
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Beschleunigte Zielpunktstrategie für
Solarturmkraftwerke durch ganzzahlige lineare

Optimierung unter Einsatz von Heuristiken

Accelerated aiming strategy for central receiver
systems by integer linear optimization using heuristics

Bachelorarbeit
CES

August 2020

Vorgelegt von Nils Speetzen
Presented by Bachstr. 64

52066 Aachen
Matrikelnummer: 369066
nils.speetzen@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Dr. rer. nat. Thomas Noll
Second examiner Lehr- und Forschungsgebiet: Software Modeling and Verification Group

RWTH Aachen University

Externer Betreuer Dr. rer. nat. Pascal Richter
External supervisor Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen
meiner Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen
sind, habe ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht. Dasselbe gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat
in dieser oder einer ähnlichen Form noch nicht im Rahmen einer anderen Prüfung
vorgelegen.

Aachen, im August 2020

Nils Speetzen

III

Contents

1 Introduction 1
1.1 State of the art . 1
1.2 Outline of the work . 2

2 Optical model 5
2.1 Sun . 5
2.2 Heliostats . 6
2.3 Receiver . 9
2.4 Computing heliostat heat flux images 14

2.4.1 Original HFLCAL method . 14
2.4.2 Extended HFLCAL method 15
2.4.3 Blocking of the receiver . 17

2.5 Real central receiver systems . 20
2.6 Heliostat images . 22
2.7 Allowed flux distribution . 24

3 Formulation of the optimization problem 25
3.1 Aiming strategy problem definition 25
3.2 Formulation as an ILP . 25

3.2.1 Objective function . 26
3.2.2 Decision variables . 26
3.2.3 Constraints . 27

4 Solver software 29
4.1 Branch-and-bound algorithm . 29
4.2 Solver overview . 30
4.3 C++ implementation . 31
4.4 Solver specific ILP model creation . 34
4.5 Case study for optimal solver configuration 35

5 ILP acceleration using heuristics 39
5.1 Grouping of heliostats . 39
5.2 Reduction of aim points . 46

6 Case study 49
6.1 Heuristics on real CRS . 49
6.2 Warm start for the computation . 52

7 Conclusion and future work 55

8 Appendix 57

References 59

V

1 Introduction

The importance of renewable energy sources and the efficiency of their utilization
has increased significantly over the last few decades. A growing branch of the renew-
able energy industry is the usage of concentrated solar power (CSP), the worldwide
generating capacity of CSP has more than doubled in the last eight years [1].

One approach to using CSP are central receiver systems (CRS). They consist of many
mirrors which reflect the solar radiation onto a receiver. This receiver is mounted
at the top of a tower and forwards the heat flux to a heat carrying medium, e.g.
molten salt, which is transported through tubes behind the surface. Groups of small
mirrors are attached to motorized frames, these assemblies are called heliostats and
can be controlled by a central control unit to set the target point for the redirected
sun beams on the receiver surface. A defining factor for the efficiency of a CRS
is the quality of the aiming strategies used to align the heliostats. The goal is to
achieve the maximum possible heat flux at the receiver while obliging certain safety
constraints. Computing the solution to this problem using current methods takes
a considerable amount of time and does not allow for real time corrections to the
heliostat alignment to adjust to short-term environmental influences such as cloud
shadows.

This work aims to improve the solution process of the heliostat alignment problem
and to achieve close to real time performance. In a first, step the developed model is
implemented in a solver-independent way, such that different solver implementations
can be plugged in and their solving attempts can be evaluated against each other
using the same underlying model. After chosing the best solver implementation for
this problem, heuristic approximations are implemented and evaluated to reduce the
overall runtime even more.

1.1 State of the art

Aiming strategies for CRSs have been subject to previous research, a rough outline
of previous research is given below.

Early work approximates the exact solution using heuristics. Dellin et al. [7] propose
fast heuristic aiming strategies, which aim to maximize the heat flux hitting the
receiver while distributing the aim points of the heliostats in specific patterns. The
heuristics are embedded within the context of an optimization software for the design
of CRSs. Astolfi et al. [3] break the problem of optimizing the design of CRSs into
smaller subproblems and propose heuristics to reduce peak heat flux densities at the
receiver by up to 15% compared to other aiming strategies. Solutions are computed
within 120 seconds.

1

Belhomme et al. [4] approach the aiming strategy problem using the ant colony
optimization metaheuristic. Using this probabilistic technique, improvements of up
to 10% over a reference case, where all heliostats aim at the center of the receiver,
can be made within 38 minutes or more, depending on the number of aim points.
Receiver constraints, such as a maximum allowed heat flux and spatial heat flux
gradient are considered. Besarati et al. [5] use a genetic algorithm to flatten out
the heat flux on the receiver surface while minimizing the standard deviation of the
heat flux values, such that peak heat fluxes are prevented.

More recent work focuses on finding the exact solution of the aiming strategy prob-
lem. Ashley et al. [2] define the optimization problem as an integer linear program
(ILP) and achieve, depending on the receiver resolution, close to real time results.
Besides from a restricted maximum heat flux at any receiver point, an even heat
flux distribution is forced by constraining the allowed range of heat flux on the re-
ceiver surface. Furthermore, cloud uncertainties are considered. Richter et al. [21]
also work on a robust solution based on the ILP. A desired flux distribution is in-
troduced, which allows to solve for a specific heat flux distribution at the receiver.
High receiver resolutions of up to 192 aim points are used and several kinds of
uncertainties are taken into account, as well as a limitation to spatial heat flux gra-
dients. Kuhnke et al. [14] extend the work of Ashley et al. [2] and Richter et al. [21]
by developing a mixed integer linear program formulation of the aiming strategy
optimization including robustness to inaccuracies.

Only Ashley et al. [2] achieves a solution to the ILP in close to real time by using
low resolutions and limited constraints, Kuhnke et al. [14] mentiones that the robust
ILP model takes up to three hours to reach a gap of 5.86% and proposes heuristics
for the robust model to achieve runtimes of about 60 seconds.

This work is based on the works of Kuhnke et al. [14] and aims to provide results
in real time that are as close as possible to the optimal result. Instead of approxi-
mating a solution based on meta-/heuristics, the intention is to develop an heuristic
approach to reduce the solution space of the underlying deterministic ILP in a sen-
sible way such that much shorter runtimes are expected while keeping the gap to
the optimal solution as small as possible.

1.2 Outline of the work

In Section 2 an optical model of the central receiver system is developed. This model
can be used to compute the heat flux density at any point on the receiver surface for
a given heliostat alignment. Based on this optical model, the optimization problem
is formulated as an integer linear program (ILP) in Section 3. The formulation con-
siders several safety constraints, e.g. the maximum allowed heat flux density at the
receiver surface and the heat shield. The formulation is completely deterministic.

2

Section 4 covers how the solution to the ILP is computed by using up to five different
solvers. The solvers are tuned towards optimal performance on the aiming strategy
problem to achieve solutions in lower total runtimes. In Section 5 we perform an
extensive investigation to accelerate the ILP solution process using heuristics. Ap-
proaches such as grouping heliostats and pre-computing a subset of available aiming
points for each heliostat are tested on real szenarios in Section 6.

Lastly, in Section 7 we draw a conclusion about the proposed heuristics and used
solver software. Finally, we propose possible future work to extend the research done
in this work.

3

2 Optical model

The optical model presented in this section provides a computational method to
determine the heat flux distribution at the receiver caused by every single heliostat.
This model is based on the work of Kepp [13].

To obtain the total heat flux distribution at the receiver surface, the individual heat
flux distributions from each heliostat, which we call heliostat images, are summed
up. To compute these images we use a deterministic approach, which assumes the
error cone for the heliostats to be a circular Gaussian distribution.

In the following, the sun, heliostats and receiver will be modeled and the HFLCAL
(Heliostat Field Layout CALculation) method for computing heliostat images will
be presented in the original and extended version.

2.1 Sun

The position of the sun is expressed using two angles as seen in Figure 1:

� θsolar is the zenith angle. The zenith is the point in the sky directly above the
observer, which means the elongation of the z-axis. θsolar lies between 0 and
π/2.

� γsolar is the azimuth angle. This angle describes the clockwise rotation of
the sun around the z axis, with γsolar = 0 representing a perfect southern
orientation. We define the bounds as γsolar ∈ [−π, π].

W

E
x

S

N
y

z

☼

~d sun

γsolar

θsolar

Figure 1: Position of the sun in dependency of the angles γsolar and θsolar [20].

5

The normalized vector pointing towards the sun now reads as

~dsun =

 −sin(γsolar) · sin(θsolar)
−cos(γsolar) · sin(θsolar)

cos(θsolar)

 . (1)

Central receiver systems make use of the direct radiation of the sun, which consists
of the sunrays which are directly hitting the heliostats, while diffuse radiation cannot
be utilized.

The intensity of the direct radiation hitting a surface is specified as the DNI [W
m2]

(Direct Normal Irradiance). The DNI is measured on a surface perpendicular to the
direction of the sunrays. Because these measurements in general happen at ground
level, atmospheric effects on the irradiance are already considered.

The intensity I of the radiation hitting a surface depends on the size of its area
which is perpendicular to the sunray direction. Since the intensity declines with
the cosine of the incidence angle φ between the normal vector of the plane and the
sunray direction, this effect is called the cosine loss and formalized as

I = DNI · cos(φ). (2)

Since the sun is not emitting its irradiation from a single point, but from its entire
spherical surface, the sun shape error σsunshape is introduced. It represents small an-
gular deviations of ~dsun, is given by 2.51 mrad [18] and stochastically independent.

2.2 Heliostats

Each heliostat consists of a motorized frame holding one or more small mirrors. The
total mirror area of a heliostat can vary between 1m2 and 140m2.

The heliostats will be referenced by their indices. The set of heliostats therefore
consists of

H = {hi | i ∈ {1, ..., nheliostats} (3)

with nheliostats defining the number of all heliostats.

We call the heat flux a heliostat reflects onto the receiver surface a heliostat (heat
flux) image, since it can easily be displayed in image form. The following effects can
lead to changes of the heliostat images:

� Shading: If the radiation of the sun does not or only partly hit heliostats
due to obstacles being in the way, we speak of shading. The images of the
corresponding heliostats are zero or respectively partly zero, as no radiation
is reflected from their shaded areas. Shading can be induced by the solar
tower itself or by clouds by casting their shadows onto the heliostat field.

6

Additionally, heliostats can shade each other, when they are aligned in such a
way, that those closer to the sun cast a shadow on those further back.

� Blocking: If radiation is reflected by a heliostat, but hits another heliostat on
its path to the receiver, the image is also zero at the corresponding area. This
effect is known as blocking.

For the sake of simplicity we neglect both shading and blocking in this work.

The incidence angle for the cosine losses, introduced in Section 2.1, can now be
computed for the heliostats. The incidence angle φh,a describes the angle between

the sunray direction ~dsun and the normal vector of heliostat h aiming at point a.
The aiming vector is called ~dh,a and defined as

~dh,a = ~pa − ~ph (4)

with ~pa and ~ph being the position vectors of heliostat h and its aimpoint a. Using
this aiming vector and the sunray direction, we can compute the incidence angle as
half the angle between ~dsun and ~dh,a as in Equation (5), since the normal vector ~nh,a

is exactly between those two, as shown in Figure 2.

φh,a =
1

2
· arccos

(
〈~dsun, ~dh,a〉
‖~dh,a‖2

)
(5)

z

y

☼

a

receiver

hheliostat

φh,a
φh,a

~dh,a

||~dh,a||2

~dsun

~nh,a

Figure 2: Computation of φh,a using ~dsun and ~dh,a. ~nh,a is the normal vector of the
heliostats mirror surface.

7

The total amount of heat a heliostat reflects is called the beam power Ph,a [W] and
can be calculated as:

Ph,a = Ih,a · ηatt
h,a · Ah · ηreflectivity

h = DNI · cos(φh,a) · ηatt
h,a · Ah · ηreflectivity

h (6)

with irradiation Ih,a from (2). ηatt
h,a, Ah, η

reflectivity
h are defined as follows:

The atmospheric attenuation ηatt
h,a ∈ [0, 1] describes the effect, that the irradiation

is reduced with the distance it has to travel through the atmosphere. The distance
is computed as the norm of ~dh,a from equation (4).

dh,a = ‖~dh,a‖2 (7)

Depending on the distance, the atmospheric attenuation is computed using ap-
proaches of Belhomme et al. [4]:

ηatt
h,a =

{
0.99321− 1.176 · 10−4 · dh,a + 1.97 · 10−8 · d2

h,a dh,a ≤ 1000[m]

exp(−1.106 · 10−4 · dh,a) dh,a > 1000[m]
(8)

Ah is the total mirror area of a heliostat and ηreflectivity
h its reflectivity. The reflec-

tivity of a surface represents the amount of incoming radiation which is reflected.
The reflectivity ηreflectivity

h ∈ [0, 1] for the heliostat mirrors is desired to be as close
to 1 as possible and given as a constant.

The heliostats do not perfectly reflect the irradiance of the sun onto the desired point
but are prone to certain errors. The optical error σoptical is caused by the roughness
and small imperfections of the mirror surface.

Since the motor of a heliostat’s frame is not perfectly accurate, the heliostats do not
always aim exactly where they should. This effect and other related imperfections
are summed up in the tracking errors σtracking, hor and σtracking, vert. The total tracking
error [22] is computed as

σtracking =
√
σtracking, hor · σtracking, vert. (9)

All errors are assumed to be known and stochastically independent for all h ∈ H.
They are not subscripted with h, since they are the same for every heliostat. We
combine them into a total error term σtotal as follows:

σtotal =

√
(σoptical)2 + (σsunshape)2 + (2 · σtracking)2 (10)

8

2.3 Receiver

The receiver of a central receiver system absorbs the heat flux which is reflected onto
it and forwards the energy to a heat carrying medium.

The receiver surface itself naturally has to withstand very high temperatures, but
it also has an upper limit to the heat flux it can absorb without taking permanent
damage. This upper limit has to be considered for the aiming strategy optimiza-
tion.

Additionally, the tower on which the receiver is mounted cannot deal with the av-
erage heat flux hitting a receiver, which usually varies between 200 to 1000 kW

m2 [12].
Therefore, a heat shield protects the area around the receiver from missing heat flux.
This heat shield is often made of ceramics and cannot withstand heat flux densities
as high as the receiver, since it is not actively cooled. The safety constraints for
receiver and heat shield are where the difficulty of the optimization problem stems
from.

There exist different receiver designs for different power plant layouts. We focus on
the shapes of the so called flat plate, cavity and external receiver’s surfaces, which
are depicted in Figure 3.

x

z

y

h
to

w
e
r

wtower

|
|
wrec

htop

hrecθrec

x

z

y

|

|
wtow

er | |
`tower

h
to

w
e
r

|
|
drec

htop

hrec

hped

x

z

y

h
to

w
e
r

wtower

drec

htop

hrec

Figure 3: Model of different receiver types, from left to right: Flat plate, cavity and
external receiver [20].

9

The flat plate receiver is shaped like a rectangle with width wrec and height hrec.
The surface of the receiver is usually tilted towards the ground with angle θrec to
minimize cosine losses through incident angles in vertical direction. The heat shield
surrounds the rectangle in every direction and seemingly enlarges the rectangular
receiver surface.

The cavity receiver is integrated into the tower as a cavity to counteract power
losses due to radiation from the receiver itself and air cooling by convection [19].
The receiver surface of a cavity receiver is shaped like the inner surface of half a
hollow cylinder with height hrec and radius rrec. In the case of the cavity receiver,
the heat shield has the shape of a flat frame surrounding the cavity.

The external receiver has a surface, which is shaped like the outside of a hollow
cylinder with height hrec and radius rrec. Due to its shape, the heat shield is only
attached to its upper and lower edge while following the shape of the receiver.

Parametrization of the different receiver types

In the following the receiver surface is parametrized such that a point in R3 on the
surface can be expressed by coordinates in the range of (x̂, ŷ) ∈ [0, 1]2 ⊂ R2. All
parameters and the origin of the coordinate system are depicted in Figure 3. The
mapping f yields the point coordinates and n the normal vector at the point.

Flat plate receiver

The flat plate receiver has the simplest shape as it consists of one single rectangle.
This rectangle can be tilted towards the ground by θrec to reduce cosine losses at
the receiver surface.

f : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

 wrec · (x̂− 0.5)
sin(θrec) · hrec · ŷ + (wtower/2)

cos(θrec) · hrec · ŷ + (htower − htop − hrec)

n : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

 0
cos(θrec)
− sin(θrec)

(11)

Cavity receiver

The cavity receiver consists of a rectangular opening within the tower which contains
the cylindrical receiver surface. To reduce blocking losses, the cavity is extended
downwards past the receiver surface by hped. To make evaluation of the heat shield
easy, the normal vector of the left and right edges are set to be consistent with the
heat shield in that they point directly towards the positive y direction.

10

Since many cavity receivers consist of discrete panels, which are aligned as a frac-
tion of a regular polygon, the surface is approximated using the same fraction of a
cylinder. If the radius of the cylinder is not given, it can be computed using the
number of discrete panels npanels which make up the receiver surface and their width
wpanels as well as the theoretical number of panels in the full polygon npanels, poly as
such:

rrec =
npanels, poly · wpanels

2 · π (12)

For an easier notation, the following helper variables are introduced:

prec =
npanels

npanels, poly

(13)

poffset =
1
2
− prec

2
(14)

The coordinates of the receiver surface points and the corresponding normal vectors
are given as follows:

f : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

 −rrec · cos(2 · π · (prec · x̂+ poffset))
−rrec · (sin(2 · π · (prec · x̂+ poffset))− sin(2 · π · poffset)

hrec · ŷ + (htower − htop − hrec)

n : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

cos(2 · π · (prec · x̂+ poffset)

sin(2 · π · (prec · x̂+ poffset)

0

 if x̂ ∈ (0, 1)

0

1

0

 else

(15)

External receiver

The external receiver surface can be represented by the mantle of a cylinder, the
parametrization cuts the surface at its southern point.

f : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

 −rrec · sin(2π · x̂)
−rrec · cos(2π · x̂)

hrec · ŷ + (htower − htop − hrec)

n : [0, 1]2 ⊂ R2 → R3,

(x̂, ŷ) 7→

− sin(2π · x̂)
− cos(2π · x̂)

0

(16)

11

Receiver heat flux map

The receiver surface is discretized as a grid of points at which the incoming heat flux
is evaluated and the safety constraints can be secured. Hence, these points are called
measurement points mi,j. The set of measurement points on the receiver surface is
given as

M rec = {mi,j | i ∈ {1, ..., nhoriz
m }, j ∈ {1, ..., nvert

m }} (17)

with nhoriz
m and nvert

m being the number of measurement points horizontally and ver-
tically respectively.

The coordinates and normal vectors for the discretization are computed by mapping
the indices to the previously defined range of (x̂, ŷ) ∈ [0, 1]2. For this, an equidistant
discretization is used:

x̂mi,j
=
i− 1

2

nhoriz
m

, ŷmi,j
=
j − 1

2

nvert
m

(18)

In addition to the set of measurement points which lie on the receiver surface M rec,
a set of measurement points at its borders M shield is considered for the heat shield
safety constraints. The combined set of all measurement points is called M .

M = M rec ∪M shield (19)

It is possible to only use measurement points for the heat shield which lie on the
border of the receiver, since all of the heliostats are only allowed to aim directly at
the receiver surface. The heat flux distribution caused by a heliostat gets smaller
the further a point is away from its aim point, therefore the total heat flux anywhere
on the heat shield is lower or equal to the total heat flux on the edges surrounding
the receiver surface. Thus, if the heat flux at the border of the receiver surface is
below the maximum allowed heat flux for the heat shield, the safety constraint is
not violated.

Using this, we model the heat shield as a set of points directly on the border of the
receiver using the same parametrization as above with

x̂ ∈ {0, 1} ∨ ŷ ∈ {0, 1} (20)

as displayed in Figure 4. Due to the cylindric nature of the external receiver, its
heat shield only protects the tower above and below the receiver. Thus, we only add
heat shield points in the ŷ direction for this type of receiver.

It is worth noting that all safety constraint parameters have to be known at all
measurement points. E.g. the maximum allowed heat flux values can be determined
using thermodynamic simulations if they are not constant and are assumed to be
given in this work.

12

x̂

ŷ

0 1
0

1

(a) flat plate and cavity receiver

x̂

ŷ

0 1
0

1

(b) external receiver

Figure 4: Discretization of the receiver surface in x̂, ŷ coordinates with nhoriz
m =

nvert
m = nhoriz

a = nvert
a = 4. The black dots indicate measurement points

with the orange dots being the points added for the heat shield. For the
external receiver, the left- and rightmost heat shield points are left out.
Blue points are the aim points which can be targeted by heliostats.

Aim points for heliostats

Similar to the measurement points, aim points ai,j are used to discretize possible
target points of the heliostats at the receiver surface. The heat flux distribution of a
heliostat usually is the highest at its corresponding aim point. The set of aim points
is given as

A = {ai,j | i ∈ {1, ..., nhoriz
a }, j ∈ {1, ..., nvert

a }} (21)

with nhoriz
a and nvert

a being the number of aim points horizontally and vertically
respectively.

Contrary to the measurement points, no additional information about safety con-
straints has to be known at the aim points and therefore the number of aim points
can be chosen arbitrarily, usually the number of aim points is chosen equally to the
number of measurement points on the receiver surface:

nhoriz
a = nhoriz

m

nvert
a = nvert

m

⇒ |A| = |M rec| (22)

This way all the aim points a ∈ A lie exactly on the measurement points m ∈M rec

(see Figure 4) and the heat flux maxima are measured. To fulfill this condition,
it is recommended to adapt the resolution of the thermodynamic simulation to the
desired number of aim points or, if the resolution is fixed, adapt the number of aim
points accordingly.

13

2.4 Computing heliostat heat flux images

The heliostat heat flux image for heliostat h aiming at an aimpoint a shows the
incoming heat flux qmh,a [W

m2] for each measurement point m. In this section we
present two methods to approximate qmh,a.

The heat flux images can also be used to obtain the power Pm
h,a [W] absorbed by an

area around a measurement point m. Using the two-dimensional midpoint quadra-
ture rule, the heat flux can be integrated over the measurement point area Am. This
equals to

Pm
h,a = qmh,a · Am. (23)

These power values can be summed up over all measurement points to receive the
total power

P rec
h,a =

∑
m∈Mrec

Pm
h,a. (24)

2.4.1 Original HFLCAL method

The HFLCAL (Heliostat Field Layout CALculation) tool [22] offers an analytic way
to calculate the heat flux. It approximates the heat flux qmh,a as

qmh,a =
Ph,a

2πσeff
h,a

· exp

(
−(xma)2 + (zma)2

2σeff
h,a

)
·
[

1
m2

]
(25)

� (xma)2 + (zma)2 equals the squared distance from the measurement point m to
the aim point a in the x-z plane.

� Ph,a is the beam power from (6) in Section 2.2.

� σeff
h,a is the effective error defining the distribution size.

The effective error σeff
h,a scales with the aim distance dh,a from (7):

σeff
h,a =

dh,a · σtotal√
cos(φh,a)

(26)

with φh,a being the incidence angle between the normal vector of the aim point ~na

and the vector from the aim point to the heliostat −~dh,a in the x-y plane. σtotal

describes the total error of the heliostats as defined in Equation (10).

14

2.4.2 Extended HFLCAL method

In the original HFLCAL method, the cosine losses of non-perpendicular beams are
only included in the effective error term from Equation (26). The biggest problem
of this approach is the limitation to only influence the overall magnitude of the heat
flux image but not its shape, since it is a constant factor for the entire image. In
order to get a more accurate representation, these losses can be computed separately
by projecting the surface of the receiver onto a plane perpendicular to the beam.

This concept has been implemented by Kepp [13] and in this work we improve the
approach to be more computationally efficient.

The idea of the extended HFLCAL method is to project any measurement point
onto the plane which is perpendicular to ~dh,a and anchored at a. On this plane the
heat flux is given by the original HFLCAL method as in Equation (25) using the
distances within this plane. To compute the heat flux around measurement point
m, the area around m and m itself are projected onto the perpendicular plane, as
displayed in Figure 5. The heat flux at the projected point mo and the projected
area Am

o are then used to calculate the heat flux at m.

a
m

Am

h

x

mo

xo

Am
o

x

z

y

Figure 5: Projection of the measurement point area onto the plane perpendicular to
the aim vector [13]. m and the associated area Am are projected onto mo

and Am
o . The projected distance xo between a and mo is used for the heat

flux computation with the original HFLCAL method.
.

15

In comparison to Equation (26) the effective error is now only defined as

σeff
h,a = dh,a · σtotal. (27)

To project any measurement point m onto the original plane, the vector from the
heliostat to that point ~dh,m is scaled such that the projection of the vector onto ~dh,a
has the length of dh,a, which is visualized in Figure 6.

~dh,mo = ~dh,m ·
dh,a

〈~dh,m, ~dh,a〉
(28)

x

y

am

h

~dh,a~dh,m

〈~dh,m, ~dh,a〉

mo

Figure 6: Measurement point m is projected onto the plane perpendicular to the
aim vector. The Projection mo is obtained by scaling vector ~dh,m with the

length-ratio of ~dh,a to 〈~dh,m, ~dh,a〉.

The projected point mo is determined by adding ~dh,mo to the position of the heliostat,
Am

o is calculated by projecting the corners of Am. For this, the virtual measurement
points m

i+
1
2
,j+

1
2
, m

i−1
2
,j+

1
2
, m

i+
1
2
,j−1

2
and m

i−1
2
,j−1

2
are projected. The coordinates

of these points can be computed with the parametrization from Section 2.3. The
cross product × of the differences vectors of these points can be used to obtain Am

o ,
since they are all within the same plane. For this, the area is split into two triangles
as seen in Figure 7.

Am
o =

1

2
· ‖(m

i+
1
2
,j+

1
2
−m

i+
1
2
,j−1

2
)× (m

i−1
2
,j−1

2
−m

i+
1
2
,j−1

2
)‖2

+
1

2
· ‖(m

i+
1
2
,j+

1
2
−m

i−1
2
,j+

1
2
)× (m

i−1
2
,j−1

2
−m

i−1
2
,j+

1
2
)‖2

(29)

16

x

z
mi− 1

2 ,j− 1
2

mi− 1
2 ,j+

1
2

mi+ 1
2 ,j− 1

2

mi+ 1
2 ,j+

1
2

Figure 7: Visualization of the area computation using the projections of the corners
of an area. The area is split into two triangles, their size can be easily
computed using the cross product.

To finally scale the heat flux at a point correctly, the ratio of the projected area to
the original area has to be included as a factor. This yields the following equation
for the extended HFLCAL method:

qmh,a =
Ph,a

2πσeff
h,a

· exp(−(dmo
a)2

2σeff
h,a

) · A
m
o

Am
·
[

1
m2

]
(30)

The term Am
o

Am
can be seen as a projection factor for the heat flux. Since the mea-

surement points at the edges of the receiver have no associated areas, the projection
factor is replaced with 1 and σeff

h,a is computed as in Equation (26). This equals the
intensity scaling done in the original HFLCAL method, with the difference being
that m is still projected to mo.

2.4.3 Blocking of the receiver

In reality some parts of the receiver can occlude others such that these do not
receive any heat flux from a heliostat. We model this by checking whether a point
on the receiver surface is facing the heliostat and whether the point is blocked by the
receiver itself. In the following the methods to check for these cases are described.
If a measurement point is within a blocked area, the heat flux measured at that
measurement point will be assumed to be zero and blocked aim points cannot be
targeted by heliostats.

17

x

y

•
h

Figure 8: Points not facing a heliostat cannot receive any heat flux from its reflected
radiation. The figure depicts a cut of the external receiver tower with a
heliostat h positioned in such a way that the red area lies in shadow.

x

z

•
h

Figure 9: The cavity receiver’s shape makes cast shadows possible. The figure de-
picts a cut of the cavity receiver tower with a heliostat h positioned in
such a way that the red area lies in shadow.

First, the normal vector at the measurement point ~nm, defined in Section 2.3, will be
used to check wether the receiver surface is facing the heliostat at this measurement
point. The point is facing away and therefore will not receive any heat flux if the
scalar product is positive,

〈~nm, ~dh,m〉 > 0,

where ~dh,m is the vector from the heliostat to the measurement point. This is
illustrated in Figure 8 for the external receiver.

Secondly, the cavity receiver offers the possibility to cast a shadow onto measurement
points from the sides of the cavity, as depicted in Figure 9.

18

We use the lower left and upper right corners ll and ur of the rectangular cavity to
check for this by comparing the entries of the cross-product × of the aim vector and
the corner points:

((~dh,m × ~dh,ll)x > 0) 6= ((~dh,m × ~dh,ur)x > 0) (31)

((~dh,m × ~dh,ll)z > 0) 6= ((~dh,m × ~dh,ur)z > 0) (32)

This inequality holds for any measurement point which is not in the shadow, as the
irradiation passes between the lower left and upper right corners of the cavity, which
can be seen in Figure 10.

x y

z

ll

ur

h

m

− +
−

+

Figure 10: To check whether the ray from the heliostat h to the measurement point
p is blocked by the receiver cavity, the signs of the cross-product of the
vector ~dh,m with the corners of the cavity is compared. If the signs for
the x and z component switch, the ray is not blocked.

To minimize the losses by blocking, the cavity of the receiver can be extended further
downwards, since the lower edge of the cavity would almost always cast a shadow
onto the receiver surface. The height of this extension is called hped and can be seen
in Section 2.3, Figure 3.

To ensure that the heatflux on the heat shield is never greater than on the edges of
the receiver, we only allow the heliostat to aim for the aim points which are in line
of sight of the heliostat. The blocked aim points are different for each heliostat and
the corresponding subsets of A are called Avisible

h and Ablocked
h .

19

2.5 Real central receiver systems

To define testcases for this work, we use real central receiver systems (CRS) as a
reference. All parameters are derived directly from the plant specifications to grant
the most realistic behavior. A list of all parameters for the testcases can be found
in Appendix, Table 4.

PS10

The Planta Solar 10 (PS10) [19] is a power plant in Spain, which was developed by
Abengoa Solar and started operating in 2007. The CRS consists of 624 heliostats
and a cavity receiver. The cavity receiver of PS10 consists of four rectangular panels
which form the curved receiver surface. The panels are aligned as four sides of a
nonagon and the total electrical power the plant produced adds up to 11MW.

Gemasolar

The Gemasolar Thermosolar Plant [6], developed by Torresol Energy, is a signifi-
cantly larger power plant than PS10 with 2650 heliostats spread around a cylindric
external receiver. It produces 19.9MW of power and started operating in April
2011.

New Abengoa CRS

In comparison to PS10 and Gemasolar this CRS is still in planning. It has 8600
heliostats in total and uses a cylindric external receiver. We refer to this CRS as
the Abengoa CRS, since it does not have an official name yet. For this CRS, a set
of 1777 aim points is already given, which we use instead of the aim points from
Section 2.3.

A top view of all three CRS heliostat layouts can be seen in Figure 11.

20

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(a) Layout of the PS10 CRS.

-1000 -500 0 500 1000

-500

0

500

1000

(b) Layout of the Gemasolar CRS.

-1000 -500 0 500 1000
-1500

-1000

-500

0

500

1000

1500

(c) Layout of the Abengoa CRS.

Figure 11: Layouts of the real central receiver systems. The receiver tower is always
positioned at (x, y) = (0, 0).

21

2.6 Heliostat images

To visualize the functionality of the optical model, we take a look at heat flux images
of a single heliostat for a flat plate and a cavity receiver. For the flat plate receiver
we additionally look at two different heliostat positions. In all cases we use the
original and the extended HFLCAL methods for the image computation. To stay
close to reality, we choose our problem parameters according to the ones used in the
PS10 CRS (see Appendix Table 4).

Figures 12a and 12b show the heat flux image for a heliostat positioned directly
in front of the receiver. For these examples the heliostat aims at the center of the
receiver, which can be verified by the central position of the peak of the heat flux.
As expected, the heat flux decreases radially around the peak.

Comparing Figures 12a - 12d with each other shows two things. The heat flux
arriving at the receiver becomes smaller, the further the heliostat is away from the
receiver and the extended HFLCAL method produces much more believable results
for diagonally placed heliostats.

Figures 12e and 12f show that only the extended HFLCAL method implements
blocking, which is explained in Section 2.4.3.

We conclude that both heat flux computation methods deliver satisfactory results.
However, the extended HFLCAL method captures more detail than the HFLCAL
method. Thus, we only use the extended HFLCAL method in this work.

22

01
0

1

0

2

4

6

8

10

12

(a) Flat plate receiver, no tilt,
heliostat at x=0, y=200

original HFLCAL, P rec
h,a : 103.31 kW

01
0

1

0

2

4

6

8

10

12

(b) Flat plate receiver, no tilt
heliostat at x=0, y=200

extended HFLCAL, P rec
h,a : 95.09 kW

01
0

1

0

2

4

6

8

10

12

(c) Flat plate receiver, no tilt
heliostat at x=200, y=200

original HFLCAL, P rec
h,a : 97.01 kW

01
0

1

0

2

4

6

8

10

12

(d) Flat plate receiver, no tilt
heliostat at x=200, y=200

extended HFLCAL, P rec
h,a : 89.31 kW

01
0

1

0

5

10

(e) Cavity receiver, raised by 4m
heliostat at x=200, y=200

original HFLCAL, P rec
h,a : 69.85 kW

01
0

1

0

5

10

(f) Cavity receiver, raised by 4m
heliostat at x=200, y=200

extended HFLCAL, P rec
h,a : 45.81 kW

Figure 12: Examples for heliostat images and the PS10 CRS using a rectangular
receiver 4. The left and right images show the same configurations using
the original and extended HFLCAL method. Figures 12a - 12d use a flat
plate receiver, 12e and 12f a cavity receiver. The heliostat is placed north
of the receiver (x=0, y=200) in Figures 12a and 12b, for all other images
it is placed at x=200, y=200. The heliostat always aims at the center of
the receiver.

23

2.7 Allowed flux distribution

As mentioned before, each receiver has an upper limit for the heat flux hitting it, be-
cause its surface can only withstand a certain maximum temperature. Additionally,
it might be desirable that a specific heat flux distribution is created at the receiver
surface, which can depend on the layout of the tubes containing the heat carrying
medium behind the receiver surface.

These ideas are combined by defining the allowed flux distribution (AFD), which is
given as a nhoriz

m × nvert
m matrix with an allowed heat flux value qm,AFD[kW

m2] for each
measurement point m ∈M rec.

Since most likely no heliostat alignment will exactly recreate the allowed heat flux
distribution, a deviation below the given values is allowed. A deviation above the
AFD could lead to damage done to the receiver and has to be prohibited. For the
purpose of this work, all qm,AFD are assumed to be given by the receiver, as the
computation of the AFD is an entirely different optimization problem: Since the
AFD depends strongly on the current pump settings for the heat carrying medium,
the operator has to find a balance between a high enough fluid throughput to allow
for the most heat flux to be reflected onto the receiver and absorbed and a low enough
throughput to not overshoot the total energy the CRS could possibly produce at that
moment. The AFD values used in this work are given for the Abengoa CRS and
obtained by trial and error for PS10 and Gemasolar.

24

3 Formulation of the optimization problem

3.1 Aiming strategy problem definition

The aiming strategy problem describes the task of finding the optimal aim point for
each heliostat with the intent to use the solar power as efficiently as possible, while
fulfilling certain constraints.

To be able to solve this problem, a few things have to be known, such as the CRS
layout, heliostat and receiver properties. Furthermore, some parameters have to be
chosen beforehand. This includes the measurement point resolution of the receiver,
as well as the aim points for the heliostats.

The allowed flux distribution (AFD), which is the most important constraint for
the optimization, is also assumed to be known. In reality, the AFD might change
depending on the total power the receiver receives, which can lead to a two step
process: In the first step the AFD is chosen based on an estimation of the total
power the heliostats can reflect onto the receiver. In the second step this AFD is
used to determine an aiming strategy. Since these two steps can be done separately,
we only focus on the optimization problem for a given and fixed AFD.

The solution of the problem should tell the user at which aim point each heliostat
aims.

3.2 Formulation as an ILP

In this section the aiming strategy optimization problem is formulated as an integer
linear program (ILP). This ILP is built upon the one defined by Kepp [13] and the
improvements made by Kuhnke et al. [14].

An ILP is a special form of linear program (LP), which has the following form:

maximize 〈~c, ~x〉
subject to A · ~x ≤ ~b with ~x ≥ 0

~c are the objective coefficients of the decision variables ~x. A is called the constraint
matrix, with ~b defining the upper bound for the constraints. The problem is called
an ILP if all decision variables ~x are integer variables or a mixed integer linear
problem (MILP) if only a subset of the decision variables is integer. The relaxation
of an ILP describes the same problem without the condition that the variables have
to be integer.

In the following the aim point optimization problem is expressed as an objective
function, decision variables and a set of constraints for the decision variables, which
together form an ILP.

25

3.2.1 Objective function

There are two ways of defining the objective function. First, the objective can be
defined such that the solar power arriving at the receiver is maximized,

maximize
∑

m∈Mrec

(qm · Am) . (33)

Since an allowed flux distribution (AFD) is given, it is also plausible to rate the
quality of the solution by how well it approximates this distribution.

maximize
∑

m∈Mrec

(
qm − qm,AFD

)
(34)

Note that (33) and (34) are equivalent for equal Am as in our discretization.

3.2.2 Decision variables

The heliostats H are allowed to aim at specific points at the receiver surface, called
aim points A as defined in Section 2.3. Since the aim points which are targeted by
the heliostats are the desired output from the optimization model’s solution, we use
these as decision variables. Thus, there exists one decision variable for each pair
(h, a), h ∈ H, a ∈ A.

The decision variables xh,a determine if the heliostat h ∈ H targets the aim point
a ∈ A. This decision is binary, therefore all xh,a are binary, i.e.

xh,a ∈ {0, 1} ∀h ∈ H ∀ a ∈ A (35)

If heliostat h targets aim point a then xh,a = 1 otherwise it is 0.

Using all decision variables xh,a, the heat flux qm at any measurement point m can be
computed as an accumulation of all qmh,a, for which the decision variable xh,a = 1:

qm =
∑
h∈H

∑
a∈A

qmh,a · xh,a ∀m ∈M (36)

26

3.2.3 Constraints

Maximum one aim point per heliostat

The heliostats can only aim at a single aim point, which translates to the following
constraint: ∑

a∈A

xh,a ≤ 1 ∀h ∈ H (37)

Since it is also possible for a heliostat to target no aim point at all, the sum is not
restricted to be equal to one. This enables the computation of solutions where some
heliostats have to stay unused due to safety constraints.

Omit blocked aim points

A heliostat should only aim at an aim point which is in direct line of sight and not
blocked in any way. Whether an aim point is blocked is determined by checking
whether the receiver is facing the heliostat at this point and whether the receiver
occludes the point itself, as described in Section 2.3. For a heliostat, we call the
blocked aim points Ablocked

h and forbid the use of these points as a target:

xh,a ≡ 0 ∀ a ∈ Ablocked
h (38)

Allowed flux distribution

The allowed flux distribution (AFD) serves as an upper limit for the total heat flux
density at the measurement points. The limit qm,AFD [kW

m2] at a measurement point
m is explained as in Section 2.7.

The AFD constraint is formulated as follows:∑
h∈H

∑
a∈A

qmh,a · xh,a ≤ qm,AFD ∀m ∈M rec (39)

Allowed flux distribution - heat shield

A heat shield is installed at the edges of the receiver, to prevent damage to the
solar tower from heat flux missing the receiver. This heat shield usually has a lower
allowed heat flux than the receiver surface, therefore the heat flux at the edges of
the receiver is constraint to qshield [kW

m2], see Section 2.3.

∑
h∈H

∑
a∈A

qmh,a · xh,a ≤ qshield ∀m ∈M shield (40)

27

4 Solver software

For solving the integer linear program (ILP) introduced in Section 3, different solver
software will be tested. In this section we introduce the branch-and-bound algo-
rithm, which is used by all solver implementations, and the properties of the investi-
gated solvers. We also go into detail about the ”wrapper” software, which has been
implemented to describe the problem data in a way that allows for different solvers
to be plugged in.

4.1 Branch-and-bound algorithm

The branch-and-bound algorithm (BAB) is a popular method of solving ILPs. It typ-
ically uses the simplex algorithm to compute exact solutions for the relaxed problem
and creates branches afterwards to modify the solution to be integer. The following
description of the BAB algorithm is based on the glpk reference manual [10].

The simplex algorithm, designed by G. Dantzig in 1947, is a solution algorithm for
linear programs (LP). Using the simplex algorithm, the solution for the LP relaxation
can be computed with a very low runtime. For the aiming optimization problem
the relaxation will be that the decision variables can take any real value between
0 and 1, as long as the constraints are fulfilled. The solution may therefore not be
immediately usable, due to its relaxed nature, but will be available in much shorter
runtime.

Since the solution computed by the simplex algorithm is the global optimum, its
objective value serves as an upper bound for the maximization objective of the
non-relaxed problem.

Once a solution for the relaxation is computed, the BAB algorithm selects a single
variable to create a branch for. Creating a branch means that additional constraints
are added to split the problem into two subproblems.

varrelaxed = s ⇒
{

(c1) var ≤ bsc
(c2) var ≥ dse

For both of these new subproblems, each one adding either constraint c1 or c2 to the
original problem, a new relaxed solution is calculated. If one of these subproblems
does not yield a feasible relaxed solution, it is eliminated, as well as when the
objective value of the relaxed solution is worse than the best found integer solution.
If the solution is better than the best found integer solution and all variables are
integer, it is set to be the new best. If not, new subproblems will be created and
the above steps are repeated.

Since traversing all generated subproblems would take a very long time, some branches
of the problem tree can be cut off early. A subproblem can be eliminated, if the

29

relaxed solution of the subproblem is worse than the best found integer solution,
since the solution of any further subproblems is always worse. This step is called
pruning and can be repeated every time a new subproblem is created or a new best
solution is found.

Once no subproblem remains, the best integer solution found is the global optimum
of the original ILP. If the solution process is cancelled early, the best found solution
can still be guaranteed to be close to the global optimum. How close is determined
by the remaining gap, which represents the relative difference between the objective
values of the best found solution and the best possible objective value.

Branch-and-cut

An extension to the BAB algorithm is the branch-and-cut (BAC) method. This
method is often faster than BAB, which is due to the addition of cutting planes
in the computation of the relaxed solution. These cutting planes add further con-
straints which do not limit the integer values the variables can take, but restrict the
non-integer possibilities further. This leads to relaxed solutions, which are signifi-
cantly closer to the best integer solution, and therefore earlier cutoffs for non-optimal
branches.

Further deviations

To influence the BAB or BAC algorithm, their behavior can be changed in several
ways. One option is to change the order, in which subproblems are investigated.
While depth-first-search goes to one of the two created subproblems after branching,
breadth-first-search chooses to first investigate the subproblems which were first
created. Many different strategies for custom tree traversion orders are also possible
and often depend on the use of heuristics to compute upper or lower bounds for the
objective values within the branches. The BAC algorithm also offers the possibility
to change the usage of different cut strategies.

4.2 Solver overview

The subset of all currently available solvers for ILP models that use the BAB and
BAC algorithms contains Gurobi, glpk, lpsolve, SCIP and coin-or. Details on
the used versions can be found in Table 1.

Gurobi [11] is a commercial software, but as it provides an academic license it can
still be used for this thesis. Since Gurobi is known for its short runtimes, it is to be
expected that it outperforms the other non-commercial solver tools.

30

glpk [10] (GNU Linear Programming Kit) is a package designed to solve linear
programming and mixed integer programming problems. The GNU General Public
License makes glpk free to use in any application as long as it is also distributed
under this license.

lpsolve [17] is a mixed integer linear programming solver released under the GNU
Lesser General Public License. This means that lpsolve may be used in commercial
software, as long as it is not modified and used as a compiled library. lpsolve is
entirely based around the simplex and BAB algorithm.

SCIP [8] [9] claims to be one of the fastest non-commercial solvers for mixed integer
programming and mixed integer nonlinear programming. The SCIP solver is part
of the SCIP Optimization Suite, which also contains SoPlex, a linear programming
solver, which is used by SCIP and other tools that are not used in this thesis. The
entire SCIP Optimization Suite is released under the ZIB (Zuse Institute Berlin)
Academic License and free for academic use.

coin-or [15] (Common Optimization Interface for OR (Operations Research)) offers
several tools in the field of operations research, one of them being the Cbc (Coin-or
branch-and-cut) solver. The solver is an open-source mixed integer programming
solver written in C++. The tools from the coin-or project build upon each other,
such that the Cbc solver uses amongst other parts the Clp (Coin-or linear program-
ming) solver. In this thesis Cbc will be used, since it offers BAB functionality. Cbc

is published under the EPL (Eclipse Public License) which allows for commercial
use of the unmodified program.

All solvers presented are used unmodified as callable libraries in a custom C++
implementation of the problem.

Solver Licensing Last Update Used Version
Gurobi commercial, academic 2020 9.0
glpk GNU GPL (free) 2018 4.65
lpsolve GNU LGPL (free) 2016 5.5.2.5
SCIP ZIB (academic) 2018 6.0.2
coin-or EPL (free) 2020 Cbc 2.10.4

Table 1: Used solver software, their licensing, the year of the last update and the
used version.

4.3 C++ implementation

To implement the aiming strategy optimization, we use C++ and organize the code
such that its class hierarchy represents the actual problem structure, while pay-
ing attention to modularity. This allows future work to extend or use the project
easily.

31

The project’s six most important components are the following:

� The central receiver system (CRS) is represented as a class, which manages
its smaller components such as the receiver, the heliostats and the sun. This
class works as a data structure with some additional functionality to provide
e.g. receiver point coordinates.

� The raytracer class functions as an abstract class, from which new classes can
be derived. Each derived class implements a different way of computing the
heat flux. We include the original and extended HFLCAL method. Further
methods, e.g. GPU raytracers, can be added easily.

� The ILP model constructs the integer linear program with the objective func-
tion and all its variables and constraints for an assigned CRS and raytracer.
Additionally, it contains an instance of the solution class, which can be writ-
ten by the solver. This allows for solver independent storage and evaluation
as well as further usage of the solution, e.g. as a starting point for following
computations.

� The solver class is again an abstract class, derived classes can attach different
solver software to solve an ILP. A read_model function serves as an adapter
to transform the ILP to the solver specific structure. We provide adapters for
all solvers presented in Section 4.2.

� The solution class contains information like the computation time and used
solver software in addition to the actual solution values.

� Data is a class which manages reading the input files and provides access to it
via static functions.

An example program for loading a CRS and solving the aiming strategy problem can
be implemented easily using this class structure and is displayed in Listing 1. The en-
tire project can be found on https://git.rwth-aachen.de/Computational-Renewable-Energy/

SunFlower/Aiming-Strategy.git.

32

https://git.rwth-aachen.de/Computational-Renewable-Energy/SunFlower/Aiming-Strategy.git
https://git.rwth-aachen.de/Computational-Renewable-Energy/SunFlower/Aiming-Strategy.git

Aiming Strategy

*

1

* 1

�static�
Data

mc : Lpmodel_con�g
sc : Solver_con�g

+ parse_data(con�g_folder : std::string,
crs : CRS*)

CRS

+ receiver : receiver
+ heliostats : std::vector<heliostats>
+ sun : Sun

. . .

Raytracer

- crs : CRS*

get_Q(. . .)
get_image(. . .)

LP_Model

- r : Raytracer*
- Solution sol

+ init_from_CRS(CRS* crs) : void
+ get_variables() : std::vector<Variable>
+ get_constraint() : std::vector<Constraint>
+ get_objective() : Term
+ get_solution() : Solution&

Solver

- m : LP_Model*

- init() : void
save_solution() : void
read_model(m : LP_Model*) : void
+ solve() : int

Solution

+ vars : std::vector<std::pair<std::string, double�
+ objective_value : double
+ computation_time : double
+ solver : SOLVER_TYPE

Children of the solver class serve as
adapters for di�erent independent
solver softwares and are tasked with
solving ILPs

Children of the solver class serve as
adapters for di�erent independent
solver softwares and are tasked with
solving ILPs

Manages the creation of the ILP
and stores its solution independently
from the solver

Manages the creation of the ILP
and stores its solution independently
from the solver

Stores information about a solutionStores information about a solution

Children of the raytracer class imple-
ment di�erent methods for comput-
ing heat �ux images.

Children of the raytracer class imple-
ment di�erent methods for comput-
ing heat �ux images.

Manages CRS componentsManages CRS components

Reads information from input �les
and provides access to it to all other
classes

Reads information from input �les
and provides access to it to all other
classes

Figure 13: Overview of the class structure.
Code at https://git.rwth-aachen.de/

Computational-Renewable-Energy/SunFlower/Aiming-Strategy.git

33

https://git.rwth-aachen.de/Computational-Renewable-Energy/SunFlower/Aiming-Strategy.git
https://git.rwth-aachen.de/Computational-Renewable-Energy/SunFlower/Aiming-Strategy.git

#include <string >

#include "data.hpp"

#include "lpmodel.hpp"

#include "solver.hpp"

#include "raytracer.hpp"

#include "crs.hpp"

int main(int argc , char** argv) {

assert(argc == 2);

std:: string input_folder = argv [1];

CRS* crs = new CRS(); // initialize the CRS

Data:: parse_data(input_folder , crs); // read input

LP_Model* m = new LP_Model (); // initialize the ILP

Model

Solver* s = Solver ::get(); // initialize the solver

m->init_from_crs(crs); // create ILP from CRS

s->read_model(m); // pass ILP to chosen

solver

s->solve(); // solve the ILP

m->write_solution (); // output the solution

delete s, crs , m; // cleanup

return 0;

}

Listing 1: Simple example main function.

4.4 Solver specific ILP model creation

All of the solver softwares allow for an intuitive translation of the mathematical
ILP model from Section 3 to the solver language. Furthermore, Gurobi, lpsolve,
SCIP and coin-or offer the usage of a special constraint type called Special Ordered
Set (SOS). An SOS is a set of variables of which only one or two can be non-zero.
These are called SOS1 and SOS2 respectively. The ”maximum one aim point per
heliostat”constraints from Equation 37 in Section 3 can be trivially formulated as an
SOS1 constraint. In the documentation of Gurobi it is mentioned, that the usage of
SOS constraints instead of linear constraints usually leads to worse solution times,
which we can confirm for different testcases. Thus, we implement the constraints
as less-or-equal constraints with an upper bound of 1, since all of the variables are
binary.

34

4.5 Case study for optimal solver configuration

To obtain the best possible performance on a specific problem, several solver param-
eters can be set by the user. The influences of the different solver parameters were
tested per individual solver on a reference problem, for this purpose the PS10 power
plant is used with a flat plate receiver. Details about the used parameters can be
found in Appendix, Table 4. The hardware used for all measurements in this work
is a standard personal computer, the corresponding data can be found in Appendix,
Table 5.

irace: iterated racing for automatic algorithm configuration

Since some solvers offer a great variety of parameters, it is not feasible to try to
find good values for all of them manually. irace is a package designed by López-
Ibáñez et al. [16] for automatic algorithm configuration. It allows the user to specify
parameters, which are then tuned by iteratively running a given program using
different configurations.

Tuning method

To get the best possible parameter configuration, we first manually adjust and eval-
uate some recommended options. The intuitive parameters e.g. include enabling
the feasibility pump heuristic for glpk, which already reduces the runtime by a large
margin. After doing these initial adaptations, all important parameters are fed into
irace. For SCIP in particular, 110 parameters regarding the branch-and-cut heuristics
and branching methods are examined using irace to find an optimal configuration.
Finally, the results of irace are evaluated manually to find the parameters where
changes lead to a major performance increase.

Tuned solver parameters

In Table 2 all changed parameters are listed. Gurobi, glpk and SCIP all achieve
a solution within one hour with Gurobi being the fastest by far. coin-or did not
obtain a solution with default settings in under 4 hours and lpsolve was not able
to deliver a solution within a day, thus the evaluation with irace is not feasible and
we ignore them in the parameter study from now on.

To show the improvements in solver runtime using the adapted parameters, we
measure the time the solvers take until they reach a gap of less than 5% on the test
problem.

35

Gurobi parameter Default Tuned Brief description
GRB_IntParam_Goal 0 1 prioritize feasibility
glpk parameter Default Tuned Brief description
fp_heur 0 1 enable feasibility pump heuristic
ps_heur 0 1 enable proximity search heuristic
gmi_cuts 0 1 enable gomory’s cuts
br_tech 4 3 branch most fractional variable
bt_tech 3 1 depth first search
lpsolve parameter Default Tuned Brief description
- - - -
SCIP parameter Default Tuned Brief description
heuristics/vbounds/priority 2500 3500 increase priority of vbounds heuristic
heuristics/vbounds/freq 0 1 set frequency of vbounds heuristic
heuristics/clique/freq 0 -1 disable clique cuts
coin-or parameter Default Tuned Function
- - - -

Table 2: Overview about tuned parameters for the different solvers.

gurobi glpk SCIP
100

101

102

103

104

ti
m
e
in

se
co
n
d
s
u
n
ti
l
ga

p
is

b
el
ow

5%

default tuned

Average runtime in seconds
Gurobi glpk SCIP

Default 14.542 3053.982 110.117
irace 14.408 2961.020 103.806

Figure 14: Average runtime until a gap of 5% remains, using default and irace tuned
parameters.

36

As stated above, lpsolve and coin-or are not appropriate for our kind of problem.
Figure 14 shows that of the remaining three, Gurobi is by far the fastest solver, but
both glpk and SCIP also manage to produce results in a larger but still acceptable
time window. It is to be expected that the solution time scales with the problem
size for all solvers similarly.

Due to this, we use gurobi for all our measurements in this work, since it delivers
results the fastest. We also decrease the end gap down to 1% to 0.5%, depending on
the size of the CRS. This allows for more reliable statements about the solutions.

37

5 ILP acceleration using heuristics

In the following, different heuristic approaches towards the optimization problem
introduced in Section 3 are presented, which aim to speed up the solution process.
The goal of these heuristic approaches is to achieve a solution, which is at most a
small percentile worse than the solution without the use of heuristics.

The main idea is to reduce the size of the constraint matrix A, which can be done
by reducing the total number of constraints and the decision variables.

For all approaches, we use the PS10 CRS to evaluate quality and performance.

5.1 Grouping of heliostats

To reduce the number of decision variables, heliostats can be combined into groups
and all heliostats in one group are then only allowed to aim at the same aim point.
The group’s heat flux image at the receiver can be computed by summing up the
heat flux images of all heliostats within the group. Therefore, the group acts as one
single virtual heliostat for the optimization problem.

The set of groups is defined as

G = {gi | i ∈ {1, ..., ngroups}} (41)

with ngroups defining the total number of groups. Each group gi represents a subset
of heliostats

gi ⊆ H with gi ∩ gj = ∅ ∀ i 6= j,
⋃
i

gi = H (42)

and sums up the heat flux images of its heliostats as follows:

qmgi,a =
∑
h∈gi

qmh,a (43)

The set of aim points the group can target is reduced to the intersection of the aim
point sets visible from each heliostat.

Avisible
gi

=
⋂
h∈gi

Avisible
h (44)

When grouping heliostats, it is therefore important to make sure that the heliostats
within a group are able to aim at overlapping sets of aim points. This can be achieved
by letting the look-at-angle of the heliostats from the receiver tower influence the
grouping.

39

Grouping the heliostats reduces the amount of decision variables by a factor of at
least ngroups, while the restriction of aim points per group may lead to a further
decrease, depending on the overlap of the heliostat aim point sets.

Angular grouping

We use agglomerative clustering to group the heliostats. This clustering method
iteratively merges the two clusters with the lowest dissimilarity until the given num-
ber of clusters remains. The dissimilarity can be any function of two clusters, as
long as it is symmetric. At the beginning, all clusters consist of single heliostats.

To formalize which heliostats should be within the same group, a custom dissimi-
larity function is defined. The dissimilarity of heliostats i and j is low, if they share
a large set of possible aim points. A low dissimilarity therefore indicates heliostat
pairs, which are well suited to be in the same group. The function

dissi,j = angdiff(αi, αj) (45)

lets the dissimilarity of two heliostats hi, hj depend on the angular difference between
the look-at-angles αi, αj from the receiver tower.

The distance between the clusters, which is used in the clustering algorithm, is called
linkage d and can be computed in many ways. In our case, computing the linkage, by
taking the maximum dissimilarity between points within the clusters, works well:

d(gr, gs) = max(dissi,j) i ∈ gr, j ∈ gs (46)

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(a) ngroups = 10

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(b) ngroups = 20

Figure 15: Angular grouping of heliostats. Heliostats within the same group are
drawn with the same color.

40

This is also called ”complete” linkage and minimizes the maximum dissimilarity
within the groups. An other example is ”single” linkage, where the shortest distance
between cluster points defines the distance of the clusters. In our case, when using
the ”single” linkage approach, most heliostats are grouped into one big cluster, which
is not desirable. In Figure 15, the heliostat clusters for ”complete” linkage can be
seen.

Maximum distance grouping

The groups resulting from the angular clustering consist of many heliostats in close
proximity. This can be a problem, since it increases the influence of cloud shadows
passing over the heliostat field. They now greatly reduce the heat flux hitting the
receiver around the aim point of the covered groups. By spreading heliostats of one
group, fewer of the heliostats lie within cloud shadows simultaneously and the heat
flux distribution at the receiver is weakened homogenously.

To achieve this goal, a different dissimilarity function is introduced. This time, the
focus lies on grouping heliostats with a large spatial distance, which can be done by
changing the sign of the spatial distance:

dissi,j = −||pi − pj||2 (47)

with pi, pj representing the position vectors of heliostats hi and hj.

Using this dissimilarity function and the same algorithm as above, a completely
diffuse grouping is obtained, which can be seen in Figure 16. As the resulting clus-
ters suffer from large angular distances within the groups, a combined dissimilarity
function is derived below.

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(a) ngroups = 3

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(b) ngroups = 10

Figure 16: Grouping of heliostats based on maximizing the spatial distances within
a group. Heliostats within the same group are drawn with the same color.

41

Combined grouping

To combine the upsides of both dissimilarity functions presented above, these func-
tions are combined into a single one:

dissi,j = λgrouping ·
(

angdiff(αi, αj)

π

)2

− (1− λgrouping) · ||pi − pj||2
maxk,l ||pk − pl||2

(48)

with λgrouping ∈ [0, 1]. This dissimilarity function consists of two parts, which can
be balanced using λgrouping. First, the angular difference between the heliostats with
respect to the solar tower should increase the dissimilarity between them, as only
heliostats which lie in roughly the same direction can share a sufficient amount of
aim points. To punish large angular differences, this term is additionally squared.
Secondly, the euclidean distance between the heliostats should be as large as pos-
sible, therefore a large euclidean distance lowers the dissimilarity. This euclidean
distance is normalized using the maximum distance between any two heliostats and
the angular distance is normalized with π. Resulting heliostat groups for different
λgrouping values can be seen in Figure 17.

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(a) λgrouping = 0.0

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(b) λgrouping = 0.3

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(c) λgrouping = 0.6

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(d) λgrouping = 0.8

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(e) λgrouping = 0.9

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

(f) λgrouping = 1.0

Figure 17: Grouping of heliostats based on the combined dissimilarity function. He-
liostats within the same group are drawn with the same color.

42

Optimal grouping configuration

The grouping of heliostats can be controlled by the two parameters λgrouping and c.
The latter is defined as the compression factor of the heliostat set:

cheliostats =
nheliostats

ngroups
(49)

It is to be expected that a high λgrouping value corresponds to higher possible objec-
tive values than a low λgrouping value, since the aimpoints are less restricted. The
advantage of a low λgrouping are higher spatial distances within the heliostat groups,
which reduces the impact of cloud shadows on the heat flux distribution at the
receiver. An optimal value for λgrouping therefore is as low as possible, while not
reducing the best possible objective value significantly.

Since cheliostats can be chosen arbitrarily, some sample values are chosen for further
evaluation. Figure 18 shows the dependence of the solution quality of cheliostats. In
the following, a suitable λgrouping is determined using the sample set of cheliostats ∈
{2, 4, 8, 16, 32}, as these cover the decline of solution quality for all λgrouping. We use
the PS10 central receiver system for evaluation, as the cavity receiver is expected
to lead to higher differences in aim point sets for near heliostats than a cylindric
receiver.

To evaluate the influence of λgrouping on the amount of remaining aim points, the
average relative aim point set size sA ∈ [0, 1] is formalized:

sA =
∑
gi

(
1

|gi|
·
∑
h∈gi

|Avisible
gi
|

|Avisible
h |

)
(50)

1 2 3 4 5 6 7 8 9 10 11 12
0%

20%

40%

60%

80%

100%

compression factor cheliostats

re
ce
iv
ed

p
ow

er

λ = 1.0
λ = 0.8
λ = 0.7
λ = 0.6
λ = 0.3

Figure 18: The influence of cheliostats and λgrouping on the reachable objective value.
The solution quality decreases with an increase in cheliostats and a decrease
in λgrouping.

43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

20%

40%

60%

80%

100%

dissimilarity function parameter λgrouping

av
er
a
ge

re
la
ti
ve

ai
m

p
o
in
t
se
t
si
ze
s A

c = 2
c = 4
c = 8
c = 16
c = 32

Figure 19: The influence of λgrouping and cheliostats on sA. The set of available
aim points per heliostat shrinks rapidly when lowering λgrouping until
λgrouping ≈ 0.5. Increasing the compression factor cheliostats decreases sA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0%

20%

40%

60%

80%

100%

dissimilarity function parameter λgrouping

re
ce
iv
ed

p
ow

er

c = 2
c = 4
c = 8
c = 16
c = 32

Figure 20: The influence of λgrouping and c on the reachable objective value.
λgrouping > 0.7 does not negatively impact the reachable objective value.

44

A value of sA = 0.6 would indicate that heliostats can aim on average at 0.6 times
as many aim points as if they were not grouped.

Figure 19 shows that sA strongly depends on λgrouping. Since sA decreases rapidly
for λgrouping < 1, low λgrouping values are likely to decrease the solution quality.
Figure 20 supports this by showing that the objective value rapidly decreases for
λgrouping < 0.8, regardless of the compression factor. A closer look reveals that the
solution quality is above 95% for sA > 70%, although too high compression factors
of cheliostats = 16 or higher start to negatively impact the solution at any λgrouping.

For λgrouping = 0.8 and a compression factor of cheliostats <= 16, the objective value
stays above 95% of its normal value. cheliostats = 2 with λgrouping = 0.8 results in a
solution quality of 98.2%.

Performance evaluation

To evaluate the effect of the compression factor cheliostats on the solver runtime,
λgrouping is fixed at λgrouping = 0.8. Figure 21 shows that the computation time
decreases significantly when grouping the heliostats with any compression factor
cheliostats ≥ 2 for the PS10 central receiver system. The speedup achieved stays
almost constant at about 4, which is likely due to the relatively small size of the
PS10 CRS. For larger total heliostat numbers, a greater achievable speedup is to
be expected. For the PS10 CRS, suitable parameters for the grouping of heliostats,
which keep the solution quality high enough but provide a noticeable speedup, are
thus λgrouping = 0.8 and 2 ≤ cheliostats ≤ 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

compression factor cheliostats

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 21: Runtime depending on cheliostats for λgrouping = 0.8 for the PS10 central
receiver system.

45

5.2 Reduction of aim points

Another approach to decrease the problem size is to reduce the number of aim
points per heliostat instead of reducing the number of heliostats. While doing so,
it is important to keep the initial aim point resolution and to reduce the number
of aim points any individual heliostat can target. This keeps the solution quality
higher while also allowing for finer control over the reduction in aim points.

In real scenarios, heliostats which are far away from the receiver tend to aim towards
its center, while closer heliostats choose more diverse aim points. This leads to the
idea of reducing the aim point set size of a heliostat in proportion to its distance
from the receiver.

To do so, we introduce two compression variables caimpoints,close and caimpoints,far, one
for the relative aim point set compression for close heliostats and one for the far
heliostats. For each heliostat or heliostat group the compression factor is then
computed by using its relative distance to its aim points as in Equations (51) to
(54).

gi,mean =
1

|gi|
·
∑
h∈gi

h (51)

ai,mean =
1

|Avisible
gi
| ·

∑
a∈Avisible

gi

a (52)

λi,reduction =
‖ai,mean − gi,mean‖ −min da,h

max da,h −min da,h
(53)

ci,reduction = (1− λi,reduction) · caimpoints,close + λi,reduction · caimpoints,far (54)

ci,reduction now represents the compression factor for heliostat group i.

|Areduction
gi

| = max

{
1,

⌊
1

ci,reduction

· |Avisible
gi
|
⌋}

(55)

Which aim points are kept is determined by the usage of the k-means clustering
algorithm. The aim points for Areduction

gi
are chosen to be the ones of Avisible

gi
which

are closest to the corresponding cluster centroid.

Instead of clustering the aim points from Avisible
gi

in cartesian coordinates, they are
clustered with regard to their horizontal and vertical angular difference from the
group center gi,mean. In current practice, the number of aim points is reduced by
using a finer receiver discretization towards its edges and a more coarse one in its
center. To emulate this, the angular differences φa,hor, φa,vert are projected as follows
in Equations (56) - (57):

46

φa,hor = sign(φa,hor) · (abs(φa,hor))
x (56)

φa,vert = sign(φa,vert) · (abs(φa,vert))
x (57)

with x being an arbitrary exponent. For x > 1 the outer aim points are stretched
further apart than the inner ones, making them more likely to be clustered into
smaller groups, as displayed in Figure 22.

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

-1 0 1
-1

-0.5

0

0.5

1

Figure 22: K-means centroids for a noisy point grid (left), computed with previously
mapping the coordinates using exponent x = 1 (middle) and x = 2
(right). The right image shows finer clusters on the edges and more
coarse clustering in the center.

To find a suitable x we evaluate its influence on the solution quality. Figure 23
shows that for caimpoints = 8, x = 2 leads to the best solution.

The effect of the aim point reduction can be seen in Figure 24 for the PS10 CRS. The
plots reveal that the influence of the compression factors of close and far heliostats is
almost entirely symmetric. Therefore, we combine them as caimpoints = cclose = cfar.
For PS10, the value caimpoints = 6 is a suitable example, since the computation time
is already reduced drastically from around 100 seconds to about 13 and the solution
quality only decreases by about 2.7%.

1 1.5 2 2.5 3 3.5 4

96%

98%

100%

k-means exponent x

re
ce
iv
ed

p
ow

er

Figure 23: Effect of the exponent for the k-means aim point clustering on the objec-
tive value for PS10 and caimpoints = 8.

47

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factor cclose

co
m
p
re
ss
io
n
fa
ct
or

c f
ar

0

20

40

60

80

100

co
m
p
u
ta
ti
on

ti
m
e
[s
]

(a) Influence of the compression factors caimpoints,close and caimpoints,far on the computation
time.

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factor cclose

co
m
p
re
ss
io
n
fa
ct
or

c f
ar

95%

95.5%

96%

96.5%

97%

97.5%

98%

98.5%

99%

99.5%

100%

re
ce
iv
ed

p
ow

er

(b) Influence of the compression factors caimpoints,close and caimpoints,far on the solution
quality.

Figure 24: Effect of the aim point reduction on the computation time and solution
quality for the PS10 CRS.

48

6 Case study

To show the effects of the methods developed in this thesis, we apply them to three
different central receiver systems, which are introduced in Section 2.5.

As prerequisite to the simulation runs, we have to determine the measurement and
aim point sets, as well as the allowed flux distribution (AFD). These settings are
kept constant for each considered central receiver system (CRS), while applying the
different heuristic approaches, to compare their performance to the default problem,
which represents the optimal solution without any heuristic optimization. For the
heliostat grouping, we use λgrouping = 0.8 for all testcases, as discussed in Section 5.

6.1 Heuristics on real CRS

The parameters that have been varied over the course of the following computations
are the heuristic compression factors cheliostats and caimpoints. The diagrams show the
solution quality in relation to the non-optimized solution as well as the computation
time in seconds for all combinations of compression factors with cheliostats, caimpoints ∈
[1, 16]2 ⊂ N2. Detailed information about the parameters can be found in Appendix
Table 4.

PS10: 624 heliostats, 135 aim points, 187 measurement points

The performance diagrams for PS10 can be seen in Figure 25. It can be observed,
that the solution quality decreases consistently with rising compression factors, while
the computation time decreases rapidly. For high compression factors, spikes in the
computation time can be seen, which appear once the groups are large enough, such
that each one produces a significant heat flux spike at the receiver surface, while
also having a limited amount of aim points remaining.

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

99.46%

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

86%

88%

90%

92%

94%

96%

98%

100%

re
ce
iv
ed

p
ow

er

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

18.7 s

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 25: Solution quality (left) and computation time (right) for PS10 in depen-
dence of the heuristic compression factors cheliostats and caimpoints.

49

For PS10, a viable set of compression factors are cheliostats = 1 and caimpoints = 4, as
these provide a solution quality of 99.46% and reduce the computation time from
100 seconds down to 18.7 seconds. Further increasing the compression factors would
still decrease the computation time but also lead to larger decreases of the solution
quality, which is not necessary, since a computation time of 18.7 seconds is already
really low.

Gemasolar: 2650 heliostats, 135 aim points, 165 measurement points

The Gemasolar CRS shows a stronger decrease in solution quality with caimpoints than
cheliostats, which can be explained by the larger number of heliostats available, while
the aim point set size is kept the same as for PS10. Since the receiver is a cylindric
external receiver, the heliostats can only target about half the aim points by default,
which makes a further reduction in aim points impact the solution quality strongly.
As a result, caimpoints should not be chosen too high for this testcase, a feasible set
of compression factors are cheliostats = 8 and caimpoints = 4. These reduce the solution
quality to 96.61% and the computation time to 6.3 seconds from the original 174.1
seconds.

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

96.61%

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

80%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

re
ce
iv
ed

p
ow

er

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

6.3 s

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

120

140

160

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 26: Solution quality (left) and computation time (right) for Gemasolar in
dependence of the heuristic compression factors cheliostats and caimpoints.

Abengoa CRS: 8600 heliostats, 1777 aim points, 288 measurement points

The Abengoa CRS is the large scale testcase of the three. Because of the very high
number of heliostats as well as aim points, solving the aiming strategy problem
without the use of heuristics is not possible due to hardware limitations. For the
same reasons, we only use a rougher grid of heuristic parameters. Instead of using the
solution for no heuristics as a reference to evaluate the solution quality, we therefore
use the highest solution achieved, which is for cheliostats = 4 and caimpoints = 1. The
computation time for this solution is already as high as 878 seconds, which can
be reduced drastically without a real loss in solution quality by applying higher

50

compression factors. Due to the size of this CRS in both heliostat and aim point
count, reducing their numbers only marginally affects the solution quality, since
most restrictions can be balanced out easily. The compression factors cheliostats = 8
and caimpoints = 8 already lead to a computation time of 83.9 seconds and keep
the solution quality at 99.3%, further increasing them to up to cheliostats = 16 and
caimpoints = 16 only reduces the solution quality by an additional 0.2% and decrease
the computation time down to 18.2 seconds.

1 4 8 12 16

1

4

8

12

16

99.08%

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

96%

96.5%

97%

97.5%

98%

98.5%

99%

99.5%

100%

re
ce
iv
ed

p
ow

er

1 4 8 12 16

1

4

8

12

16

18.2 s

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

100

200

300

400

500

600

700

800

900

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 27: Solution quality (left) and computation time (right) for the Abengoa CRS
in dependence of the heuristic compression factors cheliostats and caimpoints.
The solution for cheliostats = caimpoints = 1 was not computed due to hard-
ware limitations.

Recommended compression factors

The recommended compression factors determined for the testcases of the case study
are shown in Table 3.

cheliostats caimpoints solution quality speedup
PS10 1 4 97.10% 5.3
Gemasolar 8 4 96.61% 27.6
Abengoa 16 16 99.08% 48.2

Table 3: Recommended compression factors for the three testcases.

51

6.2 Warm start for the computation

In practice, the aiming strategy problem for a CRS is solved repeatedly to always ad-
just to the current environmental conditions. Should a previous solution be known,
it can be used as an initial solution in the next time step. This requires a check for
constraint validations, since the solution can be invalidated by e.g. the sun rising,
which increases the heat flux all the heliostats reflect onto the receiver.

To imitate the real world scenario, we reinitialize the solver and provide only the
solution values for the decision variables as initial values, while not giving any in-
formation about whether this is a solution or not. Since the solution has to be
recomputed from scratch if the past solution is invalid, we only provide solutions
which are guaranteed to be viable.

Figure 28 shows the decrease in solution time for PS10, when providing the solution
from the exact same problem. To note is the decrease of spikes in computation time
for high compression factors. For Gemasolar this is also observable, although far
less impactful, as one can see in Figure 29.

In the tests above we solved the exact same problem twice and input its own solution
as an initial solution. Since in reality the problem does not stay exactly the same, the
solution is generally unknown and the initial solution can only come from a different,
already solved, problem. It is important to ensure the validity of the initial solution,
since a change in problem parameters could lead to higher heat flux values or stricter
safety constraints. To get an idea for the effect, providing an initial solution has,
we use a simple testcase on the PS10 CRS, which guarantees the validity of the
initial solution. For this, we use the initial solution for the normal problem, which
is computed exactly the same as before, and use it as an initial solution for the
same problem with a set of heliostats disabled, as seen in Figure 30. Similar changes
could happen in reality when clouds pass over the heliostat field. For the disabled
heliostats, all reflected heat flux is set to zero, which only reduces the total heat flux
image at the receiver surface. This keeps the solution valid, as we keep the allowed
flux distribution the same.

Figure 31 shows the comparison between the computation times for the new prob-
lem with and without the initial solution from the unmodified problem. The total
computation times drop a very small amount when using the initial solution, but
in general the time save is negligible. Thus, we conclude that providing an initial
solution to the aiming strategy problem does not necessarily result in noticeably
faster computation times.

52

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

co
m
p
u
ta
ti
on

ti
m
e
[s
]

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 28: Normal computation time (left) and computation time with an initial so-
lution (right) for PS10 in dependence of the heuristic compression factors
cheliostats and caimpoints.

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

120

140

160

co
m
p
u
ta
ti
on

ti
m
e
[s
]

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

20

40

60

80

100

120

140

160

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 29: Normal computation time (left) and computation time with an initial
solution (right) for Gemasolar in dependence of the heuristic compression
factors cheliostats and caimpoints.

53

-400 -200 0 200 400
0

100

200

300

400

500

600

700

800

Figure 30: Disabled heliostats for the warm start testcase on PS10 are drawn red.

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

10

20

30

40

50

60

co
m
p
u
ta
ti
on

ti
m
e
[s
]

1 2 4 6 8 10 12 14 16
1
2

4

6

8

10

12

14

16

compression factors caimpoints

co
m
p
re
ss
io
n
fa
ct
or

c h
el
io
st
at
s

0

10

20

30

40

50

60

co
m
p
u
ta
ti
on

ti
m
e
[s
]

Figure 31: Normal computation time (left) and computation time with an initial so-
lution (right) for PS10 with some disabled heliostats in dependence of the
heuristic compression factors cheliostats and caimpoints. The initial solution
is the solution from the original problem without disabled heliostats.

54

7 Conclusion and future work

Within this work, we refined an optical model to compute the heat flux at the receiver
surface for any heliostat alignment. To compute heat flux images as efficiently as
possible, the extended HFLCAL method was improved.

Afterwards, the aiming strategy problem was formulated as an integer linear prob-
lem. We developed a C++ framework for the solution of this integer linear problem,
using different existing solver softwares. The comparison and tuning of these solvers
showed that Gurobi as well as glpk and SCIP can be used to solve the aiming strat-
egy problem for medium sized central receiver systems, while lpsolve and coin-or

cannot deliver a solution in feasible time.

Different heuristic approaches were developed to reduce the size of the problem by
either letting groups of heliostats only aim at the same aim point or reducing the
number of available aim points per heliostat. These heuristic approaches showed
promising results on real central receiver systems, as the computation time was
vastly reduced, while keeping the solution quality above a very high percentage
of the best obtainable solution. The optimal heuristic parameters vary between
the different testcases, but the tendency of strongly decreasing computation times
always stayed similar.

The heuristic approaches lead to even better results the larger the central receiver
system is, in terms of number of heliostats and aim points as well as measurement
points, which makes them viable for many new CRS. In the largest real testcase, for
which a solution without the use of heuristics could not be obtained due to hardware
limitations, the use of heuristics reduces the runtime to less than 20 seconds while
keeping the solution quality above 99% of the best one achieved.

For possible future work we propose the addition of a GPU raytracer for the heliostat
heat flux image generation, as well as support for arbitrary receiver surface shapes.
Additionally, one could investigate warm starting the optimization with old solutions
possibly violating safety constraints but which solve a problem very similar to the
new one. An approach for this could be to disable selected critical heliostats in the
old solution to make it feasible.

55

8 Appendix

Sun parameters Symbol Unit PS10 - flat PS10 Gemasolar Abengoa
Sunshape error σsunshape mrad 2.51 2.51 2.51 2.35
Direct normal irradiation DNI W

m2 1050 1050 1050 1016
Azimuth angle γsolar deg 0 0 0 160.9
Elevation angle θsolar deg 14 14 14 14.4
Heliostat parameters
heliostats |H| 624 624 2650 8600
Mirror surface area Ah m2 121 121 115.72 138.672
Pedestal height - m 5.17 5.17 5.675 7.095
Optical error σoptical mrad 2.9 2.9 2.9 1.22

Reflectivity ηreflectivity
h 0.88 0.88 0.93 0.91956

Tracking error horizontal σtracking, hor mrad 1.3 1.3 1.3 0.71
Tracking error vertical σtracking, vert mrad 2.6 2.6 2.6 0.38
Receiver parameters
Type flat cavity cylindric cylindric
Tilt angle θrec deg 11.5 - - -
Circle fraction prec - 4/9 - -
Receiver pedestal height hped m - 2 - -
Receiver diameter drec m 14 14 8.1 16.2
Receiver height hrec m 12 12 10.6 18.5
Tower height htower m 115 115 140 229.25
Tower height above receiver htop m 2.74 2.74 2.74 18.5
Receiver discretization
horizontal aim points nhoriz

a 15 15 15
vertical aim points nvert

a 5 5 5
1777

horizontal meas. points nhoriz
m 15 + 2 15 + 2 15 32

vertical meas. points nvert
m 5 + 2 9 + 2 9 7

Optimization parameters
Allowed heat flux qAFD kW

m2 270 293 1100 1290
Allowed heat flux (shield) qshield kW

m2 250 250 500 500
Relative allowed flux qmrel 1 (const) 1 (const) 1 (const) 0.5 - 1
Solver solution gap 1% 1% 0.7% 0.5%

Table 4: Central receiver system data for PS10 (flat / cavity), Gemasolar and the
Abengoa CRS. Empty entries are not needed.

Component Details
Processor intel i5 6500, 4x3.2 GHz (1 core used)
RAM 16 Gb

Table 5: Hardware data

57

References

[1] Renewable capacity statistics 2020. https://www.irena.org/-/media/Files/
IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_

2020.pdf, 2019. last visited on 2020-08-30.

[2] Thomas Ashley, Emilio Carrizosa, and Enrique Fernández-Cara. Optimisation
of aiming strategies in solar power tower plants. Energy, 137:285–291, 2017.

[3] Marco Astolfi, Marco Binotti, Simone Mazzola, Luca Zanellato, and Giampaolo
Manzolini. Heliostat aiming point optimization for external tower receiver. Solar
Energy, 157:1114–1129, 2017.

[4] Boris Belhomme, Robert Pitz-Paal, and Peter Schwarzbözl. Optimization of
heliostat aim point selection for central receiver systems based on the ant colony
optimization metaheuristic. Journal of solar energy engineering, 136(1):011005,
2014.

[5] Saeb M Besarati, D Yogi Goswami, and Elias K Stefanakos. Optimal heliostat
aiming strategy for uniform distribution of heat flux on the receiver of a solar
power tower plant. Energy Conversion and Management, 84:234–243, 2014.

[6] Juan Burgaleta, Santiago Arias, and Diego Ramirez. Gemasolar, the first tower
thermosolar commercial plant with molten salt storage. Solarpaces, 69, 01 2011.

[7] TA Dellin, MJ Fish, and CL Yang. User’s manual for delsol2: a computer
code for calculating the optical performance and optimal system design for
solar-thermal central-receiver plants. Technical report, Sandia National Labs.,
Albuquerque, NM (USA); Sandia National Labs., Livermore, CA (USA), 1981.

[8] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gam-
rath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten
Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger, Ben-
jamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska
Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Vier-
nickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig.
The SCIP Optimization Suite 6.0. Technical report, Optimization Online,
July 2018. URL http://www.optimization-online.org/DB_HTML/2018/07/

6692.html.

[9] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gam-
rath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten
Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger, Ben-
jamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska
Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Vier-
nickel, Matthias Walter, Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig.
The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin, July
2018. URL http://nbn-resolving.de/urn:nbn:de:0297-zib-69361.

59

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Statistics_2020.pdf
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361

[10] GNU. Gnu linear programming kit, version 4.65, 2012. URL https://www.

gnu.org/software/glpk/glpk.html. last visited on 2020-02-23.

[11] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL
http://www.gurobi.com. last visited on 2020-02-23.

[12] Soteris A. Kalogirou. Chapter ten - solar thermal power systems. In So-
teris A. Kalogirou, editor, Solar Energy Engineering, pages 521 – 552. Aca-
demic Press, Boston, 2009. ISBN 978-0-12-374501-9. doi: https://doi.org/
10.1016/B978-0-12-374501-9.00010-8. URL http://www.sciencedirect.com/

science/article/pii/B9780123745019000108.

[13] Fynn Kepp. Robust Optimization of Aiming Strategies of Heliostats in Solar
Tower Power Plants. 2018.

[14] Sascha Kuhnke, Pascal Richter, Fynn Kepp, Jeff Cumpston, Arie MCA Koster,
and Christina Büsing. Robust optimal aiming strategies in central receiver
systems. Renewable Energy, 2019.

[15] R. Lougee-Heimer. The common optimization interface for operations research:
Promoting open-source software in the operations research community. IBM
Journal of Research and Development, 47(1):57–66, Jan 2003. ISSN 0018-8646.
doi: 10.1147/rd.471.0057.

[16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas
Stützle, and Mauro Birattari. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives, 3:43–58, 2016. doi:
10.1016/j.orp.2016.09.002.

[17] Peter Notebaert Michel Berkelaar, Kjell Eikland, 2016. URL http://lpsolve.

sourceforge.net/5.5/. last visited on 2020-02-23.

[18] Corey J Noone, Manuel Torrilhon, and Alexander Mitsos. Heliostat field opti-
mization: A new computationally efficient model and biomimetic layout. Solar
Energy, 86(2):792–803, 2012.

[19] Rafael Osuna, Rafael Olavarrıa, Rafael Morillo, Marcelino Sánchez, Felipe Can-
tero, Valerio Fernández-Quero, Pedro Robles, T López, Antonio Esteban, Fran-
cisco Céron, et al. Ps10, construction of a 11mw solar thermal tower plant in
seville, spain. In Solar-PACES Conference, Seville, Spain, June, pages 20–23,
2006.

[20] Pascal Richter. Simulation and optimization of solar thermal power plants. PhD
thesis, RWTH Aachen University, 2017.

[21] Pascal Richter, Fynn Kepp, Christina Büsing, and Sascha Kuhnke. Opti-
mization of robust aiming strategies in solar tower power plants. AIP Con-
ference Proceedings, 2126(1):030045, 2019. doi: 10.1063/1.5117557. URL
https://aip.scitation.org/doi/abs/10.1063/1.5117557.

60

https://www.gnu.org/software/glpk/glpk.html
https://www.gnu.org/software/glpk/glpk.html
http://www.gurobi.com
http://www.sciencedirect.com/science/article/pii/B9780123745019000108
http://www.sciencedirect.com/science/article/pii/B9780123745019000108
http://lpsolve.sourceforge.net/5.5/
http://lpsolve.sourceforge.net/5.5/
https://aip.scitation.org/doi/abs/10.1063/1.5117557

[22] Peter Schwarzbözl, Robert Pitz-Paal, and Mark Schmitz. Visual hflcal - a
software tool for layout and optimisation of heliostat fields. 09 2009.

61

	Introduction
	State of the art
	Outline of the work

	Optical model
	Sun
	Heliostats
	Receiver
	Computing heliostat heat flux images
	Original HFLCAL method
	Extended HFLCAL method
	Blocking of the receiver

	Real central receiver systems
	Heliostat images
	Allowed flux distribution

	Formulation of the optimization problem
	Aiming strategy problem definition
	Formulation as an ILP
	Objective function
	Decision variables
	Constraints

	Solver software
	Branch-and-bound algorithm
	Solver overview
	C++ implementation
	Solver specific ILP model creation
	Case study for optimal solver configuration

	ILP acceleration using heuristics
	Grouping of heliostats
	Reduction of aim points

	Case study
	Heuristics on real CRS
	Warm start for the computation

	Conclusion and future work
	Appendix
	References

