
function.

Stochastic programming presents two challenges. First, accurate representations of
the considered uncertainty using scenarios have to be determined. Second, solving the
resulting stochastic program. If the constraints and objective function of a stochastic
program are linear, it can be expressed as a linear program (LP). If some decisions, like
the number of wind turbines, can only be integers, the problem is a mixed integer linear
program (MILP). A host of solvers and algorithms for MILP optimisation problems
exist, which are able to find optimal solutions for complex problems. Additionally,
special algorithms for solving MILP formulations of stochastic programs exist that can
take advantage of its underlying structure, like Bender Decomposition [8].

Using stochastic programming to design an optimal DES under uncertainty has
been adopted by several authors, e.g., [45, 60, 58]. Other techniques include robust
optimisation [5, 6]. Regarding the objective function all works employ an objective
function that minimises costs. Wang et al. [58] use multi-objective optimisation to
optimise for cost and carbon footprint, whereas Mavromatidis et al. [45] enforce low
carbon emissions using constraints without optimising them.

In the following we provide a small overview of several aspects from the above cited
works. Various parameters can be considered uncertain. All energy demands that the
DES should supply, usually electricity, heating and cooling, are considered uncertain.
When renewable energy sources like solar and wind power are incorporated into the
DES, their availability is also considered uncertain. The majority also view energy
carrier prices, for electricity, biomass and gas as uncertain. Mavromatidis et al. [45]
additionally regard the grid emission factor, the amount of CO2 released per unit
of purchased electricity, as uncertain. Compared to optimisation under uncertainty,
deterministic optimisation tend to find optimal DES designs with smaller unit sizes and
capacities. This arises from the fact that extreme scenarios with peak demand and low
supply are usually not represented in deterministic optimisations. Optimisation under
uncertainty can account for such extreme events, leading to designs that are guaranteed
to function during extreme events, necessitating larger unit sizes. The costs of designs
under uncertainty are higher, largely due to larger investment costs from larger unit
sizes.

Mavromatidis et al. [47] use global sensitivity analysis to investigate which uncertain
factors have the largest impact on the economic performance of a DES. Parameters
analysed are energy carrier prices, emission factors, investment costs and technical
characteristics of technologies used in the DES, energy demand and solar radiation
patterns. Uncertainties in energy demand patterns and energy carrier prices have the

3



largest impact on the costs of a DES. Investment costs and technical characteristics
have minimal impact.

Besides DES design, stochastic programming can also be used to optimise the oper-
ation of an existing DES under uncertainty, e.g., [18, 44]. For a given DES, operational
decisions have to be made, usually modelled on a daily basis. Di Somma et al. [18] op-
timise for low cost and carbon emissions in a DES for a residential building. Schedules
computed under uncertainty can reduce costs and carbon emissions due to better util-
isation of the available DES resources. Marino et al. [44] minimise operational costs of
a DES for a medium sized college in San Francisco. Additional constraints are used to
enforce higher utilisation of installed photovoltaic panels within the DES. With higher
utilisation, lower system costs are observed. As with DES design, energy demand is
considered uncertain in both works. Additionally, energy prices and solar irradiation
can be considered uncertain.

1.2. Outline

In the above cited literature, approaches for optimising the design or operation of
DES under uncertainty are presented. These approaches are usually examined using
case studies of small neighbourhoods or single buildings like universities or hospitals.
The additional design goal of self-sufficiency is not considered. To design a DES for
a city under the uncertainty of electricity demand and available power, the presented
optimisation approaches have to be adapted to DES of larger scales. This involves
incorporating power generation and energy storage technologies into the optimisation
problem that can only be utilised on a city or regional level, like hydroelectricity. Ad-
ditionally, suitable methods for incorporating self-sufficiency into the design goals are
needed. This work focuses on contributing to both challenges, large scale DES design
for a city, and incorporating self-sufficiency. In Section 2, a mathematical model, de-
scribing of behaviour of a DES is developed. In Section 3, the mathematical model is
translated into a deterministic optimisation program We specify an objective function
and provide additional constraints that guarantee a desired level of self-sufficiency and
express design limitations. The deterministic program is expanded into a two-stage
stochastic program in Section 4. First we discuss, which parameters are considered
uncertain. Then we extend the deterministic model into a two-stage stochastic pro-
gram. The uncertainty of unknown parameters is quantified by computing sets of
representative periods from historical data. In a case study in Section 5, the developed
stochastic model is used to design a DES for a German city. We compare the effect
of using representative periods of different length in the uncertainty quantification on
optimal DES designs. We also analyse the impact of different self-sufficiency strategies
on optimal DES designs. In the end, Section 6 concludes by discussing the results and
giving an outlook on future work.
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2. Model

In this section, a mathematical model describing the characteristics of a DES is de-
veloped. In Section 2.1, the structure of the model is discussed. In Section 2.2, we
model the power generating technologies, and in Section 2.3 the storage technologies.
The development of the model is finished in Sections 2.4 and 2.5 with additional model
components that connect the DES to an external energy grid and to the smart city.

2.1. Model Structure

In this work, we focus on a DES that supplies electricity to a city. The goal is to reach
a high degree of self-sufficiency, using only renewable energy sources. Figure 2.1 shows
the structure of the DES. We model four renewable power generation technologies:
photovoltaic power, wind power, biogas plants and hydroelectricity. As energy storage
is essential for a DES, we model four energy storage technologies: pumped hydropower,
hydrogen storage, Power-to-Gas (PTG) storage and battery storage. Each technology
is represented by a component in the model structure. The city, the consumer of
the produced electricity, is modelled in the consumption component. A connection
to the national electric grid is represented by the connection component. The com-
ponents are connected using a single bus, representing the local electricity grid. We
neglect transmission losses within the local electricity grid and consider the transmis-
sion infrastructure given, i.e., we do not have to model and optimise the transmission
infrastructure.

In the following, the upfront investment costs, yearly operations and maintenance
costs, and additional costs or all modules are introduced, as they are used in the
definition of the objective function, see Section 3.2.

2.2. Renewable Power Plants

In this section we model four different renewable energy sources. Photovoltaic (PV)
modules, converting solar irradiation to electricity, see Section 2.2.1, wind turbines,
harnessing energy from wind, see Section 2.2.2, biogas plants, digesting organic matter
into biogas, see Section 2.2.3, and hydroelectricity, harnessing the flow of water, see
Section 2.2.4.

2.2.1. Photovoltaic Component

A photovoltaic module generates electric power from sunlight. The capacity of a solar
installation can either be measured by the total area of all installed PV modules or by
the installed peak capacity. In the literature, the investment costs of solar installations
are usually given for the installed peak capacity and not for the installed area [36, 49,
24]. Therefore, the peak capacity measure is used in the following.

5



Electricity demand External grid

Power Production

GT

Ta

vwind
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Figure 2.1: Block diagram of the DES.
On the left, the four power producing components are grouped together.
The model parameters determining their power output are shown in red.
On the right, the energy storage components are grouped together. The
connection to an external electricity grid is represented by the external grid
component. The smart city, the main consumer of the electricity provided
by the DES, is represented by the electricity demand component.

The generated power Ppv can be computed by

Ppv = Ppv,N · ηpv ·
GT

Gref

, (2.1)

where Ppv,N is the peak capacity, ηpv the influence of temperature on the electric
efficiency of the module, GT the total solar irradiation, and Gref the reference solar
irradiation, provided by the module manufacturer [55].

The traditional relation for the temperature influence is linear

ηpv = 1− βref · (Tc − Tref), (2.2)

where βref is the temperature dependence of the PV module and Tref the reference
cell temperature [55]. Both values are module dependant and provided by the manu-
facturer.

Often the operating cell temperature Tc is not available. Skoplaki and Palyvos [55]
approximate Tc using the nominal operating cell temperature TNOCT, measured un-
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Installed peak capacity Investment cost Source
10 kW 1300e/kW [36]
55 kW 1112.5e/kW [24]
500 kW 900e/kW [36]
750 kW 950e/kW [49]
2 MW 700e/kW [36]
2 MW 800e/kW [49]
10 MW 700e/kW [49]

Table 2.1: Specific investment costs of photovoltaic power systems.
With increasing installed peak capacity a decrease of investment cost per
kW can be observed.

der standardised conditions, and adjusting it using the total solar irradiance GT and
ambient temperature Ta. This results in the equation

ηpv =

(
1− βref ·

(
Ta − Tref + (TNOCT − Ta) · GT

GNOCT

))
. (2.3)

The nominal irradiance GNOCT is standardised to 800 W/m2. The nominal operating
cell temperature TNOCT is module dependant and provided by the manufacturer. See
Appendix A.2 for the computation of the total solar irradiation GT.

Figure 2.2 gives a schematic representation of the photovoltaic component with its
inputs and outputs.

Photovoltaic Component
Total solar irradiation GT

Ambient temperature Ta
Produced power Ppv

Figure 2.2: Block diagram of the photovoltaic component.
The total solar irradiation and ambient temperature are model inputs and
the produced power is a model output of the photovoltaic component.

Considering the investment costs of a PV power plant, Table 2.1 shows that smaller
scale plants are considerably more expensive per kW installed peak capacity than larger
ones. A contributor to this effect is the fact that smaller PV plants are usually installed
on residential or commercial rooftops, and large-scale plants, called solar farms, are
installed on dedicated pieces of land, reducing construction costs [36].

Regarding the goal of designing a cost efficient energy system it would be beneficial
to only use large scale PV plants. However, such plants are restricted by the available
land area. In use cases with limited available land, a large number of smaller scaled
rooftop plants could be considered.

In order to account for both variants, the computation of the investment and mainte-
nance costs is split into two parts. Both variants have their own installed peak capacity,
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Parameter Value
ipv,roof 1000e/kW
ipv,farm 750e/kW
mpv,roof 10e/(kW a)
mpv,farm 15e/(kW a)

Table 2.2: Specific investment and maintenance costs for the photovoltaic component.
The specific costs are adapted from [36, 24, 49].

Ppv,N,roof for rooftop installations, and Ppv,N,farm for solar farms. Together they add up
to the peak capacity of the PV component

Ppv,N = Ppv,N,roof + Ppv,N,farm. (2.4)

Similar to [36] the specific investment costs listed in Table 2.1 are split into rooftop
installations and solar farms based on the installed peak capacity. Plants below 1 MW
are classified as rooftop installations, plants above 1 MW as solar farms. Specific
investment costs of 1000e/kW are chosen for rooftop installations, and 750e/kW for
solar farms, based on the average of the values from Table 2.1.

Maintenance costs of PV plants are 1 % of investment costs for small-scale rooftops
installations [59] and 2 % for solar farms [49].

The investment costs of the PV component Ipv can now be computed by

Ipv = Ppv,N,roof · ipv,roof + Ppv,N,farm · ipv,farm, (2.5)

and the maintenance costs Mpv by

Mpv = Ppv,N,roof ·mpv,roof + Ppv,N,farm ·mpv,farm (2.6)

with the specific investment and maintenance costs listed in Table 2.2.

2.2.2. Wind Component

A wind turbine generates electric energy from wind energy. The generated power of a
single wind turbine Pwind can be computed using the performance curve method

Pwind = ppower(vwind,hub), (2.7)

where vwind,hub is the wind speed measured at hub height and ppower(−) the perfor-
mance curve.

The performance curve is turbine dependant and provided by the manufacturer. In
our model, we use a generic wind turbine, with a generic performance curve. The
generic performance curve is derived by combining performance curves from multiple
turbines models, based on an approach from Bahl et al. [7].

Figure 2.3a shows performance curves from four different turbine models. Each
curve is defined over a set range of wind speeds. For wind speeds below this range, the
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Figure 2.3: Computation of the generic wind turbine performance curve.
Original curves taken from [20]. Normalisation of capacity brings the
plateau of all curves to the same level. Normalisation of wind speed, using
the specific wind speed at which 80 % of the peak capacity is generated,
unifies the curves further. The generic curve is the average of all four
curves.

turbine cannot harness enough power. For wind speeds above, the breaks in the turbine
are applied in order to prevent damages. To compute the generic performance curve,
the individual performance curves are normalised and combined. First the curves are
normalised by their installed peak capacity Pwind,N, see Figure 2.3b. Then the curves
are normalised using the specific wind speed vwind,spec at which the turbine produces
80 % of their peak capacity, see Figure 2.3c. The generic performance curve ηwind(−) is
the average of all normalised curves, see Figure 2.3d. The generated power by a single
turbine can now be computed by

Pwind = Pwind,N · ηwind

(
vwind,hub

vwind,spec

)
. (2.8)
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Parameter Value
vwind,spec 10.205 m/s
vwind,low 2.875 m/s
vwind,up 22.75 m/s

Table 2.3: Specific wind speed and cut off wind speeds for the generic performance
curve.
All wind speeds are the average values of the four considered performance
curves, which are taken from [20].

The specific wind speed and cut off wind speeds are given in Table 2.3.
Normally the wind speed vwind is measured at a given height Hmeasure. To compute

the wind speed at hub height vwind,hub, the atmospheric boundary layer

vwind,hub = vwind ·
ln(Hhub/Z0)

ln(Hmeasure/Z0)
, (2.9)

is used with Z0 as the ground roughness, an empirical value based on the composition
of the surrounding area.

In order to fully specify the generic turbine used in this model, a hub height of
Hhub = 140 m and peak capacity of Pwind,N = 4 MW are chosen.

The generated power of the wind component can now be computed by

Pwind = Nwind · Pwind,N · ηwind

(
vwind,hub

vwind,spec

)
, (2.10)

where Nwind is the number of installed turbines.
Figure 2.4 gives a schematic representation of the wind component with its inputs

and outputs.

Wind ComponentWindspeed vwind Produced power Pwind

Figure 2.4: Block diagram of the wind component.
The wind speed is a model input and the produced power is a model output
of the wind component.

Considering the investment and maintenance costs, Lüers et al. [43] give an overview
for costs of onshore wind turbines in Germany, scaled by their installed capacity and
hub height. Using the chosen capacity of 4 MW and hub height of 140 m, the total
investment costs Iwind can be computed by

Iwind = Nwind · iwind. (2.11)
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Parameter Value
iwind 4.7 Me
mwind 224 ke/a

Table 2.4: Specific investment and maintenance costs for the wind component.
The specific costs are adapted from [43].

The maintenance costs Mwind can be computed by

Mwind = Nwind ·mwind, (2.12)

The specific investment and maintenance costs are listed in Table 2.4.

2.2.3. Biogas Component

Biogas plants use anaerobic digestion to produce biogas from organic matter. The gas
can either be injected into the gas grid or turned into thermal and electric energy using
an on-site combined heat and power (CHP) system. We focus on electricity generating
biogas plants.

Traditionally biogas plants produce electricity at a constant rate, but there are
efforts to flexibilise biogas power generation [21]. Modelling a flexible biogas plant is
advantageous, due to the fact that the flexible power output of the biogas component
can fill possible gaps between demand and supply without using storage components.

In order to develop a flexible model, we take a model for a traditional biogas plant
and extend it to allow for flexible power generation. The power output of a traditional
biogas plant Pbiogas is equal to the electric capacity of the CHP system Pbiogas,N. The
annual amount of feedstock consumed by the plant ṁbiogas is constant and can be
correlated to the electric capacity:

Pbiogas,N = ṁbiogas ·
109 000 m3/kt · 5.97 kWhch/m

3 · 0.3 kWhe/kWhch

8760 h/a
. (2.13)

The volume of biogas per kilo tonne of feedstock, 109 000 m3/kt, is taken from a
survey of United Kingdom based biogas plants [54]. The amount of chemical energy
per volume biogas is 5.97 kWhch/m

3 [51]. The electric efficiency of a CHP system is
0.3 kWhe/kWhch [51].

McKendry [48] gives an overview of investment and maintenance costs of power
generating biogas plants in the United Kingdom. The metric for the investment costs
is

Ibiogas,base = ṁbiogas · 0.1828 Me a/kt + 0.2995 Me. (2.14)
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The metric for the maintenance costs is

Mbiogas,base = ṁbiogas · 16.669 ke/kt + 518.968 ke/a, (2.15)

and already includes costs for feedstock and disposal of waste.
Both metrics use the annual feedstock capacity as the capacity measure of the biogas

plants. Using Equation (2.13), we can express the costs in terms of the electric capacity:

Ibiogas,base = Pbiogas,N · 8.2027 ke/kWe + 299.5 ke, (2.16)

Mbiogas,base = Pbiogas,N · 0.748 ke/(kWe a) + 518.968 ke/a. (2.17)

The model is flexibilised by adding a gas tank with a storage volume Vbiogas,N and
an additional CHP system with electric capacity Pbiogas,N,add.

The generated power is now flexible and is bounded by the electric capacities:

0 ≤ Pbiogas ≤ Pbiogas,N + Pbiogas,N,add. (2.18)

We neglect changing part load efficiencies.
The amount of consumed feedstock remains constant, resulting in a constant volume

of gas generated V̇biogas,gen. Because the amount of consumed feedstock is determined by
the electric capacity of the base CHP system, we can calculate the volume of generated
gas from the electric capacity of the base CHP system:

V̇biogas,gen = Pbiogas,N · (5.97 kWhch/m
3 · 0.3 kWhe/kWhch)−1

= Pbiogas,N · 0.558 m3/kWhe,
(2.19)

using the inverse of the CHP electric efficiency and chemical energy per volume
biogas.

The volume of gas consumed by both CHP systems depends on the power generated:

V̇biogas,con = Pbiogas · 0.558 m3/kWhe, (2.20)

using the same correlation between electric energy and volume of biogas.
The volume of gas in the storage tank Vbiogas is determined by the volume generated

and consumed using a state equation:

Vbiogas(t) = Vbiogas(t−∆t) + (V̇biogas,gen(t)− V̇biogas,con(t)) ·∆t, (2.21)

while not exceeding the capacity of the tank

0 ≤ Vbiogas ≤ Vbiogas,N. (2.22)
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[21] provides investment costs for retrofitting existing biogas plants for flexibility.
The costs for the tank Ibiogas,stor depend on the volume:

Ibiogas,stor = Vbiogas,N · 20.5e/m3. (2.23)

The costs for the additional CHP system Ibiogas,add depend on the electric capacity:

Ibiogas,add = Pbiogas,N,add · 858e/kWe. (2.24)

The total investment costs Ibiogas is the sum of the costs of the individual components

Ibiogas = Ibiogas,base + Ibiogas,add + Ibiogas,stor

= Pbiogas,N · ibiogas + ibiogas,const

+ Pbiogas,N,add · ibiogas,add

+ Vbiogas,N · ibiogas,stor.

(2.25)

The total maintenance costs Mbiogas only consist of the maintenance costs of the
main biogas plant

Mbiogas = Mbiogas,base = Pbiogas,N ·mbiogas +mbiogas,const. (2.26)

The specific investment and maintenance costs are listed in Table 2.5.
Figure 2.5 gives a schematic representation of the biogas component with its inputs

and outputs.

Biogas Component Produced power Pbiogas

Figure 2.5: Block diagram of the biogas component.
The produced power is a model output of the biogas component.

Parameter Value
ibiogas 8.2027 ke/kWe

ibiogas,const 299.5 ke
ibiogas,add 858e/kWe

ibiogas,stor 20.5e/m3

mbiogas 0.748 ke/(kWe a)
mbiogas,const 518.968 ke/a

Table 2.5: Specific investment and maintenance costs for the biogas component.
The calculations for the specific costs are detailed in Equations (2.13) to
(2.17), Equation (2.23) and Equation (2.24).
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2.2.4. Hydroelectric Component

Hydroelectricity produces electric power from the flow of water by letting the water flow
through a set of turbines. Because hydroelectricity can produce electricity at a more
stable, reliable and cheaper rate than other renewable energy sources, hydroelectricity
is an established form of renewable energy [30]. Additionally, hydroelectricity exhibits
a high dependence on local factors like the existence of a running body of water and
suitable construction site for turbines and dams, limiting the number of potential
construction sites. This makes it less favourable for optimisation because many of the
limited number of construction sites are already occupied by existing plants. However,
the comparatively low cost of electricity makes hydroelectricity essential for a transition
to renewable energy. So it should be considered when designing a DES for a city.

There are two main types of hydroelectric plants. Conventional plants, which use a
dam to create a more energetic flow of water by raising the height difference between
the water levels before and after the turbine, and run-of-the-river (ROR) plants, which
only use the natural flow of a river. Conventional plants have advantages over ROR
plants. They can control the amount of water that is flowing through the turbines, and
therefore the amount of generated power, while ROR plants are subject to fluctuating
flow rates. Disadvantages of conventional plants are higher costs of installation and a
more limited number of available sites. In this work, we focus on ROR plants, because
possible sites for ROR plants are more numerous than for conventional dams.

We assume constant flow of water and therefore a constant power output Phydro equal
to the electric capacity Phydro,N of the turbines installed in the plant:

Phydro = Phydro,N. (2.27)

Figure 2.6 gives a schematic representation of the hydroelectric component with its
inputs and outputs.

Hydroelectric Component Produced power Phydro

Figure 2.6: Block diagram of the hydroelectric component.
The produced power is a model output of the hydroelectric component.

Hofer [30] analyses the investment and maintenance costs of a large number of ROR
plants all over Europe. The total investment costs Ihydro are scaled using the installed
capacity:

Ihydro = Phydro,N · ihydro. (2.28)

The maintenance costs Mhydro are a set as a fraction of the investment costs and can
therefore be expressed in terms of installed capacity:

Mhydro = 0.16/a · Ihydro = Phydro,N ·mhydro. (2.29)
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Parameter Value Source
ihydro 3200e/kW [30]
mhydro 512e/(kW a) a

Table 2.6: Specific investment and maintenance costs for the hydroelectric component.
a The maintenance cost are 16 % of the investment costs [30].

The specific investment and maintenance costs are listed in Table 2.6.

2.3. Storage Systems

Storage systems are essential for designing a self-sufficient energy system using renew-
able power plants. They convert excessive electric energy into forms of energy that can
be easily stored and later turned back into electric energy if the power plants are not
able to meet the demands.

In this work, we focus on four different technologies: pumped hydropower, hydrogen
storage, Power-to-Gas (PtG), and battery storage. The models for all technologies are
similar, so we present it for a generic technology l before discussing each technology
and their specific parameters.

The storage component consists of a charging unit, a storage unit and a discharging
unit.

The power charged into the storage unit Pl,char is bounded by the capacity of the
charging unit Pl,char,N

0 ≤ Pl,char ≤ Pl,char,N. (2.30)

The power discharged from the storage unit Pl,dis is bounded by the capacity of the
discharging unit Pl,dis,N

0 ≤ Pl,dis ≤ Pl,dis,N. (2.31)

The amount of energy stored Ql must change according to the charging and dis-
charging rates, following a state equation:

Ql(t) = Ql(t−∆t) + (Pl,char(t) · ηl,char−Pl,dis(t) · η−1
l,dis) ·∆t−Ql(t−∆t) · ηl,self, (2.32)

were ηl,char is the charging efficiency, ηl,dis the discharging efficiency and ηl,self the
self-discharging rate. These factors depend on the technology and are derived below.
Parasitic energy consumption used to operate the charging and discharging units are
incorporated into the conversion losses.

The amount of stored energy must not exceed the storage capacity Ql,N

0 ≤ Ql ≤ Ql,N. (2.33)

Figure 2.7 gives a schematic representation of a generic storage component with its
inputs and outputs.
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Storage ComponentCharged power Pl,char Discharged power Pl,dis

Figure 2.7: Block diagram of a generic storage component.
The charged power is a model input and the discharged power is a model
output of a generic storage component.

The total investment costs Il consist of the costs for the charging, discharging and
storage units

Il = Pl,char,N · il,char + Pl,dis,N · il,dis +Ql,N · il,stor, (2.34)

where il,char, il,dis and il,stor are the specific investment costs of the charging, dis-
charging and storage units. These factors depend on the technology and are derived
below.

Analogous to the investment costs, total maintenance costs Ml are computed from
the installed capacities

Ml = Pl,char,N ·ml,char + Pl,dis,N ·ml,dis +Ql,N ·ml,stor, (2.35)

using specific costs ml,char, ml,dis and ml,stor that are technology dependent.

2.3.1. Pumped Hydropower

Pumped hydropower stores energy by pumping water from a lower reservoir into a
higher reservoir, converting electric energy into potential energy. Later, the water can
flow from the higher into the lower reservoir spinning turbines that generate electric
power. Similar to hydroelectricity pumped hydropower is limited by suitable sites. If
a suitable site is available, pumped hydropower can offer large storage capacities.

Usually, the capacity is measured in m3 of movable water. Together with the height
difference between the reservoirs, the storage capacity can be expressed in kWh of
stored potential energy. As the literature presents costs in terms of potential energy,
we quantify the storage capacity in kWh.

Hartmann et al. [28] give an overview on efficiencies, see Table 2.7. Self-discharging
through water evaporation in the upper reservoir is neglected. Conrad et al. [16] give
an overview of the investment and maintenance costs. The investment costs Ipump

based on the installed capacities can be expressed as

Ipump = Ppump,char,N · ipump,char

+ Ppump,dis,N · ipump,dis

+Qpump,N · ipump,stor,

(2.36)

where the combined costs for the charging and discharging units are equally split.
The maintenance costs Mpump are split into fixed and variable costs. The fixed costs,
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combined for the charging and discharging units, are equally split. The variable costs
are scaled using the number of pump and turbine starts per year, Nstart,pump, Nstart,tur

and total generated power per year Qtotal

Mpump = Nstart,pump · Ppump,char,N · 8.95e/MW

+Nstart,tur · Ppump,dis,N · 3.34e/MW

+Qtotal · 0.56e/(MW h)

+ Ppump,char,N · 1.43e/(kW a)

+ Ppump,dis,N · 1.43e/(kW a).

(2.37)

Most pumped hydropower plants in Germany are designed as daily storages, execut-
ing a daily charging and discharging cycle [28]. Assuming that the storage performs one
cycle per day, discharging 75 % of its storage capacity, we can express the maintenance
costs in terms of installed capacity as

Mpump = 365/a · Ppump,char,N · 8.95e/MW

+ 365/a · Ppump,dis,N · 3.34e/MW

+ 0.75 · 0.91 · 365/a ·Qpump,N · 0.56e/MWh

+ Ppump,char,N · 1.43e/(kW a)

+ Ppump,dis,N · 1.43e/(kW a)

= Ppump,char,N ·mpump,char

+ Ppump,dis,N ·mpump,dis

+Qpump,N ·mpump,stor,

(2.38)

where we incorporate the discharging efficiency of 0.91 into the computation of Qtotal.
Table 2.7 provides all calculated values for the pumped hydropower component.

Parameter Value Source
ipump,char 529.62e/kW
ipump,dis 529.62e/kW
ipump,stor 1.3e/kWh
mpump,char 4.696 75e/(kW a)
mpump,dis 2.6491e/(kW a)
mpump,stor 0.139 503e/(kWh a)
ηpump,char 0.88 [28]
ηpump,dis 0.91 [28]
ηpump,self 0 a

Table 2.7: Specific investment and maintenance costs and technical parameters for
pumped hydropower.
The calculations for the specific costs are detailed in Equations (2.36) to
(2.38). a Neglected
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Parameter Alkaline PEM SOEC
ih,char 925e/kW a 2090e/kW a 6000e/kW b

ih,dis 3000e/kW b 2090e/kW a 6000e/kW b

mh,char 18.5e/(kW a) c 41.8e/(kW a) c 120e/(kW a) c

mh,dis 60e/(kW a) c 41.8e/(kW a) c 120e/(kW a) c

ηh,char 0.71 b 0.63 b 0.82 b

ηh,dis 0.60 b 0.56 b 0.50 b

Table 2.8: Specific investment and maintenance costs and technical parameters for elec-
trolysis and fuel cells.
a [3], b [22], c The maintenance costs are 2 % of the investment costs, as suggested by [3].

2.3.2. Hydrogen Storage

Hydrogen storages use excess electric energy to split water into hydrogen and oxygen
using an electrolyser. The hydrogen can be stored and combined with oxygen back
into water inside a fuel cell, providing electric energy.

The Fuel Cells and Hydrogen Joint Undertaking [3] and Ferrero et al. [22] both in-
vestigate the potential of hydrogen storage. Three different hydrogen electrolysis and
fuel cell technologies where considered: Alkaline, Proton exchange Membrane (PEM)
and Solid Oxide Electrolysis cells (SOEC). Table 2.8 provides the specific investment
and maintenance costs together with the electric efficiencies for the charging and dis-
charging units.

The generated hydrogen has to be stored. Underground caverns provide large vol-
umes for storage. Suitable caverns are however only available at certain locations, and
hydrogen competes with oil, natural gas and heating as possible storage applications
for caves. An alternative are on-site high pressure steel tanks, which are currently used
for small-scale storages.

We focus on on-site high pressure steel tanks, as there is no need for hydrogen trans-
port to a possibly far away cavern. The operation of high-pressure steel tanks needs
compressors. The installation costs are already factored into the specific investment
costs of the steel tanks [4]. Any parasitic energy needs are already factored into the
efficiencies of the fuel cells [22].

Table 2.9 provides the specific investment and maintenance costs for the storage
units. Gas leakage from the tanks is neglected, leading to no self-discharging.

Parameter Value
ih,stor 20e/kWh a

mh,stor 0.4e/(kWh a) b

ηh,self 0 c

Table 2.9: Specific investment and maintenance costs and technical parameters for hy-
drogen storage.
a [4], b The maintenance costs are 2 % of the investment costs., c Neglected
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Parameter Chemical Biological Source
ich4,char 2211.84e/kW 2315.52e/kW [57]
ich4,dis 858e/kW 858e/kW [21]
mch4,char 78.795e/(kW a) 72.095e/(kW a) [57]
mch4,dis 0e/(kW a) 0e/(kW a) [21]
ηch4,char 0.568 0.568 [57]
ηch4,dis 0.3 0.3 [51]

Table 2.10: Specific investment and maintenance costs and technical parameters for
methanisation and CHP systems.

2.3.3. Power-to-Gas

Power-to-Gas (PtG) generates methane gas from electricity using a two step process.
First, electrolysis provides hydrogen. In the second step, the hydrogen is reacted
with carbon dioxide to form methane, also called synthetic natural gas. The produced
methane can be put to different uses. Fuelling vehicles, injecting it into the natural-gas
grid, or burning it to generate heat and electricity. We focus on storing the methane
on site and converting it back into electric energy using a gas turbine.

Van Leeuwen and Zauner [57] provide the investment, maintenance and feedstock
costs as well as efficiencies of PtG plants for two technologies, namely chemical and
biological methanisation. The PtG plant investigated by Van Leeuwen and Zauner
injects the generated gas into the gas grid. The costs for the gas grid injection station
are disregarded as we store the methane on site.

Feedstock for PtG include water and carbon dioxide. The costs for water are disre-
garded. Carbon dioxide is captured from the exhaust gases from burning the methane,
leading to a closed carbon cycle. The costs of the carbon capturing and storage facilities
are neglected.

As the generated methane is similar to the gas generated by a biogas plant, the same
storage tanks and gas turbines can be used. The specific investment and maintenance
costs of the storage tanks in the biogas component, see Table 2.5, are given per volume
of biogas. Multiplying the specific costs with the amount of chemical energy per
volume biogas, 5.97 kWhch/m

3 [51], the specific investment and maintenance costs of
the methane storage can be given per amount of stored energy

ich4,stor = ibiogas,stor · 5.97 kWhch/m
3 (2.39)

mch4,stor = mbiogas,stor · 5.97 kWhch/m
3 (2.40)

Table 2.10 provides the costs and efficiencies for both methanisation technologies and
CHP systems. Table 2.11 provides the costs and efficiencies for the methane storage
tank.
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Parameter Value Source
ich4,stor 3.444e/kWh
mch4,stor 0e/(kWh a)
ηch4,self 0 a

Table 2.11: Specific investment and maintenance costs and technical parameters for
methane storage.
The calculations for the specific costs are detailed in Equations (2.39) and
(2.40). a Neglected

2.3.4. Battery Storage

Batteries use electro chemical processes to store electric energy, offering up high round
trip efficiencies.

A constraint of battery storage is that batteries have a maximum depth of discharge
qbat,max. We incorporate it into the component model by replacing the lower bound of
Equation (2.33) with (1− qbat,max) ·Qbat,N.

Jülch et al. [32] give an overview of costs and efficiencies of three different bat-
tery storage technologies: Lithium-ion (Li-Ion), Lead (Pb) and Vanadium-Redox-Flow
(VRF). Only round trip efficiencies are provided so the losses are evenly split between
charging and discharging efficiencies. Table 2.12 provides the costs, efficiencies and
maximum depth of discharge for all three technologies.

Parameter Li-ion Pb VRF
ibat,char 0e/kW 0e/kW 0e/kW
ibat,dis 80e/kW 80e/kW 0e/kW
ibat,stor 855e/kWh 280e/kWh 985e/kWh
mbat,char 0e/(kW a) a 0e/(kW a) a 0e/(kW a) a

mbat,dis 1.6e/(kW a) a 1.6e/(kW a) a 0e/(kW a) a

mbat,stor 17.1e/(kWh a) a 5.6e/(kWh a) a 19.7e/(kWh a) a

ηbat,char 0.975 0.877 0.894
ηbat,dis 0.975 0.877 0.894
ηbat,self 0.01 per Month 0.02 per Month 0.0083 per Month
qbat,max 0.8 0.5 1

Table 2.12: Specific investment and maintenance costs and technical parameters for
battery storage [32].
a The maintenance costs are 2 % of the investment costs [32].

2.4. Consumption Component

The consumption component represents the city that the DES tries to supply with
electricity. The energy demand Pdemand is given as a time series of parameters. Figure
2.8 gives a schematic representation of a consumption component with its inputs and
outputs.
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Consumption ComponentConsumed power Pdemand

Figure 2.8: Block diagram of the consumption component.
The consumed power is a model input of the consumption component.

2.5. Grid Component

A connection of the DES to the national electricity grid is represented using the grid
component. If not enough energy is available in the local energy grid, the discrepancy
can be purchased from the grid Pbuy, generating costs. Excess energy can be sold, Psell,
generating revenue, here modelled as negative costs.

This work focuses on optimal DES design, so we do not consider regulations when
connecting to energy markets. These problems can be tackled by bidding strategies
and virtual power plants in energy markets.

Figure 2.9 gives a schematic representation of a consumption component with its
inputs, outputs and variables.

Grid ComponentSold power Psell Purchased power Pbuy

Figure 2.9: Block diagram of the grid component.
The sold power is a model input and the purchased power is a model output
of the grid component.

The generated costs Cgrid are calculated using the electricity tariff cbuy and feed-in
tariff csell

Cgrid = Pbuy · cbuy ·∆t− Psell · csell ·∆t. (2.41)

2.6. Superstructure

In the superstructure, the components are connected to form the DES, which is shown
in Figure 2.1 The produced energy consists of the outputs of all power plant components
k ∈ K, storage components l ∈ L, and purchased energy from the grid. The electricity
is consumed by the storage components, the city or is sold to the grid. Both produced
energy and consumed energy must equal at all times∑

k∈K

Pk +
∑
l∈L

Pl,dis + Pbuy =
∑
l∈L

Pl,char + Pdemand + Psell. (2.42)

We do not consider distances, losses and maximum load capacities within the local
transmission infrastructure.
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3. Optimisation under Certainty

In this section, the DES model from Section 2 is embedded into a mixed integer linear
program (MILP) for optimal DES design.

A mixed integer linear program is a variant of a linear program (LP). A linear
program takes the form

min
x

cTx

s.t. Ax ≥ b,
(3.1)

where x ∈ Rd is a vector of decision variables, cTx is the linear objective function
and Ax ≥ b is a set of linear constraints [42]. A set of values for the variables that
satisfy all constraints is called a feasible solution. An optimal solution is a solution
with the minimum objective value compared to all other feasible solutions.

A given LP can be solved using a host of solvers, each guaranteeing to find a global
optimal solution. A LP can be infeasible if no solution exists, or unbounded if the
constraints allow for solutions with arbitrary minimal objective values. Solvers can
detect if a LP is infeasible or unbounded.

If one or more of the decision variables are restricted to integer values the program
is called a MILP. In this case, the complexity of the solving process increases, due
to combinatorial complexity. Techniques like branch and bound can be applied to
find optimal solutions for MILPs. Sometimes the introduction of integer variables can
render a feasible LP infeasible, because there exists no integer solution. The higher
the number of integer variables, the higher the chance of infeasibility.

In the context of optimal DES design, the decision variables represent design and
operational choices, i.e., equipment sizing or energy flow decisions. The constraints
capture the operational behaviour of the DES as well as design limitations, like max-
imum available land area for solar farms. Additional design goals, like self-sufficiency
can be enforced by adding additional constraints to the MILP.

The objective function determines what feature of a DES design should be optimised.
In this work, we focus on cost optimal DES design, so the objective function should
measure the economic performance of a given DES design.

In this section, first all restrictions of the DES model from Section 2 are translated
into linear constraints in Section 3.1. The objective function is developed in Section
3.2, and additional constraints in Section 3.3.

3.1. Model Translation

The descriptions of the DES model from Section 2 are translated into linear constraints.
To capture the operation of the DES, a time series formulation is chosen. All pa-

rameters and variables that change over time are given as a series of values with index
t ∈ T for a time series T . The points in the time series are equidistant with a period
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of ∆t. The exact value determines the coarseness of the model and is application de-
pendent. Each constraint that contains a parameter dependent on t must hold for all
time steps t in the time series T .

Photovoltaic Component The power generated by the photovoltaic component Ppv,t

is restricted by

0 ≤ Ppv,t ≤ (Ppv,N,roof + Ppv,N,farm) · ppv,t (3.2)

with the installed peak capacities on roofs Ppv,N,roof and in solar farms Ppv,N,farm

as decision variables. The specific capacity ppv,t is precomputed from the total solar
irradiation GT,t and ambient temperature Ta,t

ppv,t =

(
1− βref ·

(
Ta,t − Tref + (TNOCT − Ta,t) ·

GT,t

GNOCT

))
· GT,t

Gref

(3.3)

The inequality in Equation (3.2) allows for curtailment of the photovoltaic compo-
nent. This is necessary to prevent infeasibility in scenarios with full self-sufficiency, see
Section 3.3.2.

Wind Component The power generated by the wind component Pwind,t is restricted
by

0 ≤ Pwind,t ≤ Nwind · pwind,t. (3.4)

with the installed number of wind turbines Nwind as an integer decision variable. The
power produced by a single wind turbine pwind,t is precomputed from the measured wind
speed vwind,t

pwind,t = 4 MW · ηwind

(
vwind,hub,t

vwind,spec

)
. (3.5)

vwind,hub,t = vwind,t ·
ln(140 m/Z0)

ln(Hmeasure/Z0)
. (3.6)

Similar to the photovoltaic component, curtailment of the wind component is en-
abled by turning Equation (3.4) into an inequality. This can prevent infeasibilities in
scenarios with full self-sufficiency, see Section 3.3.2.

Biogas Component For the biogas component, the installed CHP base capacity
Pbiogas,N, additional CHP capacity Pbiogas,N,add and storage volume Vbiogas,N are decision
variables. The generated electricity Pbiogas,t can be chosen within the capacity limits

0 ≤ Pbiogas,t ≤ Pbiogas,N + Pbiogas,N,add. (3.7)
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The stored volume of biogas Vbiogas,t then follows the discretised state equation

Vbiogas,t = Vbiogas,t−1 + (Pbiogas,N ·0.558 m3/kWhe−Pbiogas,t ·0.558 m3/kWhe) ·∆t, (3.8)

and must not exceed the storage volume

0 ≤ Vbiogas,t ≤ Vbiogas,N. (3.9)

See Section 3.3.3 for additional constraints concerning components with storages.

Hydroelectric Component For the hydroelectric component, the generated energy
Phydro,t is equal to the installed capacity Phydro,N given as a decision variable:

Phydro,t = Phydro,N (3.10)

Storage Components Each energy storage component follows the same equations, so
we formulate a set of constraints for a generic storage component l ∈ L. The capacity
of the charging unit Pl,char,N, discharging unit Pl,dis,N, and storage unit Ql,N are decision
variables. The power consumed by charging Pl,char,t can be chosen within the capacity
limits

0 ≤ Pl,char,t ≤ Pl,char,N. (3.11)

The power generated by discharging Pl,dis,t can also be chosen within the capacity
limits

0 ≤ Pl,dis,t ≤ Pl,dis,N. (3.12)

The storage fill level Ql,t follows the discretised state equation

Ql,t = Ql,t−1 + (Pl,char,t · ηl,char − Pl,dis,t · η−1
l,dis) ·∆t−Ql,t−1 · ηl,self (3.13)

not exceeding the storage capacity and maximum depth of discharge ql,max

(1− ql,max) ·Ql,N ≤ Ql,t ≤ Ql,N. (3.14)

See Section 3.3.3 for additional constraints concerning components with storages.

Consumption Component The energy demand of the city Pdemand,t is provided as
time series of parameters.

Grid Component The amount of purchased energy Pbuy,t and sold energy Psell,t are
decision variables.
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Superstructure The energy balance of the local electricity grid is∑
k∈K

Pk,t +
∑
l∈L

Pl,dis,t + Pbuy,t =
∑
l∈L

Pl,char,t + Pdemand,t + Psell,t. (3.15)

3.2. Objective Function

In the context of designing an optimal DES, the objective function defines the features
of a given DES design that are of interest. Usually, these cover the cost of installing and
operating the DES. Sometimes other features could also be included, like environmental
impact or certain energy shares. In this work, we focus on optimising the cost of a
DES, while guaranteeing a high degree of self-sufficiency using additional constraints,
see Section 3.3.

The cost of a DES can usually be split into two categories. The upfront investment
costs, to be paid before the DES is operational, and maintenance costs, paid during
the operation of the DES. Investment costs typically include planning, permissions,
land, materials, construction and margins for foreseeable spare parts. Maintenance
costs include personnel costs, leasing, insurance, repairs and replacements. They are
typically given as annual costs. Depending on the source, costs for fuel and waste
disposal are included in the maintenance costs or treated separately. In our case, they
are included in the maintenance costs. The computation of total investment costs and
yearly maintenance costs for each power generating and energy storage component are
detailed in Section 2. Additionally, the DES can buy and sell energy from the external
grid, further generating costs, or revenue

Cgrid =
∑
t∈T

Pbuy,t · cbuy ·∆t− Psell,t · csell ·∆t. (3.16)

where cbuy is the electricity price for purchasing electricity from the external grid
and csell the feed-in tariff for selling electricity to the grid.

When regarding the true cost of a DES, one has to take into account its life time.
Either by computing maintenance costs over the whole lifetime from the yearly costs,
or by spreading the one-time investment costs over the economic lifetime. Usually the
second approach, called annualisation, is performed. For a given producing or storing
component i ∈ K ∪L the investment costs Ii are annualised using the annuity present
value factor APVF i [36]

APVF i =
r · (1 + r)ai

(1 + r)ai − 1
∀i ∈ K ∪ L, (3.17)

where ai is the economic lifetime of component i in years and r the interest rate,
usually set to 0.05. The economic lifetime of all components are listed in Table 3.1.
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Component Economic Lifetime Source
Photovoltaic 25 a [36]
Wind 25 a [36]
Biogas 30 a [36]
Hydroelectric 80 a a

Pumped Hydropower 80 a [32]
Hydrogen 20 a [22]
Power-to-Gas 20 a [57]
Li-ion b 20 a c [32]
Pb b 10 a c [32]
VRF b 20 a c [32]

Table 3.1: Economic lifetime of power producing and energy storage components.
a Similar to pumped hydropower, b Lifetime of battery storage depends on technology
used, c Based on daily charging cycles [32]

The annualised investment costs I of the DES is the sum of the individual annualised
investment costs

I =
∑

i∈K∪L

Ii · APVF i. (3.18)

The maintenance costs M is the sum of the individual maintenance costs

M =
∑

i∈K∪L

Mi. (3.19)

The grid component is the only component that contributes to the additional costs

C = nperiod · Cgrid. (3.20)

where the factor nperiod is used to adjust the time covered the time series T to the
length of a year.

The final objective function is the total annual costs TAC

TAC = I +M + C. (3.21)

3.3. Additional Constraints

Additional constraints can be used to enforce special design goals and limitations into
the optimisation problem.

3.3.1. Capacity Limits

The main design limitations of DES designs are limitations on component sizes. This
is enforced by providing a maximal allowed capacity for each decision variable that
represents the capacity of a component
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Ppv,N,roof ≤ Pmax
pv,N,roof (3.22)

Ppv,N,farm ≤ Pmax
pv,N,farm (3.23)

Nwind ≤ Nmax
wind (3.24)

Pbiogas,N ≤ Pmax
biogas,N (3.25)

Pbiogas,N,add ≤ Pmax
biogas,N,add (3.26)

Vbiogas,N ≤ V max
biogas,N (3.27)

Phydro,N ≤ Pmax
hydro,N (3.28)

Pl,char,N ≤ Pmax
l,char,N ∀l ∈ L (3.29)

Pl,dis,N ≤ Pmax
l,dis,N ∀l ∈ L (3.30)

Ql,N ≤ Qmax
l,N ∀l ∈ L. (3.31)

3.3.2. Self-sufficiency

The design goal of self-sufficiency can be expressed using additional constraints. We
express two different kinds of self-sufficiency, namely full and partial self-sufficiency.

Full self-sufficiency A DES is fully self-sufficient if the connection to the external
grid is not utilised. This could be realised by removing the grid component or setting
the variables for purchased and sold energy to zero. Such a formulation can result in
infeasible problems. Consider a scenario containing an extreme period of low supply
and peak demand, as well as an extreme period of peak supply and low demand. In
the worst case, no DES design within the given design constraints can function during
both extreme periods. Either energy has to be purchased during the low supply, peak
demand period or energy has to be sold during the peak supply, low demand period.

In order to circumvent such infeasibilities we employ an alternative strategy to en-
force full self-sufficiency. The variables for purchased energy are set to zero, forcing the
DES to produce enough energy to bridge the low supply, peak demand periods. This
could lead to overproduction during the peak supply, low demand period. The DES can
compensate the overproduction by emptying its storages or curtailing its production
components. We emulate the emptying and curtailment by setting the feed in energy
tariff csell to zero. This enables the DES to get rid of energy without incentivising it
by earning revenue. Additionally, direct curtailment is built into the solar and wind
components by using inequalities in Equations (3.2) and (3.4).

Partial self-sufficiency Partial self-sufficiency allows a fraction of the consumed en-
ergy to be purchased from the grid, while setting no restriction to the amount of sold
energy. Self-sufficiency of degree f limits the amount of purchased energy to 1− f of
consumed energy.
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Expressing self-sufficiency over a period of time allows for two different formulations.
The first, called average, only ensures that the overall fraction of purchased energy is
below the threshold ∑

t∈T

Pdemand,t · (1− f) ≥
∑
t∈T

Pbuy,t. (3.32)

The second, called individual, ensures that at all individual time steps the threshold
is not exceeded

Pdemand,t · (1− f) ≥ Pbuy,t. (3.33)

3.3.3. Cyclic Storage Constraints

Components with storages contain variables describing the storage fill level at each step
of the time series. The change from one step to the next is expressed by a discretised
state equation. If no additional constraints are applied then the storage can be set to
full capacity at the start of the time series and successively emptied instead of buying
energy from the external grid, practically generating free energy. This exploitation can
be prevented by enforcing that the storage has the same fill level in the beginning and
the end of the time series, similar to [45, 60]. We introduce additional constraints for
the biogas component

Vbiogas,T = Vbiogas,0 (3.34)

and each storage component l ∈ L

Ql,T = Ql,0. (3.35)
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4. Optimisation under Uncertainty

In this section, the MILP from Section 3 is extended to a two-stage stochastic program
to account for uncertainty.

A two-stage stochastic program can be expressed by the form [42]

min
x,ys

FI(x) +
∑
s∈S

πsFII,s(x, ys)

s.t. gI(x) ≥ 0

gII,s(x, ys) ≥ 0.

(4.1)

The uncertainty in the parameters is represented by a set of scenarios S where each
scenario s ∈ S contains a value for each uncertain parameter. Each scenario also has a
probability πs. The decision variables are split into two stages. First stage variables x
are decisions that have to be made before the uncertain values are known. The second
stage, ys, consists of decisions that can be delayed until the uncertainty is revealed.
For each second stage variable one instance per scenario exists, index by scenario s,
describing the decision made when the uncertain parameters take on the values of
scenario s. Following the decision variables, the constraints are split into constraints
depending only on first stage variables, gI(x), and into constraints that also depend on
second stage variables gII,s(x, ys), where one instance per scenario exists. The objective
function is likewise split into an expression only depending on first stage variables FI(x)
and an expression that also depends on second stage variables FII,s(x, ys). The second
stage objective expressions are used to compute the expected objective value over all
scenarios.

If the constraints and the objective function are linear functions, then we can express
a two-stage stochastic problem as a LP. When certain variables are restricted to integer
values, we get a MILP. In the case of two-stage stochastic programs, only small sized
MILPs can be solved using conventional solvers and algorithms. For more complex
problems special algorithms taking advantage of the two-stage formulation exist, like
Bender Decomposition [8].

The number of uncertain parameters and scenarios are important factors in the
development of two-stage stochastic problems. Increasing the number of parameters
increases the complexity of the problem. However, failing to account for uncertainty in
some parameters can lead to suboptimal design decisions [46]. The number of scenarios
determines the accuracy of the uncertainty quantification, and therefore the accuracy
of a solution. So a tradeoff between problem complexity, i.e., solving time and possible
infeasibilities, on one side and accuracy and avoidance of suboptimal decisions on the
other has to be struck. Additionally, the number of integer decisions on the second
stage has to be kept to a minimum, due to the fact that for each integer decision
one integer variable per scenario has to be introduced to the MILP, leading to large
numbers of integer variables.

In the context of optimal DES design, first stage variables are called design variables,
usually representing the installed capacities [41]. The second stage is called operation

29



variables, representing operational decisions, like how much energy should be drawn
from each storage component, or how much energy should be sold.

Section 4.1 details what parameters are considered uncertain. Section 4.2 extends
the deterministic program from Section 3 into a two-stage stochastic program. Section
4.3 describes how the scenarios and their respective probabilities are calculated.

4.1. Uncertain Parameters

Each model parameter that is not considered to be uncertain can pose the risk leading
to suboptimal design decision, while not increasing the complexity of the resulting
problem. So a tradeoff between complexity and optimality has to be made. The
additional goal of self-sufficiency also has to be considered.

The uncertain availability of renewable energy through photovoltaic and wind power
create the biggest challenges in designing a renewable, self-sufficient energy system.
The model parameter specifying solar availability is the specific capacity ppv,t, rep-
resenting the fraction of the peak capacity that is available. The model parameter
specifying wind availability is the specific capacity pwind,t, representing the available
power from one wind turbine. Both parameters are viewed as uncertain for the opti-
misation of the DES.

Considering the goal of self-sufficiency, the energy demand that has to be met is an es-
sential parameter. Influenced by many factors like population and industry behaviour,
the energy demand cannot be known beforehand. Therefore, the model parameter
Pdemand,t representing the energy demand is also considered uncertain.

Further parameters that could be considered uncertain are electricity tariffs, feed in
compensation, as well as costs of fuel and waste disposal. These factors can impact
the economic performance of a given DES design. In this work, we do not consider
them uncertain, but assume known values. This simplification is justified by the fact
that we consider self-sufficiency as an additional design goal, which limits the amount
of sold and purchased energy, reducing the impact of electricity tariffs and feed in
compensation on the objective function.

4.2. Problem Extension

In the following the deterministic program from Section 3 is extended into a two-stage
stochastic program.

The constraints and precomputations describing the power generation and energy
storage components must be fulfilled for each scenario s.

Photovoltaic Component

0 ≤ Ppv,s,t ≤ (Ppv,N,roof + Ppv,N,farm) · ppv,s,t (4.2)

ppv,s,t =

(
1− βref ·

(
Ta,s,t − Tref + (TNOCT − Ta,s,t) ·

GT,s,t

GNOCT

))
· GT,s,t

Gref

(4.3)
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Wind Component

0 ≤ Pwind,s,t ≤ Nwind · pwind,s,t (4.4)

pwind,s,t = 4 MW · ηwind

(
vwind,hub,s,t

10.205 m/s

)
(4.5)

vwind,hub,s,t = vwind,s,t ·
ln(140 m/Z0)

ln(Hmeasure/Z0)
(4.6)

Biogas Component

0 ≤ Pbiogas,s,t ≤ Pbiogas,N + Pbiogas,N,add (4.7)

Vbiogas,s,t = Vbiogas,s,t−1 + (Pbiogas,N · 0.558 m3/kWhe − Pbiogas,s,t · 0.558 m3/kWhe) ·∆t
(4.8)

0 ≤ Vbiogas,s,t ≤ Vbiogas,N (4.9)

Hydroelectric Component
Phydro,s,t = Phydro,N (4.10)

Storage Components

0 ≤ Pl,char,s,t ≤ Pl,char,N (4.11)

0 ≤ Pl,dis,s,t ≤ Pl,dis,N (4.12)

Ql,s,t = Ql,s,t−1 + (Pl,char,s,t · ηl,char − Pl,dis,s,t · η−1
l,dis) ·∆t−Ql,s,t−1 · ηl,self (4.13)

(1− ql,max) ·Ql,N ≤ Ql,s,t ≤ Ql,N (4.14)

Consumption Component The energy demand of the city Pdemand,s,t is provided as
time series of parameters for each scenario.

Grid Component The amount of purchased energy Pbuy,s,t and sold energy Psell,s,t

are second stage variables.

Superstructure The energy balance of the local electricity grid is

∑
k∈K

Pk,s,t +
∑
l∈L

Pl,dis,s,t + Pbuy,s,t =
∑
l∈L

Pl,char,s,t + Pdemand,s,t + Psell,s,t. (4.15)

Objective Function The computations for the investment and maintenance costs for
each component remain unchanged from the deterministic optimisation problem and
are detailed in Section 2.
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Unlike the investment and maintenance costs, the additional electricity costs depend
on operational variables, meaning we have a different value for each scenario.

Cgrid,s =
∑
t∈T

Pbuy,s,t · cbuy ·∆t− Psell,s,t · csell ·∆t. (4.16)

The computations for the annualised investment costs, Equations (3.17) and (3.18),
and total yearly maintenance costs, Equation (3.19), remain unchanged.

The additional costs from buying and selling energy is computed per scenario, so we
calculate the expected additional costs

E(C) =
∑
s∈S

πs · ns · Cgrid,s (4.17)

using the individual probabilities πs and weights ns of each scenario. The weights
ns are used to adjust the time covered by scenario s. For the weights and probabilities
see Section 4.3.2.

The objective function of the stochastic program remains unchanged from the de-
terministic one

TAC = I +M + E(C). (4.18)

Capacity Limits The additional constraints enforcing capacity limitations, Equations
(3.22) - (3.31), remain unchanged because they only restrict first stage variables.

Full self-sufficiency Considering full self-sufficiency, the deterministic program uses
the feed in tariff and variables representing purchased energy to enforce full self-
sufficiency while preventing possible infeasibilities. Both measures are adopted in the
two-stage stochastic program. Allowing for curtailment in the solar and wind com-
ponents is also adopted in the two-stage stochastic program, see Equations (3.2) and
(3.4).

Partial self-sufficiency Regarding partial self-sufficiency, two possibilities exists to
expand the individual and average strategies form the deterministic program into the
stochastic program [45]. In the first, called neutral, the self-sufficiency strategy is
enforced using the expected amount purchased and consumed energy over all scenarios.
In the second, called aggressive, the strategy is enforced for each scenario individually.

This leads to three possible partial self-sufficiency strategies.
Average Neutral:

∑
s∈S

(
πs ·

∑
t∈T

Pdemand,s,t

)
· (1− f) ≥

∑
s∈S

(
πs ·

∑
t∈T

Pbuy,s,t

)
. (4.19)
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Average Aggressive: ∑
t∈T

Pdemand,s,t · (1− f) ≥
∑
t∈T

Pbuy,s,t. (4.20)

Individual Aggressive:

Pdemand,s,t · (1− f) ≥ Pbuy,s,t. (4.21)

The fourth possible strategy, Individual Neutral, is mathematically possible. How-
ever, limiting the expected amount of purchased energy to a set fraction of the expected
amount of consumed energy for each time step individually would lead to a schedule
that balances energy flows over all scenarios for each time step individually. Such
scenario-spanning balances are contradictory to the time-spanning balances that are
enforced using the average aggressive strategy and enabled via the storage components.

Cyclic Storage Constraints The cyclic storage constraints restrict operational vari-
ables and must therefore be fulfilled in each scenario

Vbiogas,s,T = Vbiogas,s,0 (4.22)

Ql,s,T = Ql,s,0 ∀l ∈ L. (4.23)

This formulation has two consequences. First, storage operations are independent for
each scenario. Storage fill levels and charging rates from one scenario do not impact
other scenarios. When the underlying scenarios are a collection of typical periods
representing a longer span of time, then they are temporally linked on each other.
Such a dependence can not be represented by the above formulation of providing one
copy of each second stage variable and constraint per scenario. Second, each storage
can only operate in a cyclic manner over the length of the underlying time series.

Both consequences eliminate the possibility to model seasonal storages. Either the
underlying time series has to span an entire year, which leads to infeasibly large op-
timisation problems, or the temporal dependence between different scenarios has to
be incorporated into the problem formulations. Such an attempt to model seasonal
storages exist [37, 25], but are beyond the scope of this work.

4.3. Scenario Generation

In this section the computation of a set of scenarios representing uncertainty in electric
demand, and solar and wind availability is developed.

Mavromatidis et al. [46] review different methods to quantify the uncertainty of
model parameters in DES design. The methodology of characterising the uncertainty
varies from parameter to parameter. For demand uncertainty, two categories are ob-
served, namely total demand uncertainty and simulation-based demand uncertainty.

In total demand uncertainty, simple probability distributions are extracted from
historical data and future projections. These distributions are sampled to create sets of
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scenarios. If correlations between demand and other model parameters are considered,
then they are implicitly handled by using historical data from the same source or
explicitly when the probability distributions are calculated.

During simulation-based demand uncertainty models are employed that simulate
the entity that creates the electricity demand. Usually building performance simula-
tion (BPS) tools are used [46]. Multiple factors that influence the energy demands
of a building are fed into a simulation software, which then simulates the building
to generating demand profiles. Inputs include environmental factors like solar irradi-
ation, occupancy behaviour like thermostat settings and architectural characteristics
like building materials. Using the BPS tool, a large set of yearly scenarios is gener-
ated. Scenario reduction, like clustering extracted features [45], and aggregation, like
k-medoids clustering to select typical days [19], are performed to reduce the size of
resulting optimisation problem.

Uncertainty quantification for environmental parameters like wind speed or solar
irradiation is most commonly done analogous to total demand uncertainty [46]. Prob-
ability density functions are fitted to measured data or data from a meteorological data
base. Sometimes the data is divided into seasons, months or day night intervals to ac-
count for seasonal and diurnal variations. The fitted probability density function are
then sampled to generate profiles. Similar to demand uncertainty, scenario reduction
and aggregation can be performed to reduce the size of the problem formulation.

A third approach for demand uncertainty is used by Conejo et al. [15], where autore-
gressive moving average (ARMA) models are trained on historical data and then used
to generate scenarios. Scenario reduction and aggregation is performed analogous to
simulation-based demand uncertainty. This approach can also be used for environmen-
tal parameters. Correlation between model parameters can be considered implicitly, by
handling historical data from the same source, or explicitly, by using cross correlation.

Using simulation-based demand uncertainty in the context of generating scenarios
for a city is not applicable. The BPS tools used for yearly demand profile generation
model a single building. In order to adapt this process for a smart city, each building
in the city has to be modelled and simulated, which is not feasible.

Using ARMA models over total demand uncertainty has an advantage: The demand
at a certain time step usually depends on the demand at previous time steps. This
time dependent behaviour is build into ARMA models, where as it is lost during
total demand uncertainty, because the distributions at each time step are sampled
independently. Due to this advantage, an approach using ARMA models for both
demand and environmental parameters is introduced in the following.

4.3.1. ARMA Model Based Demand Uncertainty

The uncertainty in a model parameter that changes over time, like electric demand,
can be expressed as a time discrete stochastic process Y = y1 . . . yk, where for each
time step t a random variable describes the stochastic nature of the parameter. Usually
these random variables depend on each other, e.g., the electric demand at a certain
time depends on the electric demand at previous time steps.
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This behaviour of depending on past values can be captured using an ARMA model,
which has the following form:

yt =

p∑
j=1

ϕj · yt−j + εt −
q∑

j=1

θj · εt−j, (4.24)

with autoregressive parameters ϕ1 . . . ϕp, moving average parameters θ1 . . . θq, and
independent and identical normal distributed error terms ε1 . . . εk ∼ N(0, σ).

The autoregressive parameters express how much a value in the process depends on
past values. The moving average parameters express how much a value in the process
depends on past error terms. The error terms, and their distribution N(0, σ), provide
the stochastic behaviour found in the modelled stochastic process. The terms p and q
are called the orders of the ARMA model.

In order for a stochastic process Y to be modelled by an ARMA model, two assump-
tions are made about the stochastic process. The normality assumption states that Y
follows a normal distribution. The stationarity assumption states that the mean and
variance of Y does not change over time. If a stochastic process fulfils both assump-
tions, an ARMA model can be trained by estimating the autoregressive and moving
average parameters as well as the variance of the error term. Such a trained ARMA
model can then be used to generate multiple realisations of the underlying stochastic
process by sampling all error terms and using Equation (4.24) to compute the time
series y1 . . . yk. ARMA models can be extended to be more flexible dealing with time
series that violate the stationary or normality assumptions, e.g., seasonal ARMA mod-
els can incorporate stationary violating cyclic patterns in a stochastic process. When
finding the best fit ARMA model, or one of its extensions, the input stochastic pro-
cess, has to be inspected for stationary and the orders of the ARMA model have to be
picked. This can be accomplished using procedures like the Box-Jenkins method [10].

In our application of ARMA models for scenario generation, one model is trained
per parameter. Correlations between the different parameters are implicitly handled
by taking historical data from the same source. The three models then generate yearly
demand and availability profiles. The remaining steps of scenario reduction and ag-
gregation can be executed analogously to simulation-based demand uncertainty [46].

Using ARMA models presents new challenges. Detecting if a stochastic process is
stationary and transforming it into a stationary one requires techniques from time series
analysis. Additionally, the orders of the ARMA model have to be chosen carefully,
either by using tools from time series analysis or training ARMA models with different
orders and choosing the best fitting one. Finally training ARMA models on yearly
profiles with hourly resolution is time consuming. Due to these factors, using ARMA
model based demand uncertainty is not further pursued.

4.3.2. Total Demand Uncertainty

Deterministic demand profiles form the basis for computing scenarios using total de-
mand uncertainty. These profiles are usually given as a set of typical periods, each
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typical period representing a set of actual periods within a year. Each typical period
consists of one time series for each uncertain parameter. The goal is to compute multi-
ple realisations of each typical period. If the input data is not given as a set of typical
periods, then techniques like clustering can be used to determine typical periods. Then
simple distributions are assigned to each time step and parameter within each typical
period. The kind of distribution and its shape, like expected value or variance, depend
on the parameter. The distributions are sampled to generate multiple realisations for
each typical period, which can be used as scenarios for the stochastic program.

Determining typical periods Given a large time series based on historical data,
determining typical periods is a form of scenario reduction. The historical data is
split into periods, and reduction techniques are applied until a sufficiently small set of
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(d) Concatenated demand and availability
profiles that represents a single period dur-
ing clustering.

Figure 4.1: Time series concatenation.
Example to illustrate how multiple parallel running time series from a single
period are combined. After each time series is normalised based on the
maximum of the whole input time series, all time series are concatenated
to form a single time series used during clustering.
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periods remain. Such techniques can be clustering [19], based on distances between
the time series of each period, or other methods based on probability distances [29].

Domı́nguez-Muñoz et al. [19] developed a method for determining typical periods for
demand data of CHP systems. In the following, this approach is adopted to determine
typical periods for electric demand, and solar and wind availability.

The input is one time series for each parameter. Each time series is normalised and
then split into periods. For each period the values of all parameters are concatenated
in order to calculate typical periods for all parameters at the same time, see Figure 4.1
for an example. Using k-medoid clustering, the periods are clustered into k clusters
C1 . . . Ck represented by their medoid c1 . . . ck. The clustering is expressed in an MILP
formulation.

The number of clusters k is determined by clustering for multiple values of k and
choosing the clustering with the best quality, measured by two sets of indices. First
the Davies-Bouding index IDB, measuring the similarity within a cluster and the dis-
similarity between different clusters. Second the error in load duration curve indices
ELDC pv, ELDCwind, and ELDC demand, representing the error when reconstructing the
load duration curve of each parameter using only the representative periods. Based on
these indices the optimal clustering number and its clustering are chosen. The origi-
nal time series of all typical periods are recovered by taking the cluster medoids and
reversing the concatenation and normalisation.

Generating Scenarios After determining the typical periods using k-medoids clus-
tering, the next step is to generate different realisations of each typical period. The
naive approach is to assign simple distributions at each time step to the cluster medoid.
However sampling these distributions loses time interdependent information between
time steps and can introduce volatility into the resulting sampled time series. Addition-
ally, just assigning distributions around the cluster medoid would disregard additional
information contained within the cluster, see Figure 4.2 for an example.

We use an alternative approach, where uniformly members from each cluster are cho-
sen to represent different realisations for each typical period, see Figure 4.2d. Choosing
cluster members preserves the time interdependent information and does not introduce
additional volatility into the set of computed realisations.

Given k cluster and m representatives per cluster, in the end m · k scenarios are
computed.

Weights Scenarios originating from larger clusters represent more periods from the
input time series, and therefore operational decisions that impact the objective function
are more important and have to be weighted accordingly. Weights ns for each scenario
s are introduced into the objective function

ns =
nperiod∑k
i=1 |Ci|

· |Ccluster(s)|, (4.25)

where nperiod is the number of periods that fit into a year, |Ci| is the size of cluster
i and cluster(s) is the assignment of scenario s to the cluster it originated from.
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Probabilities Because each typical period is represented by m uniformly chosen clus-
ter members, the probability of each scenario is set to

πs =
1

m
. (4.26)
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(a) Normalised demand profiles of all cluster
members.
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(b) Cluster medoid highlighted among all clus-
ter members.
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(c) Five realisations obtained from sampling
of a normal distribution around the clus-
ter medoid, where 95 % of the area under
each distribution is between ± 20 % of the
cluster medoid, based on [26].
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(d) Five realisation obtained from choosing 5
cluster member uniformly.
hey
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Figure 4.2: Time series sampling.
Examples illustrating the different approaches to generate multiple realisa-
tions of a given typical period. The cluster members and representatives
are pictured by the black and yellow lines respectively. It is easy to see that
the cluster is less volatile between 9 AM and 10 AM then between 12 PM
and 2 PM. Additionally, the variance changes over time. Both variations
are not represented in the five realisations from Figure (c) but represented
within the five realisations from Figure (d).
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Extreme events During clustering of time series, extreme events of peak demand or
low availability can be excluded from the final set of scenarios. A DES designed based
on an time series aggregated using clustering might not be able to operate during such
extreme events. This necessitates the explicit handling of extreme events during time
series aggregation [56]. In our case the extreme events are manually detected before
aggregation and added to the final set of scenarios after clustering.

After splitting the input time series into periods, six extreme periods are selected,
representing the highest or lowest sum of demand, or solar or wind availability. These
six extreme periods are used to construct two extreme scenarios, but are not removed
from the data set before clustering. In the first extreme scenario, the peak demand
is combined with the low solar and wind availability. The second extreme scenario is
constructed from the low demand and peak solar and wind availability periods. These
extreme scenarios have to be included due to the design goal of full self-sufficiency,
where no external grid is available to export excessive energy. Not including these
extreme scenarios can lead to DES designs that are infeasible during the low demand
and peak supply period due to excessive energy. The weights and probabilities of the
extreme scenarios are set to zero, as suggested by Bahl et al. [7]. This eliminates the
impact of operational decisions during the extreme scenarios on the objective function,
but still guarantees that the resulting optimal DES design can feasibly operate during
the extreme periods.

Length of a Typical Period The process described above can compute typical periods
of different length. The length of a typical period during scenario generation can
influence the performance of the optimal DES design based on the computed scenarios.
Due to the cyclic storage constraints, see Section 3.3.3, each storage can only operate
on a cyclic storage strategy over the length of the typical period. Usually typical days
are used [45, 60]. Demand profiles however exhibit an additional weekly pattern, see
Figure 4.3. Extending a typical period to a calender week, from Monday to Sunday,
can increase the flexibility of possible storage strategies. However, extending period
length form a day to a week reduces the number of periods available for clustering.
So a tradeoff has to be made between possible storage flexibility and data availability
when choosing period length. In Section 5, part of the case study discusses the effect
of period length on storage schedules in optimal DES designs.
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Figure 4.3: Weekly electric demand profile pattern.
Weekly demand profile of a given calender week, starting on Monday and
ending on Sunday. The difference in the demand profile between weekdays
and weekend days is visible.
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5. Case Study

In this section, the MILP formulation from Section 4 is applied in a case study in
two parts. In Section 5.1, the case study is set up and missing model parameters are
specified. In the first part of the case study, Section 5.2, we investigate the influence of
period length on storage schedules in optimal DES designs. In the second part, Section
5.3, we compare DES designs optimised for different levels of self-sufficiency.

5.1. Parameter Specifications and Problem Setup

In this section the case study is set up by providing the missing model parameters and
historical data for the scenario generation. The case study is set up for Herzogenrath,
a city in western Germany. The time frame spanned by the historical data ranges from
the first Monday of 2016 to the last Sunday of 2018. This guarantees that the data
can be split into a whole number of calender weeks. The model was formulated in
the energy system modelling framework COMANDO [41], and solved using the Gurobi
solver version 9.1.1 [27].

Solar and Wind Availability The meteorological data was provided by the For-
schungszentrum Jülich [2], situated 22 km away from Herzogenrath. It provides the
parameters GGHI and vwind, specifying solar irradiation and wind speed, respectively.
Using the simplified computation from Appendix A.2, and Equation (4.2) and (4.4), the
solar and wind availability parameters ppv and pwind are precomputed. The remaining
values are listed in Table 5.1.

Parameter Value Source
Z0 0.3 m [13] a

Hmeasure 10 m [2]
time zone UTC+1 (MEZ) [-]
latitude 50.90754 [-]
longitude 6.41121 [-]
θT,array 45◦ [-]
θA,array 180◦ [-]
βref 0.0034/◦C [23]
Tref 25 ◦C [23]
TNOCT 45 ◦C [23]
Gref 1000 W/m2 [23]

Table 5.1: Model parameters for the precomputation of solar and wind availability.
The latitude and longitude describe the position of the Forschungszentrum
Jülich, that provides the weather data, with UTC+1 being the local time
zone. Daylight saving time was manually corrected in the meteorological
and electric demand data. a Value taken for near-urban regions in Germany.
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Electric Demand Electric demand data for Herzogenrath is provided by the enwor -
energy & wasser vor ort GmbH [1], the local energy and water supplier of Herzogenrath.
It represents the model parameter Pdemand.

Technology Selection During the development of a model for the Hydrogen, PtG and
Battery storage components, multiple technologies were considered. For the Hydrogen
component, the Alkaline technology for electrolysis and PEM for fuel cells are selected,
based on the combination with the lowest levelised cost of electricity [22]. Chemical
methanisation is selected for the PtG component and Li-ion Batteries for the Battery
component. Furthermore, Herzogenrath has no access to a river for a hydroelectric
power plant or a possible site for pumped hydropower. The maximal capacities for
both components are set to zero to reflect the inaccessibility.

Market Parameters The electricity price for purchasing electricity from the external
grid cbuy is set to 150e/MWh to penalise buying electricity, based on [17]. The feed-in
tariff for selling electricity to the grid csell is set to half the average day-ahead market
price for 2020: 0.5 · 0.029 52e/kWh = 0.014 76e/kWh [12].

Grid Shares To compare the scheduling of a given DES design and the impact of
different components, their relative grid shares are computed, based on [45]. The grid
shares are measured relative to the total energy consumption

TEC =
∑
s∈S

(
πs · ns ·

∑
t∈T

(∑
k∈K

Pk,s,t + Pbuy,s,t

))
, (5.1)

based on the purchased energy Pbuy,s,t and the produced energy Pk,s,t of all production
components k ∈ K.

The grid shares for production component k ∈ K is

ES k =
∑
s∈S

(
πs · ns ·

∑
t∈T

Pk,s,t

)
/TEC . (5.2)

The grid shares for purchased energy ES buy, sold energy ES sell and consumed energy
ES demand are computed analogously to Equation (5.2).

Due to the cyclic constraint for storage components, they do not consume or pro-
duce energy over the course of a scenario, except losses due to charging/discharging
efficiencies and self-discharging. The amount of lost energy, and therefore the impact
of each storage component on the grid shares can be computed by taking the difference
between the energy charging into each storage unit and the energy discharging from it

ES l =
∑
s∈S

(
πs · ns ·

∑
t∈T

Pl,char,s,t − Pl,dis,s,t

)
/TEC . (5.3)
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Scenario Representation Quality In order to assess the quality of the scenario rep-
resentation, the annual sum of the uncertain parameters are computed. For the solar
availability, ppv, the annual energy potential AEPpv represents the full-load hours per
year. The annual energy potential is computed for the historical data and for each sce-
nario representation. The historical data is given as a time series ppv,t and the annual
energy potential is computed by

AEPpv =
∑
t∈T

ppv,t ·∆t ·
1

3
. (5.4)

where the factor of three in the denominator compensates the fact, that the historical
data consists of a three year period.

For a scenario representation ppv,s,t the annual energy potential is computed by

AEPpv =
∑
s∈S

(
πs · ns ·

∑
t∈T

ppv,s,t ·∆t

)
. (5.5)

For the wind availability, pwind, the annual energy potential AEPwind represents the
annual energy production of a single wind turbine. For the energy demand Pdemand, the
annual energy demand AED is used. Both values are computed analogous to Equation
(5.4) and Equation (5.5).

5.2. Length of a Typical Period

In order to compare the influence of typical days and typical weeks, one set of sce-
narios is computed for each length from the same data set. For both cases, m = 5
representatives are picked from each cluster. Due to the focus on storage schedules,
both optimal DES designs must contain energy storages. In Section 5.3, the effects of
different enforcing strategies and self-sufficiency levels on DES designs are examined.
The base case, with no self-sufficiency constrains does not utilize energy storages. The
Average Neutral strategy with a self-sufficiency level f = 0.5 represent the most re-
laxed self-sufficiency that forces the DES to incorporate energy storages into its design.
Therefore, the Average Neutral strategy with f = 0.5 is used to obtain DES designs
with energy storages.

Scenario Generation for Days The data is split into 1092 days, and clustered using
the approach discussed in Section 4.3.2. Based on the Davies-Bouding index, see Figure
5.1a, cluster numbers k = {2, 4, 6, 7} are the most promising. Factoring in the error in
load duration curve, Figure 5.1b, especially ELDCwind, which exhibit a lower error at
k ≥ 6, k = 6 is the most optimal clustering number. Choosing m = 5 representatives
per cluster and adding the two extreme scenarios results in m · k + 2 = 32 scenarios.
To compute the weights ns, the number of periods fitting in a year nperiod is set to 365.
The probabilities πs are set to 1

m
= 0.2.
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(a) The Davies-Bouding index IDB measures
the similarity within each cluster and the
dissimilarity between different clusters for
different number of clusters. The lower the
index, the better the clustering.
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Figure 5.1: Indices used to decide optimal clustering number of typical days.
The indices measure the accuracy of clustering the solar and wind avail-
ability and demand data into representative days. Based on them, the
clustering with k = 6 clusters is chosen.
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(a) The Davies-Bouding index IDB measuring
the similarity within each cluster and the
dissimilarity between different clusters for
different number of clusters. The lower the
index, the better the clustering.
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Figure 5.2: Indices used to decide optimal clustering number of typical days.
The indices measure the accuracy of clustering the solar and wind avail-
ability and demand data into representative weeks. Based on them, the
clustering with k = 5 clusters is chosen.
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Scenario Generation for Weeks Analogous to the scenario generation for days, the
data is split into 156 weeks and clustered. The cluster indices are shown in Figure
5.2. Based on the sharp decrease of ELDC pv between k = 4 and k = 5, k = 5 is
the most promising cluster number. All other indices exhibit similar or increasing
behaviour from k = 5 onward, therefore the clustering with k = 5 cluster is chosen.
Representing each cluster with m = 5 scenarios and adding two extreme scenarios,
results in m · k + 2 = 27 scenarios. The number of periods fitting into a year nperiod is
set to 365

7
and the probabilities πs to 1

m
= 0.2.

Results With the two scenario sets computed above, two optimal DES designs are
determined using the MILP formulation from Section 4. Figure 5.3 shows the capac-
ities from the optimal DES designs for both scenario sets. Figure 5.4 shows the grid
shares from both DES designs. All three available storage technologies (Hydrogen, PtG
and Batteries) are not utilised in both DES designs. The flexible biogas component
functions as the only energy storage.

Table 5.2 shows the annual energy potential and annual energy demand of the his-
torical data as well as the two scenario representations. The values suggest that the
week based design represents the historical data with a higher precision. Between the
day based and week based scenario set, the indices exhibit large differences, especially
AEPwind, complicating the comparison of the storage strategies of the computed DES
designs.

Comparing the capacities of both DES designs, the day based design uses more
wind turbines. The decreased number of wind turbines in the week based design is
compensated by a larger biogas capacity. The PV component is of similar size.

The storage volume in the biogas component is considerably bigger in the week based
design. The amount of biogas generated is proportional to the biogas base capacity
Pbiogas,N, according to Equation (2.19). The increase in the amount of generated bio-
gas is half of the increase in the base capacity, and so considerably smaller than the
increase in the storage volume. This suggests that besides the larger amount of biogas
generated, the storage volume is bigger because the gas is stored for a longer period of
time, suggesting a higher utilisation of the storage.

Two explanations for the decrease in the wind component and the increase on the
storage volume arise. In the first, the wind component is utilised less solely because of

Value Historical Data Typical Days Typical Weeks
AEPpv 1204.55 h 1239.73 h 1212.13 h
AEPwind 4185.86 MWh 5285.40 MWh 3690.99 MWh
AED 137 286.84 MWh 140 002.03 MWh 137 723.58 MWh

Table 5.2: Annual energy potential and annual energy demand of the historical data
and different scenario representations.
Overall the typical days representation deviates further away from the his-
torical data than the weeks based representation.
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Figure 5.3: Capacities of optimal DES design based on different lengths of typical pe-
riods.
The capacities for the Hydrogen PtG and Battery components are zero for
all DES designs.
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Figure 5.4: Grid shares of optimal DES designs based on different lengths of typical
periods.

the smaller annual energy potential and the biogas storage is bigger solely because the
time the gas is stored is longer. In the second, the annual energy potential has a larger
impact on the size of the wind component, i.e. without an energy storage, the week
based design would have eliminated the wind component. Additionally, the longer
scenario length enables higher storage flexibility and higher utilisation of the wind
component, explaining the larger storage volume. The overall effect is that the week
based design utilised the wind component despite the smaller annual energy potential
because the longer scenario length enables more utilisation of wind energy. The second
explanation is supported by the fact that the PV component is utilised more in the
week based design despite the week based scenario set having a smaller annual energy
potential for the solar component.

More investigation is needed to conclude if longer typical period length increases
storage flexibility and solar and wind power utilisation. The annual energy potential
and annual energy demand indices suggest that the week based scenario set represent
the historical data more accurately, but more dedicated investigation is needed.

5.3. Self-Sufficiency

In this part of the case study, optimal DES designs under different constraints of
self-sufficiency are compared. In order to provide the most flexibility for the storage
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Strategy f
Base Case -
Average Neutral 0.5
Average Neutral 0.9
Average Neutral 1
Average Aggressive 0.5
Average Aggressive 0.9
Average Aggressive 1
Individual Aggressive 0.5
Individual Aggressive 0.9
Individual Aggressive 1
Full Self-Sufficiency -

Table 5.3: Combinations of enforcing strategies and self-sufficiency levels examined.
During the base case, no additional constraints are added to the optimisation
problem.
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Figure 5.5: Capacities of optimal DES designs based on different combinations of en-
forcing strategies and levels of self-sufficiency.
The capacities for the Hydrogen and PtG components are zero for all DES
designs. Pbat,char,N are non zero for the DES designs that utilise the battery
component, but are so small that they do not register on the graph.
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components, the scenario set based on typical weeks is used in all model runs. All
combinations of enforcing strategies and self-sufficiency levels examined are listed in
Table 5.3. The exact formulations of each enforcing strategy are detailed in Section
4.2.

Results Figure 5.3 shows the capacities and Figure 5.4 shows the grid shares of the
DES designs of all combinations of enforcing strategies and self-sufficiency levels ex-
amined. All DES designs that utilise dedicated energy storages use the battery storage
component, but with so small capacities and grid shares that the effects on the DES
schedule is insignificant. The capacities of the remaining storage components, hydro-
gen and PtG, are zero. In the remaining DES designs, the capacities of all three storage
components are likewise zero. The flexible biogas component functions as the main
storage.

Based on the capacities in Figure 5.5 and grid shares in Figure 5.6, the test cases
exhibit a trend from less aggressive to more aggressive enforcing strategies and self-
sufficiency levels. The capacities of the PV component decrease. The decrease of
the PV capacities and the amount of purchasable energy due to higher levels of self-
sufficiency is compensated by larger biogas capacities.

Overall, the Average Aggressive and Individual Aggressive strategies with the same
self-sufficiency level result in similar DES designs. Between the Average Aggressive
and the Average Neutral strategy, smaller biogas capacities and larger PV capacities
can be observed in the later.

The base case and the Average Neutral 50 % case result in the same DES design,
suggesting that the base case already purchases less than 50 % of the demand over all
scenarios.

An anomaly is the Average Neutral 90 % case, which is the only test case with a
non-zero wind component. It is also the only design with a considerably lager biogas
storage volume, suggesting that the large volume became necessary with the large wind
component, and not due to self-sufficiency.

Moving to the Average Aggressive and Individual Aggressive 90 % test cases, the PV
component is scaled back considerably and the biogas component is scaled up. During
scenarios with low availability, in order to not exceed the 10 % purchasing threshold,
the biogas component has to be scaled up. The increased production capacity is then
also utilized in scenarios with high solar availability, decreasing the size of the PV
component.

The trend of decreasing solar capacities and increasing biogas capacities culminates
in the extreme test cases of 100 % partial self-sufficiency and full self-sufficiency. Both
test cases result in a similar design with no PV component and a scaled up biogas
component. The biogas component has to handle a very large fraction of the energy
demand during the extreme scenario with low availability and peak demand. The
resulting large biogas capacity is then also able to handle all other scenarios, eliminating
the need for solar and wind components.
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The similar designs can be explained by the fact that the self-sufficiency constraints
with f = 1 are mathematically equivalent. The only difference is between the three
partial self-sufficiency strategies and the full self-sufficiency strategy is the feed-in tariff,
which is zero for full self-sufficiency and 0.014 76e/kWh for partial self-sufficiency.

Overall, moving from less aggressive enforcing strategies and lower self-sufficiency
levels to more aggressive strategies with higher levels, a displacement of variable energy
sources like solar and wind with reliable technologies can be observed. The central
effect is that low availability scenarios force larger capacities in the biogas component,
making PV and wind less necessary. This could be alleviated using seasonal storages,
where energy can be transferred form high availability to low availability scenarios.

When looking at the different enforcing strategies, our results show that there is
no difference between the Average Aggressive and Individual Aggressive strategies.
The Average Neutral strategy however relaxes the self-sufficiency goal and enables
for more energy to be purchased during low availability scenarios, when it can be
compensated during other scenarios. However, when introducing seasonal storages
using explicit formulations [37, 25], then energy purchases can be freely distributed
across all scenarios given enough storage capacity. A design that fulfils the Average
Neutral strategy without a seasonal storage could fulfil the same threshold in the
Average Aggressive or even the Individual Aggressive strategy when a seasonal storage
is installed, facilitating the incorporation of solar and wind energy under more extreme
self-sufficiency targets.
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Figure 5.6: Grid shares of optimal DES designs based on different combinations of
enforcing strategies and levels of self-sufficiency.
The grid shares of purchased energy are well below 0.1 percent and do not
register on the graph. This also applies to the grid shares of the battery
component for the DES designs that utilise the battery component.
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6. Conclusion

In this work we developed a two-stage stochastic program to optimise DES designs for
smart cities under constrains of self-sufficiency. The program considers solar and wind
energy production and electric demand as uncertain. First a mathematical model
describing the behaviour of a DES was presented. It incorporates four renewable
energy technologies and four storage technologies. The model is then translated into an
optimisation problem, expressed as an MILP, optimising the total annual cost of a DES
design. Additional constraints enforcing self-sufficiency were added to the optimisation
problem. Different enforcing strategies and self-sufficiency levels were presented.

Using a two-stage stochastic formulation, we extended the optimisation problem to
handle uncertainty regarding model parameters. The electricity demand and solar and
wind availability were considered uncertain. Three techniques for scenario generation
for optimal DES design were discussed. Usually used in the context of designing DES
for single buildings, the scenario generation techniques had to be adapted for the
use in DES design for cities. Total demand uncertainty using typical periods was the
most promising technique, yielding a scenario generation method based on aggregating
historical data into typical periods. The process was adapted to work with typical
periods of different length.

Using a case study of Herzogenrath, a city in western Germany, the two-stage
stochastic program and the scenario generation methods were evaluated. We examined
effects of aggregating historical data into typical days or typical weeks during scenario
generation on the resulting optimal DES designs. Longer typical periods seem to in-
crease the flexibility in the DES operating schedule regarding storage components. We
also examined the effects of different self-sufficiency enforcing strategies and different
levels of self-sufficiency on optimal DES designs. With more aggressive strategies and
higher levels of self-sufficiency, a displacement of varying and uncertain energy source
like solar and wind with stable and deterministic ones, like biogas, was observed.

Future Work In the first part of the case study we analysed the impact of typical
period length on storage schedules in optimal DES designs. During analysis we ob-
served that the scenario set based on longer typical periods more accurately reflects the
historical data. Further investigations on the accuracy of the scenario representations
are needed. Additionally, further investigations are needed to conclude if longer typical
periods increase storage flexibility and utilisation of uncertain energy sources like solar
and wind. During the second part of the case study, we suspect that seasonal storages
could lead to higher utilization of varying and uncertain energy sources under more
extreme constraints of self-sufficiency. The effects of incorporating seasonal storages
into the model and problem formulation should be examined in future works.

During scenario generation, historical data is used as a basis for quantifying the un-
certainty of electricity demand. Future trends like the widespread adoption of electric
vehicles could impact the energy demand profile in unpredictable ways. Only relying
on historical data when generating scenarios does not account for such external factors.
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The scenario generation can also be extended to include more model parameters, like
energy prices and their projected changes in the future.

The model of the DES used in this work was designed for cities, but can also be
used to develop larger DES for metropolitan areas or larger regions.

Our model assumes that all energy producing and storing facilities have to be built
from scratch. However, renewable energy infrastructure is already installed in many
cities. Extending the model to make it possible to incorporate existing energy pro-
ducing and storing infrastructure can ease the application of the model for cities with
preexisting infrastructure.
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A. Appendix

In this appendix, the equations for the computations of the total solar irradiance GT

are presented. The angle of incidence has to be considered in order to account for the
cosine effect, see Section A.1. The computation of the total solar irradiation depends on
the irradiation values measured by the weather station. If global horizontal irradiance
and horizontal diffuse irradiance are measured, the extended computation in Section
A.2 can be used. If only the global horizontal irradiance is measured, a simplified
model can be considered, see Section A.3.

A.1. Angle of Incidence

In order to compute the angle in incidence, the position of the sun and the PV module
mounting have to be considered. It is assumed that all PV modules are mounted in
the same fixed orientation, with a tilt angle θT,array from the horizontal and an azimuth
angle θA,array in degrees east from north. The sun zenith angle θZ and azimuth angle
θA are computed from the time of day, day in the year and PV location, using the
NOAA Solar Position Calculator [40]. Using the angles above, the angle of incident θ,
between a ray of the sun and normal the surface of the PV module, can be computed
by

θ = cos−1(cos(θZ) · cos(θT,array) + sin(θZ) · sin(θT,array) · cos(θA − θA,array)) (A.1)

as suggested by [38].

A.2. Total Solar Irradiation

The computation of the total solar irradiation presented in this subsection uses the
global horizontal irradiance and horizontal diffuse irradiance as input values. If only
the global horizontal irradiance is given, the computation in Section A.3 can be used.
The total solar irradiation GT on a PV module consists of three components, the direct
irradiation Gdirect, diffuse irradiation Gdiffuse and reflected irradiation Greflected

GT = Gdirect +Gdiffuse +Greflected. (A.2)

The direct irradiation depends on the direct normal irradiance GDNI, the solar radi-
ation from the solar disc on a surface normal to the direction of the sun,

Gdirect = GDNI · cos(θ). (A.3)

If the direct normal irradiance is not provided, it can be computed from the global
horizontal irradiation GGHI and the diffuse horizontal irradiation GDHI

GDNI =
GGHI −GDHI

cos(θZ)
. (A.4)
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For the diffuse irradiation, the Perez model of diffuse irradiation on a tilted surface is
used [50]. As input, it takes the diffuse horizontal irradiation GDHI, the radiation from
the sky excluding the solar disc on a horizontal plane. The model takes into account
sky clearness ε

ε =

GDHI+GDNI

GDHI
+ κ · θ3

Z

1 + κ · θ3
Z

, (A.5)

with constant κ = 0.000005525 for angles given in degrees and sky brightness ∆

∆ =
GDHI · AM

E
, (A.6)

with air mass AM and extraterrestrial irradiation E = 1361 W/m2 [35]. The air
mass can be calculated using an approximation from Kasten and Young [34]

AM =
(
cos(θZ) + 0.50572 · (96.07995− θZ)−1.6364

)−1
. (A.7)

The diffuse irradiation is correlated from the diffuse horizontal irradiation and the
sky clearness and brightness using the following equations and coefficients from Table
A.1.

Gdiffuse = GDHI ·
(

(1− F1) · 1 + cos(θT,array)

2
+ F1 ·

a

b
+ F2 · sin(θT,array)

)
. (A.8)

F1 = max(0, f11 + f12 ·∆ + f13 · θZ). (A.9)

F2 = f21 + f22 ·∆ + f23 · θZ. (A.10)

a = max(0, cos θ). (A.11)

b = max(0.087, cos(θZ)). (A.12)

For the reflected irradiation, it is assumed that the module is in an idealised environ-
ment [39]. The irradiance on the infinite flat ground is uniform and equal to the global
horizontal irradiation GGHI, the radiation from the entire sky on a horizontal surface.
The ground reflects diffusely, and with a reflectance of ρ. The reflected irradiation can
then be computed by

Greflected = GGHI · ρ ·
1− cos(θT,array)

2
. (A.13)
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Sky clearness f11 f12 f13 f21 f22 f23

1.000 ≤ ε < 1.065 -0.8 0.588 -0.062 -0.06 0.072 -0.022
1.065 ≤ ε < 1.23 0.13 0.683 -0.151 -0.019 0.066 -0.029
1.230 ≤ ε < 1.5 0.33 0.487 -0.221 0.055 -0.064 -0.026
1.500 ≤ ε < 1.95 0.568 0.187 -0.295 0.109 -0.152 -0.014
1.950 ≤ ε < 2.8 0.873 -0.392 -0.362 0.226 -0.462 0.001
2.800 ≤ ε < 4.5 1.132 -1.237 -0.412 0.288 -0.823 0.056
4.500 ≤ ε < 6.2 1.06 -1.6 -0.359 0.264 -0.127 0.131
6.200 ≤ ε 0.678 -0.327 -0.25 0.156 -1.377 0.251

Table A.1: Coefficients used in the Perez model of diffuse radiation on a tilted surface
based on sky clearness ε.

A.3. Simplified Computation

The computation of the total solar irradiation presented in this subsection uses the
global horizontal irradiance as its input. If additionally the diffuse horizontal irradiance
is available, the computation in Section A.2 should be used. The total solar irradiation
GT on a PV module consists only on the direct irradiation Gdirect

GT = Gdirect. (A.14)

The direct irradiation depends on the direct normal irradiance GDNI, the solar radi-
ation from the solar disc on a surface normal to the direction of the sun,

Gdirect = GDNI · cos(θ). (A.15)

The direct normal irradiance can be approximated from the global horizontal irra-
diation GGHI, the radiation from the entire sky on a horizontal surface,

GDNI =
GGHI

cos(θZ)
. (A.16)
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