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Abstract

This thesis is concerned with the optimal cable routing of heliostats in so-
lar tower power plants. Each heliostat in the field is connected to the solar
tower via a data and a power cable, thereby providing the heliostat with
information and power. The data and power cable optimization are seen
as individual optimization problems and are solved independently.

The data cable model is initially formulated as a traveling salesman prob-
lem. Adding capacity constraints to the model, a further formulation as a
capacitated vehicle routing problem is implemented. Two variations of the
subtour elimination constraints are implemented and analyzed.

Furthermore, for the power cable model, different cable types are consid-
ered. At first, the problem is formulated as a capacitated vehicle rout-
ing problem using Miller-Tucker-Zemlin constraint formulations. The final
model is defined as a distance and capacity constrained vehicle routing
problem, taking all constraints of the power cable into account.

The data cable model is applied to an existent solar tower power plant, the
PS10 in Seville, Spain. Computational results for the data cable optimiza-
tion are compared to existing layouts obtained by heuristic methods. The
power cable model is tested for a small test case.
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1. Introduction

The importance of renewable energy is indisputable and the advancements being made
in this sector are of great importance to reduce the dependency on fossil fuels. Solar
power, as an inexhaustible energy source, is key to this process. A challenge however
lies in extracting this energy cost-effectively and efficiently.

Of the different concentrated solar power (CSP) plants, the solar tower power plant
yields promising commercial usage due to its high operating temperature and relatively
small losses [? ]. A big advantage is the energy storage ability, which allows energy
demands to be met during peak periods - irrespective of the presence of sunlight. An
additional advantage of solar tower power plants is the relatively low maintenance cost
compared to fossil fuel generation plants. However, the large initial investment costs
remain a deciding disadvantage, making up about 80 % of the entire cost. A lot of
research has been invested in the optimization of the heliostat field, which accounts for
up to 50 % of the installation cost of the entire power plant [? ]. Reducing installation
costs of solar tower power plants is therefore an important aspect in today’s research
on solar energy.

Researchers have made advancements in the optimization of the layout of the heliostat
field, however, the actual cabling of the heliostats is still open to improvement. Effi-
ciently laying the cables that supply the reflective mirrors with power and data, can
lead to noteworthy cost savings.

The possible cost savings are demonstrated in an initial approach using heuristic meth-
ods. The approach is discussed in a previous bachelor thesis, showing that roughly 18 %
in total costs for the data cable and 20 % for the power cable could be saved [? ]. Re-
sults are obtained in a short amount of time, therefore providing heuristic methods
with an advantage when runtime is a limiting factor. Furthermore, an exact approach
to cable routing was implemented whilst searching for the optimal connections of off-
shore wind farms. The problem was formulated as an integer linear program (ILP)
and solved using optimization solvers. A successful implementation for different test
cases was possible and resulted in savings of between 14 % and 25 % [? ].

The optimization problem discussed in this thesis refers to the cable connections be-
tween the heliostats and can be described as a routing problem. The traveling salesman
problem (TSP) and the vehicle routing problem (VRP) are two well-known routing
problems that have been extensively researched. Applying the concept of the traveling
salesman problem to a variety of fields, has greatly contributed to solving combinato-
rial optimization problems [? ].

Formulating the problem of this thesis as an ILP and using the optimization solver
Gurobi, the goal is to find the optimal cable routing of a solar tower power plant under
consideration of connection and cabling costs. This approach will be applied to the
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PS10, an existing solar tower power plant in Seville, Spain, consisting of 624 heliostats.
The breakdown of the problem results in independent models for the data and power
cable. The intention is to model the problem as realistically as possible. Later a com-
parison of the exact and heuristics approach will be made.

The thesis is divided into five sections, starting with an introduction to the fundamen-
tals of solar tower power plants and the incurring cabling costs in Section 2. Thereafter,
in Section 3, the mathematical fundamentals of integer linear programming are dis-
cussed. Additionally, the optimization solver and the exact methods used by the solver
are described. Section 4 and Section 5 detail the data cable and power cable model
respectively. Finally, the conclusion and outlook are given in Section 6.

Simulations were performed with computing resources granted by RWTH Aachen Uni-
versity under project thes0383.
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2. Solar Tower Power Plants

A brief introduction to the setup and fundamentals of solar tower power plants will
be given. Along with the fundamentals, the required cables, that are optimized in the
routing problem, will be described in further detail.

2.1. Fundamentals

A solar tower power (STP) plant consists of two main elements - the central receiver
tower and reflecting mirrors surrounding the tower, as shown in Fig. 2.1. The mirrors,
known as heliostats, bundle the sunlight and focus it onto the receiver located at the
top of the tower. The central receiver absorbs the highly concentrated solar irradiation
and converts it into heat. The heat is transferred to a heat transfer medium, either
molten salt or hot air, which powers a steam turbine to generate electrical energy [?
]. The layout of the field is optimized with the intention of gaining maximal thermal
energy [? ].

Figure 2.1: Solar tower power plant layout, taken from [? ]. Solar radiation is reflected
by the heliostats to a central receiver located at the top of the solar tower.

The heliostats are connected to the central receiver tower by means of two cables - the
data and power cable. The data cable is responsible for sending information to the
heliostats, e.g. data on the current position of the sun. Furthermore, the heliostats are
equipped with a dual-axis tracking motor to achieve optimal positioning when tracking
the sun. The 100 W motor installed at the mirrors is powered by the power cable.

The PS10, the solar tower power plant model being used in this thesis, encompassed a
surface area of 50 ha of which the reflective surface covers 75 000 m2 [? ]. In terms of
communication and powering of the heliostats, an attempt at a wireless implementa-
tion has been researched. The complexity, however, remains high and with a moderate
increase in size, the transmission ranges and data rates that are necessary, can be
problematic [? ].
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Consequently, the method currently being implemented and the topic of this thesis,
will use data and power cables to transfer the necessary information and power. The
cost model for both cables is presented in the following section.

2.2. Cost Model

The costs can be divided into cabling, switch and labor costs. An overview is given
in the following section. The cost predictions were made in collaboration with the
company TSK Flagsol [? ]. Note that all prices are provided in Euro and reduction in
costs when ordering in bulk is not considered.

2.2.1. Data Cable

For the data cable two different cable types are available, namely the copper ethernet
cable and the fiber optic cable, which will hence be referred to as copper and fiberglass
cable, respectively. Cables are covered by protective foil to shield from environmental
impacts and interference [? ].

Prices [e/m]
Cable Fiberglass cable 2

Copper cable 0.7
Additional material Protective foil 2

Table 2.1: Material costs for the data cable. Prices given per meter.

As can be seen, the cost of fiberglass cable is notably higher than that of copper.
However, the deciding disadvantage of copper is the length restriction of 100 m. More-
over, copper allows a connection of only two consecutive heliostats. Fiberglass cable
is generally not restricted in length, nonetheless, protocols exist limiting the number
of connected heliostats per subnetwork [? ]. An overview of all data cable constraints
can be found in Section 4.1.

2.2.2. Local Control Units

Further costs incur with the installation of different switches, also referred to as local
control units (LOCs). A LOC is fitted at each heliostat and allows the data transfer
to and between the heliostats. When installing the switches, it is important to bear in
mind the high temperature regions that solar tower power plants are typically built in.
Consequently, switches with working temperatures of up to 80◦C should be fitted [? ].
The available switches and their prices per unit are listed below in Table 2.2.
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LOC Price/piece [e]
Endpoint 10
Conductor 100
8-port fiberglass 800
8-port copper 800
16-port fiberglass 1500
16-port copper 1500

Table 2.2: Prices for local control units.

The different types of LOCs are depicted in Fig. 2.2, whereby fiberglass is represented
in blue and copper in red. A multi-port switch has one incoming cable and branches
out into n outgoing cables, each outgoing cable connecting a further heliostat.

(a) Endpoint (b) Conductor

(c) Multi-port fiberglass (d) Multi-port copper

Figure 2.2: Different types of local control units used for data transmission. Copper
cable is represented in red and fiberglass in blue. A heliostat is represented
by a black point.

Note that each heliostat is connected to a copper cable, that supplies the heliostats
with information. This does not affect the cable routing and costs are included in the
price of the LOC.

2.2.3. Power Cable

As multiple heliostats are supplied by one cable, a capacity restriction for the power
cable should be applied. Additional costs, in terms of switches, do not need to be taken
into account. However, the costs for protective foil, as mentioned in Table 2.1, should
be considered. Cables with different current ratings are used in the layout, with the
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prices per meter listed in the following table.

t Cable type Current
rating rt [A]

Cable
capacity ht

Prices [e/m]

1 NYY-J 3 x 2.5 RE 36 56 0.58
2 NYY-J 3 x 4 RE 47 73 0.87
3 NYY-J 3 x 6 RE 59 92 1.24
4 NYY-J 3 x 10 RE 79 124 1.95
5 NYY-J 3 x 16 RE 103 162 3.13
6 NYY-J 3 x 25 RM 133 209 5.19
7 NYY-J 3 x 35 RM 159 250 6.90

Table 2.3: Current ratings, cable capacities and costs per meter of the seven different
cable types, [? ].

Calculations concerning the maximal heliostats number (cable capacity ht) can be
found in Appendix (A), along with the relevant parameter values.

2.2.4. Labor Costs

The last element in the cost model, presenting the dominating cost factor, is the labor
cost. As further CSP plants are planned in Australia and the UAE, the labor costs for
these countries are listed as well. A great variation in labor costs is mainly due to the
minimum wage of each country. The dimensions of the cable trenches are assumed to be
one meter in depth and one meter in width. The costs are estimated for medium-hard
soil.

Country Costs [e/m]
Spain 25
South Africa 10
Australia 50
United Arab Emirates 10

Table 2.4: Labor costs per country [? ].
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3. Modeling Fundamentals

The aim of an optimization problem is to find the best solution to a given problem, e.g.
minimum cost implications or maximal route length [? ]. In this thesis, the aim is to
optimize the cable routing, while minimizing the overall costs. This section begins with
a brief review of routing problems and thereafter gives the mathematical formulation
of optimization problems.

3.1. Routing Problems

Routing problems can be described with the help of graph theory terminology. Con-
sider a graph G = (V,E), whereby V is a set containing all n vertices, or nodes, and
E a set containing all edges. An edge is defined by two connecting vertices (i, j) ∈ V
and is referred to as an arc if the edge has a direction. A graph consisting of directed
edges is said to be a digraph. Additionally, a graph containing no crossings is referred
to as a planar graph [? ].

The traveling salesman problem (TSP), see Fig. 3.1, is described by a tour through n
cities, by which the cities are represented by vertices and the route traveled is repre-
sented by edges. In case of the asymmetric TSP, (i, j) 6= (j, i) ∀ i, j ∈ V , the traveled
route is illustrated by arcs. A tour is defined as a sequence of vertices with no repeated
edges. The intention of the TSP is to find the shortest tour through all n cities, start-
ing and ending at the same node [? ].

Figure 3.1: Example of a traveling salesman problem with n = 16.

A further routing problem, the so-called vehicle routing problem (VRP), is illustrated
in Fig. 3.2 and is a generalization of the TSP. The VRP is defined to consist of n
customers and m vehicles located at a depot. Similar to the TSP, the VRP aims to
determine the shortest tour, with the addition of m tours starting from the depot [?
]. A generalization of the VRP is the capacitated VRP, which restricts the number of
customers each vehicle is allowed to visit during its tour.
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depot

Figure 3.2: Example of a vehicle routing problem with n = 13 and m = 4.

The VRP belongs to the complexity class of NP-hard problems, while the TSP be-
longs to the class of NP-complete problems. A class is said to be in NP if it can
be verified by a polynomial-time algorithm. The TSP is NP-complete as it is in NP
and any instance of another problem, such as the VRP, can be reduced to the TSP in
polynomial time. Since the VRP is not necessarily in NP but can be reduced to the
TSP in polynomial time, it is NP-hard [? ]. As such, a VRP can be very difficult to
solve.

Obtaining an optimal route for the VRP and TSP, they are first formulated with the
help of integer linear programming (ILP), explained in the next section. Thereafter,
the optimization problems can be solved with the branch-and-bound method, described
in Section 3.3.

3.2. Integer Linear Programming

The goal of solving an optimization problem can be defined as minimizing or maximiz-
ing an objective function under a set of given constraints [? ]. The formulation as a
linear program can be divided into three parts, namely the variables to be optimized,
the objective function and the constraints [? ].

The variables, e.g. what resource to use or what path to take, make up the solution.
The objective function, describing the function to be minimized or maximized, is de-
pendent on the variables. Lastly, the variable choices are restricted by the defined
constraints, which describe the structure of a problem.

Collectively, the formulation for a minimization problem is thus defined by,

min cTx

s.t. Ax ≤ b (3.1)

x ≥ 0

8



whereby A ∈ Rm×n, c ∈ Rn, b ∈ Rm and x ∈ Zn−q ×Qq. If x is integer, q = 0 and the
problem is defined as an integer linear program. For n = q, the problem is known as a
linear program (LP) [? ]. Furthermore, restricting the variables to only binary values,
the problem is known as a binary optimization problem (BIP) [? ].

3.2.1. Optimality

A solution x∗ ∈ X ⊂ Zn−q ×Qq can be said to be optimal when z − z ≤ ε, with z and
z defining an upper and lower bound on the solution, respectively. The ε is a suitably
chosen small non-negative value and X defines the feasible region [? ].

For the purpose of finding the lower and upper bounds, consider the ILP to be given
by,

z = min {c(x) | x ∈ X ⊆ Rn}. (3.2)

The lower bound, z = c(x∗) ≥ z, is any feasible solution x∗ ∈ X. The upper bound is
found by way of relaxation. Consider the following, denoting a relaxation of Eq. (3.2),
if X ⊆ T and f(x) ≤ c(x) ∀x ∈ X,

zR = min {f(x) | x ∈ T ⊆ Rn}.
Consequently, if zR ≤ z a relaxation of the ILP is given. This is true, since x∗ ∈ T
and hence f(x∗) is a lower bound on the relaxation zR, leading to the statement
z ≥ f(x∗) ≥ zR [? ].

3.3. Solving the Optimization Problem

Having formulated the problem as an ILP, the optimization problem can subsequently
be solved by the branch-and-bound method, described in the upcoming section. Fur-
ther methods to accelerate the solution process are discussed thereafter.

3.3.1. Branch-and-Bound

The optimization solver Gurobi, makes use of the linear programming based branch-
and-bound algorithm [? ] and will thus be used to solve the cable routing problem.
Gurobi is a mathematical programming solver that takes advantage of modern day
computer architectures and is so able to efficiently utilize mutli-core processors. More-
over, the Gurobi optimization library can easily be used in conjunction with Matlab.

The idea behind the algorithm, is to divide the problem into smaller problems which
will be easier to solve. This can be seen as a divide and conquer approach. Based on
the description found in [? ], regard the problem

z = min {cx | x ∈ S}.
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The set S can be divided into reduced sets S = S1 ∪ S2 ∪ ...Sk and the sub-problems
then defined by zk = min {cx | x ∈ Sk} for k = 1..K. Subsequently, it holds that
z = maxkz

k. What follows is an enumeration tree, as shown in Fig. 3.3.

Figure 3.3: Branch-and-bound search tree. The gray nodes represent fathomed nodes
and the red node the active node.

The branch-and-bound tree would quickly become excessively large if complete enu-
meration was undertaken, therefore, conditions are needed that limit the size of the
tree. Bounds on the values of zk are required. The upper bound is obtained via LP
relaxation, attained by removing the integrality constraints of the ILP problem, as
described in Section 3.2.1. The relaxation of the LP is solved by the dual simplex
algorithm. When re-optimizing the LP at each node, the dual simplex method can be
used without having to find a new lower bound [? ]. For a more in-depth look at the
algorithm, refer to [? ],[? ]. The lower bound is initially set to z = ∞, as no feasible
solution is known at this stage.

For each node a modified LP needs to be solved, adding new restrictions at each
node. Thereafter, each node is inspected, referred to as the active node, to discern
if fathoming is possible. This would implicate that the node will not be branched on
further. Reasons for fathoming of nodes can be,

(i) An optimal solution has been found

(ii) The resulting LP becomes infeasible, Sk = ∅

(iii) Bounding conditions, zk ≤ zk.

A LP can become infeasible if the added restrictions lead to an infeasible solution. If
the solution of a LP is integer, the best current feasible solution, the lower bound,
can be updated and there is no need to branch further. This would be fathoming by
optimality. Additionally, the incumbent x∗ ∈ X can be updated, which is a void vector
at the start of the process. The last condition, fathoming by bound, ensures that if
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the obtained optimized LP value is worse than the lower bound, the node is fathomed.
A detailed flow chart can be found in Fig. 3.4.

Initialization
Initial Problem S with
Formulation P on List

z = infinity

List
Empty?

STOP
Incumbent x∗ Optimal

Choose Problem Si with
Formulation P i

Solve LP relaxation over P i

Dual Bound zi = LP value
xi(LP ) = LP solution

If P i empty, prune by infeasibility

If zi ≤ z empty, prune by bound

If x(LP ) integeger, update primal
bound z = zi, and incumbent x∗ = xi(LP )

Prune by optimality

Return two subproblems Si
1 and Si

2

with formulations P i
1 and P i

2

N

N

N

N

Y

Y

Y

Y

Figure 3.4: Branch-and-bound flow chart, detailing the process of finding an optimal
solution. Adapted from [? ].
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3.3.2. Acceleration Methods

The goal of the acceleration methods are to limit the size of the search tree and there-
with reduce the searching process and search time. The presolve method helps tighten
the formulation and can be applied before the branch-and-bound method. It reduces
the problem size and therefore also accelerates the search for the optimal solution.

The cutting planes method is responsible for many of the computational advancements
that have been made in solving ILPs [? ]. In essence, the idea is to remove undesirable
fractional results during the solution process and do this without creating additional
sub-problems (which merely make the search tree larger). The cuts are made during
the solution process, as it is far too costly to find all possible constraints beforehand
and also adding them to the matrix would make the LP relaxation harder to solve.

Moreover, Gurobi makes use of a range of heuristic methods. Adding a heuristic to the
method could deliver a good incumbent value, which leads to branches being fathomed
earlier on. Therefore, ultimately speeding up the search.

Lastly, the branch and bound tree has independent sub-problems, which can be solved
in parallel. When dealing with large problems this is very useful, as much of the com-
putation time is spent solving the sub-problems. However, if the problem is solved at
or near the root node, parallelism is restricted and will not be able to speed up the
process [? ].
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4. Data Cable Model

The optimization of the data cable is described in the following subsections. Section 4.1
gives an overview of the constraints, while Section 4.2 describes the cable routing
as a TSP. Adding a further constraint in Section 4.3, the model is formulated as a
capacitated VRP (CVRP).

4.1. Modeling Approach

Foremost, the constraints for the data cable are introduced. Topology constraints
are not considered in this model and so the model can be seen as two-dimensional.
Additionally, branching at the heliostats will not be allowed. The extensive cost of
multi-port switches, which would have to be installed at each heliostat, incur a sig-
nificantly higher cost. An approach using 8-port switches has been evaluated in the
heuristics approach and resulted in an overall higher cost [? ].

The objective of the optimization problem is to minimize the total costs. Under the
following considerations, the model can be formulated as a TSP, see Section 4.2, or as
a CVRP, see Section 4.3.

In Table 4.1 and 4.2, an overview of all constraints along with the cost model is given.

Formulation Constraint Cost model

TSP • All heliostats are connected
to the receiver tower

• All heliostats are connected
by one incoming and one
outgoing cable

• All heliostats are continu-
ously connected

• Cable type fiberglass con-
sidered only

• LOC of type conductor con-
sidered only

• Consideration of installa-
tion costs, i.e. protective
foil and labor costs

Table 4.1: Overview of data cable constraints and cost model for the TSP formulation.
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Formulation Constraint Cost model

CVRP • All heliostats are connected
to the receiver tower

• All heliostats are connected
by one incoming and one
outgoing cable

• All heliostats are continu-
ously connected

• Cable crossings are forbid-
den

• Maximum attendance num-
ber of heliostats per cable
limited to hmax = 128

• Cable type fiberglass con-
sidered only

• LOC of type conductor con-
sidered only

• Consideration of installa-
tion costs, i.e. protective
foil and labor costs

Table 4.2: Overview of data cable constraints and cost model for the CVRP formula-
tion.

4.2. Problem Formulation as TSP

Consider a a fully connected graph G = (V,A) with a set of vertices V = {1, ..., n}
representing the heliostats in the field and vertex n = 1 representing the solar tower.
An additional set is defined by V̄ = V \ {1}. The set, S ⊂ V , is defined to contain the
tours violating the subtour elimination constraint. The set A defines a set of arcs, by
which every arc (i, j) with i 6= j is associated with a non-negative cost matrix ci,j. The
cost matrix is defined by the distance matrix di,j and the incurring labor and material
costs. The distance matrix is defined by,

di,j =
√

(xi − xj)2 + (yi − yj)2.

The cost matrix can therefore be described by,

ci,j = di,j · ĉ

with ĉ = clabor + ccable + cprotectiveFoil.

Further costs, with no relation to the distance however, are the conductor switch costs.
A switch of type conductor is needed at each heliostat.

14



cs = cconductor · nheliostats

A modification to the standard TSP is made, as a returning edge is not required and
will be removed in the final solution. The modified cost matrix is then defined by,

ci,j =

{
ci,j ∀i ∈ V, j ∈ V̄ and i 6= j

ci,1 ∀i ∈ V̄ , i 6= j.

The returning edge should not affect the layout of the tour, hence all possible con-
nection costs from the heliostats to the tower are set to the same large value ci,1 =
M, M ∈ R.

Besides the fiber optic cable, copper cable can be used for the cable routing of the
data cable. However, the copper cable can connect only two succeeding heliostats and
consequently could only be installed for the last two heliostats on the route (returning
edge having been removed). For a TSP tour, this would result in a negligible cost
advantage overall and is therefore not considered in this model.

Having defined the necessary cost matrix and sets, the model can be formulated as
follows. Let m represent the number of outgoing cables from the solar tower and
xi,j, (i 6= j) be a binary variable with,

xi,j =

{
1 if heliostat i is connected to heliosat j

0 otherwise.

The model then reads,

min
∑
i,j∈V
i 6=j

ci,j · xi,j + cs (4.1)

s.t.
∑
i∈V
i 6=j

xi,j = 1 ∀j ∈ V̄ (4.2)

∑
j∈V
i 6=j

xi,j = 1 ∀i ∈ V (4.3)

∑
i∈S

j∈V \S
i 6=j

xi,j ≥ 1 ∀S ⊂ V̄ , S 6= ∅
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xi,j ∈ {0, 1} ∀i, j ∈ V (4.4)

Constraint (4.2) and (4.3) are known as in and out degree constraints and ensure that
each heliostat has exactly one incoming and one outgoing cable respectively. The con-
straint defined by (4.4) is known as the subtour elimination constraint (SEC). The
SEC is added to the constraint matrix only after a first instance of the layout has been
obtained. Adding constraints for all possible subtours would result in approximately
2n inequalities for an n-heliostat field [? ]. As shown in Algorithm 4.1, in order to deal
with the exponential amount of SECs, an iterative approach is implemented.

Consider the obtained layout after all but the subtour elimination constraints have
been added. After finding all subtours, add those which violate the subtour elimina-
tion constraint to the constraint matrix. Solve again and if the SEC is not violated,i.e,
no tour is separate from the solar tower, an optimal solution has been found. In the
negative case, the process of adding violated subtour constraints is repeated and solved
again.

Input : Instance violating subtour constraints
Output: Optimal solution with m tours, each of capacity hmax

while Subtour elimination constraints violated do
for Subtour with violations do

Add subtour elimination constraints
end
Call solver
Evaluate new subtours

end

Algorithm 4.1: Subtour Elimination Constraint

Listed below is a summary of the constraints with the relevant equation.

Constraint Equation
All heliostats are connected by one incoming and one
outgoing cable

(4.2), (4.3)

All heliostats are connected to the receiver tower (4.4)
All heliostats are continuously connected (4.4)

Table 4.3: Summary of data cable constraints with the relevant equation numbers; TSP
formulation.
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4.2.1. Computational Results

After implementing the model in Matlab, the problem was solved with Gurobi on the
RWTH compute cluster, which run under the Linux operating system. The calcula-
tions were run with 12 cores; a test for parallel speed up over increasing number of
cores is described in Section 4.3.2.

The TSP model formulation delivered an optimal result for the cable routing problem,
with n = 624, within 5.24 hours. To perceive the advantage of this modeling approach,
the cost of the cable routing is compared to a naive cable routing approach of the PS10
and also the layout attained by applying the nearest neighbor algorithm. Both results
are obtained from the heuristics approach to cable routing in [? ].

The naive layout is attained by laying the cables in semi-circles around the central
receiver tower. To allow for direct comparison, the naive approach was adapted to
connect all heliostats with one cable. The Hamiltonian path was calculated with the
nearest neighbor algorithm. The 2-opt heuristic was applied to remove any cable cross-
ings [? ].

Below in Fig. 4.1 the adapted naive approach is displayed, and in comparison the lay-
out attained by the Hamiltonian path and ILP approach as shown in Fig. 4.2 and 4.3.
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Solar tower: PS10
trench length: 21038.34
cable length: 25140.29

solar tower
heliostat
cable

Figure 4.1: Adapted naive layout for the PS10 [? ]. The cables are installed in semi-
circles around the solar tower.
Total cost: 672 511.79 e.
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Figure 4.2: Hamiltonian path calculated with nearest neighbor algorithm and 2-opt
heuristic [? ].
Total cost: 548 071.23 e.
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624 heliostats
Runtime: 5.242 hours
Costs: 534910.3629

Cable meters: 16293.4608
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Figure 4.3: Optimal layout of ILP model using exact methods.
Total cost: 534 910.36 e.
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The table below presents the total cable meters and total costs resulting from the
different approaches. The potential cost savings amount to 22.8 % when compared to
the naive layout. This is a result of the cable meter savings, which equal 25.4 %. The
Hamiltonian path differs only 2.43 % from the exact solution.

Layout Total cable
meters [m]

Total costs
[e]

Naive 21 038.34 672 511.79
Hamiltonian path 16 747.28 548 071.23
ILP model 16 293.46 534 910.36

Table 4.4: Cable routing comparisons; cost and cable meter savings. Costs calculated
for Spain.

In the following bar graph, Fig. 4.4, the different labor costs per country are considered.
The cost savings compared to the naive layout amount to 23 %, 24 % and 20.5 % for
Spain, Australia and South Africa/UAE respectively. As the labor costs are calculated
per meter, the cable meters saved will have a greater impact in Australia than in South
Africa/UAE. In a country with lower labor costs, the cost of the switches carry more
weight.
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Figure 4.4: Overall costs calculated for Spain, Australia, South Africa and the UAE,
under consideration of the varying labor costs.
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4.3. Problem Formulation as CVRP

The next approach is to consider a further constraint that limits the maximal atten-
dance number of heliostats per cable connected to the solar tower. This feature is
implemented to limit the number of heliostats connected to a single wiring loom. Such
a restriction is used in the Shagaya project in Kuwait [? ]. Consequently, multiple
tours, starting from the solar tower, are needed to be able to satisfy the additional
restriction. The cable routing formulation can now be described as a VRP or more
precisely as a CVRP, restricting the capacity of each tour. The maximal capacity of a
tour is referred to by hmax. Additionally, the set X ⊂ A is defined to contain all edges
violating the planarity constraint.

Together with Eq. (4.1), the model reads

∑
i∈V
i 6=j

xi,j = 1 ∀j ∈ V̄ (4.5)

∑
j∈V
i 6=j

xi,j = 1 ∀i ∈ V (4.6)

∑
j∈V̄

x1,j = m (4.7)

∑
i∈S

j∈V \S
i 6=j

xi,j ≥ R(S), R(S) =

⌊
|S|
hmax

⌋
∀S ⊂ V̄ , S 6= ∅ (4.8a)

xi,j + xj,i + xk,l + xl,k ≤ 1 ∀(i, j), (k, l) ∈ X (4.9)

The constraints (4.5) - (4.6) are the in and out degree constraints of the CVRP formu-
lation; note that they are defined for different sets than in the TSP model. The SEC,
defined by Eq. (4.8a), is edited to allow multiple tours, yet none disconnected from
the solar tower. The value R(S), is the minimum number of outgoing cables from a
violated subtour, so as to adhere to the capacity restrictions. The limited number of
connected heliostats hmax is set to 128 in the case of the PS10. With this knowledge,
the number of outgoing cables can be set to the fixed value m.

m =

⌈
nheliostats

hmax

⌉
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Hence, the number of outgoing cables from the solar tower can be described by
Eq. (4.7). Furthermore, to forbid the occurrence of crossings between any of the tours,
Eq. (4.9) is implemented and will be referred to as the planarity constraint.

Listed below is a summary of the constraints with the relevant equation.

Constraint Equation
All heliostats are connected by one incoming and one
outgoing cable

(4.5), (4.6)

All heliostats are connected to the receiver tower (4.7), (4.8a)
All heliostats are continuously connected (4.8a)
Maximum attendance number of heliostats per cable
limited to hmax = 128

(4.8a)

Cable crossings are forbidden (4.9)

Table 4.5: Summary of data cable constraints with the relevant equation numbers;
CVRP formulation.

4.3.1. Planarity Constraint

The final cable routing layout should contain no crossings, due to the higher instal-
lation and maintenance costs. Therefore, the occurrence of crossing arcs for one and
multiple tours is investigated.

All arcs within a tour adhere to the triangle inequality, described by

xi,j ≤ xi,k + xk,j

this holds for all triples of the vertices i, j, k. A visual example is provided in the
following figure,

(a) Connected nodes with crossing
edges

(b) Optimal node connections

Figure 4.5: Example of optimal connections within a tour. A shorter route is achieved
when no crossings are present.
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On the contrary, the optimal solution with two tours starting from the receiver tower
could contain crossings. As an example, the following test case was created.
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(a) Optimal layout allow-
ing crossings.
Cost: 927.38 e
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(b) Layout with planarity
constraint.
Cost: 945.38 e

Figure 4.6: Example of crossing edges for multiple routes starting from the depot.
Lower costs obtained when crossing is allowed.

As can be seen, the solution containing crossings, results in a cheaper cost compared to
the layout in Fig. 4.6b. The layout in Fig 4.6b is obtained after applying the planarity
constraint.

The constraint violations are added after the subtour elimination constraint has been
called and the dummy edges have been removed. However, calling the planarity con-
straint after the SEC has been called, might cause violations of the SEC to reoccur.
This results in an iterative process between the SEC and the planarity constraint. A
detailed flow chart can be found in Fig. 4.7.
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declare general
tour constraints

find subtours

subtour violation

eliminate violated
subtours

find crossing violations

crossing violation
’eliminate cross-
ings’ executed

eliminate crossings

Y

N

Y

N

N Y

Figure 4.7: Flow chart describing the optimization process of the data cable model. If
the planarity constraint is called, a verification of the SEC is needed.
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4.3.2. Advantages of Parallelism

The advantage of the Gurobi solver over, e.g. the Matlab solver, is its ability to run
in parallel. It is also a vital component when running the optimization solver for large
and complex problems. Speedup is defined by,

Sp =
T1

Tp
(4.10)

whereby T1 denotes the runtime if the calculation is run on one core and Tp the runtime
on a multi-core system, p represents the number of cores.
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Figure 4.8: Parallel Speedup over cores. Test for n = 100 and m = 2.

Fig. 4.8 shows the speedup for a varying number of cores. When increasing the number
of cores, it is important to remember that for the branch-and-bound tree only the
subproblems can be parallelized. The computation time needed at the root node
cannot be diminished by increasing the core number. As can be seen, the speedup can
be increased to 2.26 for 12 cores. All further calculations will hence be run with 12
cores.

4.3.3. Alternative Subtour Elimination Constraint Formulation

An alternative formulation for the subtour elimination constraint, as discussed by
Laporte et al. [? ], is defined by,∑

i,j∈S
i 6=j

xi,j ≤ |S| −R(S) ∀S ⊂ V̄ , S 6= ∅. (4.8b)
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Eq. (4.8b), ensures that within the subtour the number of connections is diminished,
and therefore referred to as inner connectivity constraint (ICC). The constraint defined
in Eq. (4.8a) ensures that the subtour violating the constraint has R(S) connections
to all other nodes in the field, and will from now on be referred to as the outer connec-
tivity constraint (OCC). As discussed in [? ], these formulations are mathematically
equivalent. However, as found in [? ], the formulations can lead to different ILP-
solver performances. For an increasing number of nodes (heliostats), the runtimes of
formulation OCC and ICC are compared. The number of tours was set to two.
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Figure 4.9: Runtimes for subtour formulations OCC and ICC with m = 2. The OCC
formulations results in a reduced runtime.

As can be seen in Fig. 4.9 the OCC formulation performs better overall. The deviations
at 60 and 120 as well as 80 and 100 heliostats is owed to the presolve and heuristic
methods used by the solver. If the methods deliver a very good incumbent value early
on, only a few iterations are needed to find the true optimal solution. If, however, a
good incumbent value is not easily found or not close to the best bound, more iterations
are needed at the cost of an increased runtime.

4.3.4. Optimization using a Start Value

Speedup of the optimization process is often achieved by limiting the size of the branch-
and-bound tree [? ]. By presenting the solver with a start value, a smaller gap between
the incumbent and best bound can be found early on during the optimization process.
It can however, make no difference at all, if the Gurobi heuristic methods find a value
that is just as good or better than the start value.

The effect of providing a start value is tested for both subtour elimination formulations
and for a varying number of heliostats. The start value is obtained from the heuristics
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approach used in [? ]. During this approach, the best result was achieved by use of a
Hamiltonian path. Note that the runtimes with a start value do not include the time
needed to calculate the start value itself.
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Figure 4.10: Runtimes including and excluding start values for subtour formulations
OCC and ICC. No benefit was achieved by including a start value.

Fig. 4.10 shows that providing a start value did not benefit the runtime. The OCC
formulation still delivers better runtimes and barely any discrepancy between the runs
including and excluding a start value can be seen. The reason behind this can be
explained by looking at the incumbent values and relative gap.

Looking closer at the 200 heliostat test, the incumbent value differs no more than
0.41 % from the best bound (when the solver is called for the first time). The first two
subplots in Fig. 4.11 depict the incumbent values and the best bound for the cases
with and without a start value. Without the start value the required gap tolerance
is reached within four seconds. Furthermore, it can be seen that within two seconds
a relative gap of less than 0.01 % is achieved for the case not including a start value.
While the case including a start value has a relative gap of less than 0.001 %, the time
needed to reach a gap tolerance of 10e−10 remains the same for both cases. This also
explains why the runtimes differ only in the slightest. Even though the solver is called
multiple times, the time saved remains negligible.
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Figure 4.11: Relative gap including and excluding a start values. Calculations without
a start value achieve the same gap tolerance value within 2 seconds.

4.4. Runtime Limitations

Steadily increasing the problem size, proved to immensely affect the runtime. The goal,
however, is to run the CRVP model for the PS10 with five tours, therewith adhering to
the capacity constraints. To which extent multiple tours affect the runtime is therefore
tested. The tests were run to find the maximal heliostat number that can be optimized
within an acceptable amount of time.

Creating only one tour, it was possible to solve to optimality within 5.24 hours. For
this case a single fiberglass cable is installed, connecting all 624 heliostats. Hence, the
next calculations were all restricted to a 6h runtime limit, in order to compare the
impact of multiple tours on the runtime. Again all calculations were run with twelve
cores and the OCC subtour formulation was used. The calculations were run for one,
two, three, four and five tours.
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Figure 4.12: Maximal heliostat optimization within 6 h. For 5 tours, the problem could
be solved for n = 60.

For two tours, the amount of heliostats is a third of the TSP model. Reaching five
tours, the number is reduced to 60 heliostats, which is a tenth of the size of the PS10.

4.4.1. CVRP Formulation for PS10

Limiting factors are not only confined to the runtime, but memory usage limitations
need to be considered as a restraint factor as well. On the one hand, the constraint
matrices became extremely large in size, as with each subtour violation a new constraint
is added. Additionally, with limited resources available, a restart functionality had to
be added to the program. As a result, the large matrices and other variables would
always have to be stored and loaded after and before every restart of the calculation.
Conclusively, after 343 h the layout still contained violated subtours. This can be seen
in Fig. 4.13.
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Figure 4.13: CVRP formulation of PS10 with m = 5 and n = 624. Layout still contains
subtour constraint violations. Runtime 381 h.

4.5. Result Evaluation and Conclusion

The entire PS10 with five tours did not provide a solution in a practical amount of
time, consequently, the problem size was reduced to 60 heliostats for five tours. In
doing this, it is possible to validate the heuristic methods used in [? ] for small prob-
lem sizes. The cable meters used differed 5.94 %, resulting in a cost difference of 5.24 %.
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(a) Hamiltonian path calculated with
nearest neighbor algorithm and 2-opt
heuristic, cf. [? ]

-150 -100 -50 0 50 100 150
0

50

100

150

60 heliostats
Costs: 49866.5199

Cable meters: 1512.6386

solar tower
heliostat
cable

(b) Optimal layout for CVRP formulation
using exact method.

Figure 4.14: Cable routing comparison for n = 60 and m = 5.
Cost difference 5.24 %.

Comparing the results for a medium problem size of 200 heliostats, two tours are used,
as this has been shown to complete within realistic time limits.
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(a) Hamiltonian path calculated with
nearest neighbor algorithm and 2-opt
heuristic, cf. [? ]
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(b) Optimal layout with ILP model using
CVRP formulation

Figure 4.15: Cable routing comparison for n = 200 and m = 2.
Cost difference 4.57 %.

The medium sized instance resulted in a cable meter disparity of 5.33 % and a cost
difference of 4.57 %.

Referring back to Section 4.2.1, the cable meters reduced by 2.75 % for the ILP model
compared to the heuristic method, proceeding to differ 2.43 % in the overall costs.
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The complexity of the model is greatly affected by the addition of multiple tours.
Therefore, if no restrictions on the maximal cable length or number of heliostats con-
nected is needed, the ILP model can optimally solve the cable routing problem for 624
heliostats within an acceptable amount of time. If however, these restrictions are in
place, a different approach is worth considering. The runtime for the PS10, restricting
the connected heliostats to 128, exceeds practical applications.

The cost difference between the heuristic and exact method remain around 5 % for the
small and medium problem sizes. It is therefore plausible, to use the heuristic methods
to obtain a good estimate cost for the cable layout.

Taking a closer look at the solution obtained by the exact method for the 200 he-
liostats, the layout results in similar partitioning of the routes. It therefore might be
worth relaxing the problem and implement predefined sections, which could be solved
independently. This would allow for a solution of the entire PS10 with five tours.
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5. Power Cable Model

The power cable model has additional constraints which were not present in the data
cable model. Therefore, the power cable is described by the distance and capacity
constrained VRP, as explained in Section 5.1. The necessary capacity restrictions are
added to the model in Section 5.2.1, while in Section 5.2.3 the model is extended to
include the length restrictions.

5.1. Modeling Approach

Since it has to be assure that the current flowing through the cable does not surpass its
capacity, the capacity and length restrictions are implemented. With the additional
constraints in place, it is no longer possible to model the cable routing problem as
a TSP, as this would require cables of unrealistic cross sections. Hence, a model is
required that adheres to both the capacity and length restriction, under consideration
of the available cable types. Accordingly, the cable routing problem is modeled as a
distance and capacity constrained VRP (DCVRP). An overview of the required con-
straints is shown in Table 5.1.

Formulation Constraint Cost model

DCVRP • All heliostats are connected
to the receiver tower

• All heliostats are connected
by one incoming and one
outgoing cable

• Cable crossings are forbid-
den

• All heliostats are continu-
ously connected with the
maximum number of he-
liostats per cable type de-
fined by ht

• The length of cable type t
is restricted to a maximum
length of lt

• Cable types of different ca-
pacities are considered

• Consideration of installa-
tion costs, i.e. protective
foil and labor costs

Table 5.1: Overview of power cable constraints and cost model.
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5.1.1. Miller-Tucker-Zemlin Formulation

For the power cable model, the Miller-Tucker-Zemlin (MTZ) formulation will be used.
The advantage of this formulation is the relatively simple generalization of other VRP
constraints. Although the CVRP can be modeled with the classical subtour elimination
constraints, an extension to the distance constrained VRP is not so easily achieved.
A DCVRP can therefore be more easily modeled with the MTZ formulation, also ex-
tendable to route specific constraints. Still, a known disadvantage is the weak LP
relaxation produced by the MTZ formulation [? ].

The MTZ constraints replace the SEC used for the data cable implementation. The
number of added constraints is reduced to O(n2) for a problem size containing n cus-
tomers, however with the addition of flow variables ui. This is an advantage over
the possibly exponential number of constraints needed for the SEC formulation, with
O(2n) [? ].

The generalized MTZ formulation reads,

ui − uj +Mxi,j ≤M − qj ∀i, j ∈ V (5.1)

with ui representing the accumulated demand at node i, M is an arbitrarily large value,
having the effect that if xi,j = 0 the inequality becomes inactive, and qj is the demand
at node j. No disconnected tours from the depot are possible, as this would lead to a
contradiction in the formulation. [? ]

5.2. Problem Formulation as a DCVRP

A digraph G is considered with V̄ representing the heliostats in the field and the set V
representing the heliostats and the solar tower. In addition, the set T is defined, which
contains all available cable types t, whereby t = 1 defines the cable of lowest capacity
and t = k the cable of highest capacity. The capacity and length constraints need
to be applied to each route, hence the need to define set R, which contains all routes
r = m, ...m. Furthermore, let m be a free variable and denote the number of outgoing
cables from the solar tower. The lower bound on the variable m is determined by,

m =

⌊
nheliostats

tk

⌋
,

while the upper bound is defined by,

m = nheliostats.

As the capacity and length restrictions need to be applied to each route individually,
artificial depots are included in the model, which will be removed again at the end

33



of the optimization process. The number of artificial depots equals m − 1, which in-
creases the number of nodes to n′ = n + m − 1. Thereby, the extended set is defined
as V ′ = 1, ...n′ and V̄ ′ = V ′ \ {1}.

The inclusion of multiple cable types in the formulation, results in the cost matrix,

c̃ti,j = di,j · c̄t

with c̄t = čtcable + clabor,

with,

c̃ti,j =



c̃ti,j ∀i ∈ V ′, j ∈ V̄ ′ and i 6= j

c̃ti,j = M̂ ∀i ∈ V ′ \ V, i ∈ V̄ ′, i 6= j

c̃ti,j, c̃
t
j,i = M ∀i ∈ V ′ \ V, j ∈ V ′ \ V, i 6= j

c̃ti,1 = M̂ ∀i ∈ V̄ , i 6= j,

c̃ti,1 = 0 ∀i ∈ V ′ \ V, i 6= j,

(5.2)

whereby M̂ > M ∈ R. The definitions in Eq. 5.2 assure that firstly, an artificial depot
is not connected to another artificial depot. Secondly, the connection between nodes
is preferred over connections between a node and artificial depot. And lastly, the edge
returning to the solar tower will always be connected to an artificial depot, meaning
that an artificial depot will always be the last node visited during a tour. The assign-
ments are necessary, so that the layout of the cable is not affected by the introduction
of the artificial depots.

Now, let xti,j, (i 6= j) be a binary variable with,

xti,j =

{
1 if heliostat i is connected to heliosat j with cable type t

0 otherwise.

Also, let xti,j,r, (i 6= j) be a binary variable with,

xti,j,r =

{
1 if heliostat i is connected to heliosat j with cable type t and belongs to route r

0 otherwise.

Hence, the power cable model reads,

min
∑
i,j∈V ′

i 6=j

∑
t∈T

c̃ti,j · xti,j (5.3)
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s.t.
∑
i∈V ′

∑
r∈R

∑
t∈T

xti,j,r = 1 ∀j ∈ V̄ ′ (5.4)

∑
j∈V̄ ′

∑
r∈R

∑
t∈T

xti,j,r = 1 ∀i ∈ V ′ (5.5)

∑
j∈V̄ ′

∑
r∈R

∑
t∈T

xt1,j,r ≥ m (5.6)

∑
i∈V ′

∑
t∈T

xti,l,r −
∑
j∈V ′

∑
t∈T

xtl,j,r = 0 ∀l ∈ V ′, r ∈ R (5.7)

∑
r∈T

xti,j,r = xti,j ∀i, j ∈ V ′, t ∈ T (5.8)

∑
t∈T

xti,j + xtj,i + xtu,v + xtv,u ≤ 1 ∀(i, j), (u, v) ∈ X (5.9)

xti,j ∈ {0, 1} (5.10)

xti,j,r ∈ {0, 1} (5.11)

m ≤ m ≤ m,∈ Z+. (5.12)

Constraints (5.4) and (5.5) are the degree constraints. The number of outgoing cables
from the solar tower is restricted by Eq. (5.6). The variable m is free, and can be
restricted by the definition in (5.12). The variable m is not fixed, as the optimal layout
could be to introduce more tours and therewith using more of the cheaper cable types.
On the contrary, the optimal solution might include less but therefore larger tours uti-
lizing higher capacity and so with more expensive cable types. Furthermore, Eq. (5.7)
is the connectivity constraint, while Eq. (5.8) defines the variable xti,j. Eq. (5.9) for-
bids the formation of cable crossings and is comparable to the planarity constraint
implemented in the data cable model.

5.2.1. Capacity Restrictions

The additional variables, present in the MTZ formulation of the capacity constraints,
read qi,r,∀i ∈ V ′, qo,r,∀i ∈ V ′ and pj,∀j ∈ V̄ ′. The variables describe the accumulated
demand at node i and the demand at the artificial node, respectively. The variable pj
defines the demand at the node j and can in this case be set to pj = 1. The variable
Q is equal to the capacity of the largest cable type.
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A further binary variable, yi,r is introduced, defined by,

yi,r =

{
1 if heliostat i is visited by route r

0 otherwise.

Forthwith, alongside the constraints (5.4) - (5.9), the model reads,

Q− pj ≥
∑
r∈R

(qi,r − qj,r +
∑
t∈T

Q · xti,j,r) ∀i ∈ V ′, j ∈ V̄ ′ (5.13)

∑
i∈V ′

∑
t∈T

xti,j,r = yi,r ∀j ∈ V ′, r ∈ R (5.14)

∑
j∈V ′

∑
t∈T

ht · xti,j,r ≥ qo,r − qi,r −M · (1− yi,r) ∀i ∈ V̄ ′, r ∈ R (5.15)

∑
i∈V ′

qi,r = qo,r ∀r ∈ R (5.16)

2 · yi,r ≤ qi,r ≤ Q · yi,r ∀i ∈ V̄ ′, r ∈ R (5.17)

qi,r, qo,r, pj ∈ Z+ (5.18)

yi,r ∈ {0, 1} (5.19)

xti,j ∈ {0, 1} (5.20)

xti,j,r ∈ {0, 1}. (5.21)

The capacity of a tour is restricted by Eq. (5.13), which also serves to avoid subtours.
The variable yi,r is defined by Eq. (5.14), while the variable qo,r is defined by Eq. (5.16).
Eq. (5.15) are the cable type specific capacity constraints and enforce the capacity re-
striction for each cable type t. Lastly, Eq. (5.17) defines the limits of the variable qi,r

A visual clarification of the cable type specific capacity constraints is shown in Fig 5.1.
The constraint assures that the cable leaving the solar tower is able to withstand the
current flow of all succeeding heliostats connected to the same cable.

5.2.2. Computational Results with Capacity Constraints

The CVRP formulation is applied to test cases with 10 heliostats. The different cable
types are adjusted to suit the smaller test cases. The cable type capacities are defined
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h1

h2

Solar tower

Figure 5.1: The cyan (thick) cable needs to withstand current flow of heliostat h1 and
h2. The blue (thin) cable needs to withstand current flow of h2 only.

in the table below.

Cable Type t Color in plot Test case 1:
Capacity ht.

Test case 2:
Capacity ht.

1 5 1
2 10 3
3 10

Table 5.2: Example cable type capacities and definition of colors used to present cable
type in the plot.

The first test case, depicted in Fig. 5.2, shows the connection of ten heliostats with two
available cable types. The optimized layout uses both cable types instead of creating
two tours.
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Figure 5.2: Optimized cable layout with two available cable types.

For the second test case, another cable type was made available and cable types t = 1
and t = 2 restricted to a capacity of 1 and 3 heliostats respectively. Again, the
optimized layout contains only one tour.

-80 -60 -40 -20 0 20 40 60 80 100
0
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20
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40
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60

70

80

90

10 heliostats
Runtime: 0.0748 hours

Costs: 7844.5006
Cable meters: 278.7643

solar tower
heliostat

Figure 5.3: Optimized cable layout with three available cable types.

For small instances of the problem, the optimal layout contains less tours making use
of more expensive cable types. This is a result of the initial connection from the solar
tower to the first heliostat on the route. With multiple tours, the total cable length
increases which outweighs the benefit of using cheaper cable types.

38



5.2.3. Length Restrictions

A further constraint pertaining to the length restriction of each cable type still needs
to be considered for the model. A complication lies in the optimization of the length
of each cable type. As shown in the equation below, the length is dependent on the
number of heliostats connected. The greater the current flowing through a cable, the
shorter the allowable length. The length is defined by,

lt =
qt · κ · dU · U · cos(φ)

2 · P · ht
(5.22)

where qt is the cross section of each cable type, κ the electrical conductivity of copper,
U represents the voltage and dU the voltage drop. Lastly, cos(φ) defines the power
factor, P the power of the alignment motor and ht the number of connected heliostats.

The idea would be to optimize the tour length under consideration of the available cable
types. Optimally, a maximum number of heliostats over a maximum total distance are
connected, bearing in mind the trade off between cable length and number of heliostats.

Defining MTZ constraints for the length constraints, the following variables are intro-
duced. The accumulated length at each heliostat is denoted by gi,r, ∀i ∈ V̄ , r ∈ R. The
variable si refers to the minimum distance between the solar tower and any heliostats
in the field. It presents the lower bound for the variable gi,r. The maximal length L
per route is defined by the sum of all lt.

Alongside Eq. (5.3) - (5.17), the model reads,

L− di,j ≥
∑
r∈R

(gi,r − gj,r +
∑
t∈T

L · xti,j,r) ∀i ∈ V ′, j ∈ V̄ ′ (5.23)

∑
i∈V ′

∑
t∈T

xti,j,r · l̃z ≥ go,r − gi,r −M · (1− yi,r) ∀j ∈ V ′, r ∈ R (5.24)

∑
i,j∈V

di,jx
t
i,j,r ≤ lt ∀t ∈ T, r ∈ R (5.25)

∑
i∈V ′

gi,r = go,r ∀r ∈ R (5.26)

si · yi,r ≤ gi,r ≤ L · yi,r ∀i ∈ V̄ ′, r ∈ R (5.27)

gi,r, go,r ∈ Q+ (5.28)

yi,r ∈ {0, 1} (5.29)
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xti,j ∈ {0, 1} (5.30)

xti,j,r ∈ {0, 1}. (5.31)

The Eq. (5.23) restricts the total length for each tour, while (5.24) and Eq. (5.25) refer
to the length restriction of each cable type within a tour. The limits of gi,r are defined
by Eq. (5.27). Again, Eq. (5.26) defines the variable qo,r

Note that

l̃z =
z∑

t=1

lt ∀z ∈ T.

An example of the length restriction per cable type is given in Fig. 5.4.

h1

h2

Solar tower

(a) Length restriction for only two suc-
ceeding heliostats.

h2

h1

h3

h4

Solar tower

(b) Length is reduced as a result of ad-
ditional heliostats connected by the
same cable.

Figure 5.4: Example of the length restriction. With additional heliostats, the length
of the blue and cyan colored cable type is reduced.

In the first example, Fig. 5.4a, only two heliostats are connected by the same cable.
However, if additional heliostats are added, the allowable length for the blue and cyan
colored cable type are reduced. The cable now has to withstand the current flow of
four heliostats, as apposed to two earlier. A further cable type might therefore have
to be introduced, to connect the remaining heliostats.

5.3. Conclusion

A recapitulation of all constraints need for the power cable model can be found in
Appendix C. A review of the constraints an their equations is described in the following
table,
A capacitated VRP model was described and tested for small test cases. The optimal
route includes the consideration of best cable type to use with regard to the capacity
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Constraint Equation
All heliostats are connected to the receiver tower (5.13), (5.23)
All heliostats are connected by one incoming and one outgoing cable (5.4) , (5.5)
Cable crossings are forbidden (5.9)
All heliostats are continuously connected with the maximum num-
ber of heliostats per cable type defined by ht

(5.15)

The length of cable type t is restricted to a maximum length lt (5.24), (5.25)

Table 5.3: Summary of power cable constraints with the relevant equation numbers.

constraints. An extensive model is given for the combined capacity and length con-
strained model. Due to the excessive runtime, these are not expanded on here. An
approximative approach is described in Appendix B.
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6. Concluding Remarks

A short summary of the achieved results will be given in the following section and some
recommendations for future work will be given in Section 6.2.

6.1. Conclusion

The TSP model approach for the data cable model can be deemed successful for the
PS10. By modeling the cable routing problem as a TSP, only LOCs of type conductor
are needed. This however, falls back on the assumption that one cable can connect all
624 heliostats. In terms of maintenance, this approach could be problematic. If, e.g.
a fault in the cable occurs near the solar tower, the remaining part of the field will be
affected as well.

The data cable model approach as a CVRP can be used to validate heuristic methods
for small to medium problem sizes. Again, only conductor switches are needed in the
layout, providing an advantage over a minimum spanning tree layout for example. Us-
ing exact methods to solve the capacitated VRP for larger sized models, such as the
PS10, is impractical due to the overlong runtime.

The heuristic models for the data cable differed around only 5 % from the exact model,
confirming the plausibility of the results obtained by heuristic methods. It also con-
firms the benefit of optimizing the cable routing of solar tower plants.

The capacity constraints of the power cable were successfully implemented. As a result
the layout includes the choice of the best cable type under consideration of the capacity
restrictions. The length restriction per cable type was described theoretically only, due
to runtime limitations.
Overall, it was possible to model the data cable and the capacity constraints of the
power cable as integer linear programs and obtain computational results confirming
the model formulations.

6.2. Outlook

The need for further research was emphasized in Section 4.4 and again in Section 5.
The goal ultimately should be to run the exact optimization for large fields of sizes
ranging around 12 000 heliostats., such as the planned solar tower power in South
Africa, the Redstone Solar Thermal Power Plant.

Looking at the currently implemented formulations, it could be worthwhile strength-
ening the subtour elimination constraints for the data cable. The runtime is predomi-
nantly spent on the SEC. At present, subtours only violate the SEC if the tour is either
too large or disconnected from the solar tower. A further violation could include the
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minimum length of a subtour.

In terms of the power cable model, the current inequalities could be strengthened simi-
lar to the described proceedings in [? ]. A further modeling approach can be considered
which allows branching at the heliostats. Branching does not incur additional costs,
as no additional electrical elements, such as switches, are needed.

Another cost saving factor would be to consider the power and data cable as one. This
approach will reduce the labor costs, which are still the most expensive component of
the cost model. However, optimizing both cables as one will further complicate the
model, as the collective constraints increase the model size.

Conclusively however, using exact methods alone will most likely not deliver a result
in an acceptable amount of time, if at all. Therefore, it is important to look at other
options, such as introducing relaxations of the model.

An example of a relaxation could be to cluster the heliostats into groups and then
optimize each group locally. Whereby the problem arises of choosing the correct clus-
ter size and locations of the clusters. Furthermore, a STP field is normally structured
into a radially staggered grid, where it might be possible to use this structure as an
advantage. Lastly, it could be worth installing a distribution box in the center of the
field, meaning that only one cable needs to cover the distance from the solar tower to
the heliostat field.

All in all, researching the optimized cable routing layout of solar tower power plants has
already shown to provide large cost saving benefits and should therefore be researched
further and later adopted when constructing STPs.
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A. Power Cable Calculations

The current I can be calculated by

I =
P

U · cos(φ) · η
(A.1)

where P defines the power of the alignment motor, U the voltage, cos(φ) the power
factor and η the energy conversion efficiency.
Eq. (A.1) can then be used to calculate the maximum number of heliostats k connected
to a cable of type t.

ri ·Rmax

!

≤ k · P
U · cos(φ) · η

⇔ k =
⌊ri ·Rmax · U · cos(φ) · η

P

⌋
(A.2)

In this case rt is the current rating and Rmax the maximal current rating. The current
ratings can be found in [? ] for an assumed constant temperature of 20◦C at a min-
imum of 0.8m below ground level. Rmax determines to what capacity the cables are
exposed. Rmax is set to 80%, keeping a reserve of 20%.

Parameter Selected
value

Voltage U 230V
Voltage drop dU 6%
Power of alignment motor Pmotor 100W
Power factor cos(φ) 0.95
Energy conversion efficiency η 0.9
Electrical conductivity of copper κ 57 m

Ω·mm2

Utilization of maximal current rating Rmax 80%

Table A.1: Overview and description of the parameters used to calculate the capacity
and length restrictions.
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B. Power Cable Length Approximation

The complexity of the length restriction can be reduced by adopting an approximative
approach. Regard δmin to define the minimum distance between all heliostats in the
field. In case of the PS10, the minimum distance equals

δmin = 16.5393m

For all cable types, find a distance that conforms with

l ≥ n · δi,j
These values have been calculated for each cable type,

Cable type Maximal length [m] Cable capacity ht

1 181.93 11
2 231.55 14
3 281.17 17
4 363.86 22
5 463.10 28
6 595.41 36
7 694.65 42

Table B.1: Maximal cable length and capacity restriction for each cable type.

Hence, instead of a length that is dependent on the number of heliostats connected, a
maximum length for each cable type has been calculated and can be implemented in
the same way as the capacity constraint.

As it is possible, that the total length will not have been fully exploited, a post-
processing step should be introduced. This evaluates if a further heliostat can be
connected with a cheaper cable type, without violating the capacity or length con-
straints. The post-processing would only change the cable type used and keep the
layout as is.
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C. Recapitulation of All Power Cable Constraints

For an overview of the constraints needed for the power cable model, the complete
model reads,

min
∑
i,j∈V ′

i 6=j

∑
t∈T

c̃ti,j · xti,j (C.1)

s.t.
∑
i∈V ′

∑
r∈R

∑
t∈T

xti,j,r = 1 ∀j ∈ V̄ ′ (C.2)

∑
j∈V̄ ′

∑
r∈R

∑
t∈T

xti,j,r = 1 ∀i ∈ V ′ (C.3)

∑
j∈V̄ ′

∑
r∈R

∑
t∈T

xt1,j,r ≥ m (C.4)

∑
i∈V ′

∑
t∈T

xti,l,r −
∑
j∈V ′

∑
t∈T

xtl,j,r = 0 ∀l ∈ V ′, r ∈ R (C.5)

∑
r∈T

xti,j,r = xti,j ∀i, j ∈ V ′, t ∈ T (C.6)

∑
t∈T

xti,j + xtj,i + xtu,v + xtv,u ≤ 1 ∀(i, j), (u, v) ∈ X (C.7)

Q− pj ≥
∑
r∈R

(qi,r − qj,r +
∑
t∈T

Q · xti,j,r) ∀i ∈ V ′, j ∈ V̄ ′ (C.8)

∑
i∈V ′

∑
t∈T

xti,j,r = yi,r ∀j ∈ V ′, r ∈ R (C.9)

∑
j∈V ′

∑
t∈T

ht · xti,j,r ≥ qo,r − qi,r −M · (1− yi,r) ∀i ∈ V̄ ′, r ∈ R (C.10)

∑
i∈V ′

qi,r = qo,r ∀r ∈ R (C.11)

2 · yi,r ≤ qi,r ≤ Q · yi,r ∀i ∈ V̄ ′, r ∈ R (C.12)
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L− di,j ≥
∑
r∈R

(gi,r − gj,r +
∑
t∈T

L · xti,j,r) ∀i ∈ V ′, j ∈ V̄ ′ (C.13)

∑
i∈V ′

∑
t∈T

xti,j,r · l̃z ≥ go,r − gi,r −M · (1− yi,r) ∀j ∈ V ′, r ∈ R (C.14)

∑
i,j∈V

di,jx
t
i,j,r ≤ lt ∀t ∈ T, r ∈ R (C.15)

∑
i∈V ′

gi,r = go,r ∀r ∈ R (C.16)

si · yi,r ≤ gi,r ≤ L · yi,r ∀i ∈ V̄ ′, r ∈ R (C.17)

gi,r, go,r ∈ Q+ (C.18)

qi,r, qo,r, pj ∈ Z+ (C.19)

yi,r ∈ {0, 1} (C.20)

xti,j ∈ {0, 1} (C.21)

xti,j,r ∈ {0, 1} (C.22)

m ≤ m ≤ m,∈ Z+. (C.23)
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