
Diese Arbeit wurde vorgelegt am
Lehr- und Forschungsgebiet Theorie der hybriden Systeme

Optimale Klimasteuerung in Gebäuden Unter Einsatz
von Künstlicher Intelligenz

Optimal Climate Control in Buildings Using Artificial
Intelligence

Bachelorarbeit
Informatik

September 2019

Vorgelegt von Kristina Yaneva
Presented by Am Weißenberg 18

52074 Aachen
Matrikelnummer: 371610
kristina.yaneva@rwth-aachen.de

Erstprüfer Prof. Dr. rer. nat. Erika Ábrahám
First examiner Lehr- und Forschungsgebiet: Theorie der hybriden Systeme

RWTH Aachen University

Zweitprüfer Prof. Gerhard Lakemeyer, Ph.D.
Second examiner Lehr- und Forschungsgebiet: Wissensbasierte Systeme

RWTH Aachen University

Externer Betreuer Dr. rer. nat. Pascal Richter
External supervisor Steinbuch Centre for Computing

Karlsruhe Institute of Technology

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
gilt sinngemäß für Tabellen und Abbildungen. Diese Arbeit hat in dieser oder einer
ähnlichen Form noch nicht im Rahmen einer anderen Prüfung vorgelegen.

Aachen, im September 2019

Kristina Yaneva

II

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 1

1.2.1 Thermodynamic models . 1
1.2.2 Optimization . 3
1.2.3 Artificial Neural Networks . 3

1.3 Outline . 5

2 Modeling thermal load in buildings 5
2.1 Control data . 9
2.2 Future weather data and measured indoor data 9
2.3 Construction material data . 10
2.4 Internal loads . 11
2.5 HVAC data . 12
2.6 Future indoor data . 12

3 Optimization of climate in buildings 13
3.1 Climate profile . 13
3.2 Economic energy model . 14
3.3 Optimization . 15

4 Artifical Neural Networks 16
4.1 Configurations and ANN types . 16

4.1.1 Multi layer feed-forward neural netwoks 17
4.1.2 Recurrent neural networks . 18
4.1.3 Sequence to sequence neural networks 19
4.1.4 Deep neural networks . 19

4.2 Mathematical definition . 19
4.2.1 Activation functions . 20
4.2.2 Feed-forward technique . 21
4.2.3 ANN model . 21

5 Data 22
5.1 Data description . 22
5.2 Parameter selection . 23
5.3 Data processing . 23
5.4 Data visualization . 24

6 Case study 25
6.1 Case description . 25
6.2 Configurations . 25

6.2.1 Type . 25
6.2.2 Layers . 26

III

6.2.3 Nodes . 26
6.2.4 Activation function . 27
6.2.5 Loss function . 27
6.2.6 Optimization algorithm . 28
6.2.7 Epochs and patience . 28

6.3 Simulations . 29
6.4 Results . 30

6.4.1 MLFNN . 30
6.4.2 RNN . 35
6.4.3 Discussion . 36

7 Future work 39
7.1 Number of nodes . 39
7.2 Overfitting . 40

7.2.1 More data . 40
7.2.2 Dropout . 40
7.2.3 Pruning . 40
7.2.4 Ensembling . 41
7.2.5 Weight constraints . 41

8 Acknowledgments 41

References 42

IV

1 Introduction

1.1 Background

The building construction sector is responsible for the largest energy consumption in
the world (35%) and is an important source of carbon dioxide (CO2) emissions (nearly
40%) [9]. The clear upward trend in energy demand is expected to continue in the
future since phenomena like population growth, increasing demand for building ser-
vices and comfort levels, together with the rise in time spent inside buildings, are from
vital importance for humanity and must not be neglected. Buildings’ final energy con-
sumption grows steadily as a result of increasing floor area growth, outpacing energy
intensity reduction [11]. Therefore, it is of fundamental significance to control the ex-
isting Heating Ventilation and Air Conditioning (HVAC) systems efficiently, since they
are the primary energy consumption factor (50% of building consumption) and in most
cases, these are poorly handled [47]. As an important part of residential structures,
medium to large industrial and office buildings, their two main requirements are to
provide safe and healthy building conditions, which are regulated with respect to tem-
perature and humidity, using fresh air from outdoors, and to minimize overall energy
consumption [41]. The digitalization and the ability to capture and analyze large data
sets are enabling these tasks. Smart buildings improve efficiency, sustainability, and
comfort, leveraging IoT technology, sensors, and wireless connectivity, which provide
the required energy use data. While increasing the efficiency of the heating system,
they also deliver cost savings - goals of property owners, managers, and tenants. Reduc-
ing building energy costs has become an urgent task due to increasing environmental
concerns and energy prices.

1.2 Related Work

In recent years, predictive control techniques for HVAC systems have been paid increas-
ing attention. Researchers have shown that they can significantly reduce the energy
costs associated with HVAC systems, i.e., up to 65% of energy when compared with
the current strategy used in the building [2, 15, 26, 35, 40, 55]. The knowledge of
future energy consumption can bring significant value to building energy management.
Predictive control allows one to take advantage of weather forecast and occupancy pre-
diction to reduce energy costs and improve thermal comfort. Moreover, the prediction
of temporal energy consumption enables building managers to plan out the energy us-
age over time, shift energy usage to off-peak periods, exploit the potential in thermal
storage, and make more effective energy purchase plans [35].

1.2.1 Thermodynamic models

To keep occupants comfortable, HVAC systems in buildings aim to manage the indoor
climate by controlling the temperature and airflow. Hence, it is necessary to have
adaptable control systems that could deal with the required parameters regarding the

1

indoor climatic conditions. There are for this purpose computer models that could
simulate indoor climatic processes and control their parameters [39]. Predicting the
dynamic air conditioning load in a building accurately is a key for HVAC system design,
as well as for adjusting the starting time of cooling to meet start up loads, minimizing
the electric on peak demand, optimizing the costs and energy use in cool storage
systems [45, 65]. The cooling load in the building is affected by many parameters,
which can be grouped into two main categories: the optical and thermal properties of
the building and the meteorological data. Because of the complexity of these affecting
parameters, it is challenging to consider all of them precisely in the whole building
cooling load prediction process. This makes the prediction of the building cooling load
and especially its hourly forecast, become a challenging task [36].

The most crucial step of implementing an effective HVAC system control strategy is
to create a thermodynamic model, able to predict changes in the building temperature
accurately. For control purpose, the model should have a simple structure and be
suitable for a wide operational range. However, Huang et al. [25] state that obtaining
building models is challenging, as buildings’ thermodynamics are non-linear, contain
uncertainties, have long time delays and coupled control processes that cannot be
treated independently. The success of the modeling process depends on the ability to
deal with changing conditions and respond effectively in order to maintain the necessary
conditions for the comfort of the occupants, while taking into account the cost [39].

Modeling is typically an iterative process that involves model formulation, parameter
estimation, and model validation. Heat dynamic models are usually composed of sub
models for the mechanisms behind heat transfer [63]. The most general of these are:

• Conduction: Heat transfer through a medium

• Convection: Heat transfer between two different media

• Ventilation: Heat transfer due to mass transfer, e.g. heated air through an
open window

• Radiation: Heat transfer between objects that are in optical contact, e.g. solar
radiation

By controlling the electrical space heating in buildings intelligently, power consump-
tion can usually be increased or postponed within the hourly timescale. However,
commercial load estimation programs are generally time consuming, especially when it
comes to identifying the proper thermophysical properties of the construction materi-
als. [28] The problem of identifying a suitable model is both finding a model that is in
agreement with the physical reality and finding a model, which has a complexity that
is in agreement with the level of information embedded in data, which means that the
model should neither be underfitted nor overfitted [4].

Thermal load is mainly associated with external weather variables and internal gains.
The weather variables include solar irradiation, ambient temperature, relative humid-
ity, wind speed, etc. The internal gains are associated with people’s behavior and

2

equipment usage inside of buildings and include human occupancy, light schedule,
plug load schedule, and infiltration. The literature on building thermal load prediction
methodologies can be broadly arranged in three categories: regression analysis, energy
simulation, and intelligent computer systems [46].

1.2.2 Optimization

Forecasting of the indoor temperature is necessary for the regulation of energy devices
to ensure occupant comfort, as well as for energy optimization [23]. This forecasting
constitutes a complex task because it is governed by complex physical and behavioral
phenomena. It is affected by a multitude of parameters, which could be classified into
three groups: outdoor conditions, building characteristics, and occupants’ behavior
[20, 44].

To achieve flexibility, different methods are proposed. One approach pursued by
Thavlov and Bindner [63] is to use the heat capacity of the thermal mass in buildings
to temporarily store excess power production by increasing the electrical heating. The
electrical heating is postponed in periods with a lack of production. The researchers
presented a model for the prediction of indoor temperature and power consumption
from electrical space heating in an office building. The heat dynamic model was build
using a grey box approach, i.e., by formulating the model using physical knowledge
about heat flow, while the parameters in the model are estimated using collected
data and statistics. The physical parameters in the model, e.g., heat capacities and
resistances to transfer heat, have been estimated for an actual office building using a
maximum likelihood technique. The model has successfully been used in applications
for providing power system services in the small distributed power system, SYSLAB.

Indoor temperature forecasting could be carried out using physical or data-driven
approaches [50] since it does not have uniform distribution [57]. The physical approach
is based on the use of numerical modeling [13], which requires detailed information
about a building’s characteristics, appliances, and occupant behavior. The data-driven
approach is based on the use of collected data for developing relationships (models)
between input and output parameters. These relationships could be established by
learning from collected data [1]. For the estimation of the flow of energy and the
performance of energy systems in buildings, analytic computer codes are often used.
The algorithms employed are usually complicated, involving the solution of complex
differential equations. These programs typically require large computer power and
need a considerable amount of time to give accurate predictions. Therefore, data from
building energy systems, being inherently noisy, can be handled using an artificial
intelligence approach, i.e., artificial neural networks (ANNs) [63].

1.2.3 Artificial Neural Networks

Many studies have been published on the incorporation of artificial intelligence into the
design and operation of HVAC control systems. The techniques employed include fuzzy
logic, expert systems, and ANNs. The ANN approach was used to build data-driven

3

models [14, 24] and predict a number of quality characteristics of buildings, such as
internal illuminance, thermal comfort conditions, air quality, and energy consumption,
based on different environmental conditions, along with a number of design-relevant
building attributes – such as window size and room layout [32, 43, 61]. To predict the
behavior of building energy systems, it is required to consider non-linear multivariate
inter-relationships. The performance of a building energy system depends on the envi-
ronmental conditions such as solar radiation and wind speed, the direction, strength,
and duration of which are highly variable.

Kalogirou et al. [27, 28] implemented ANN at an early design stage to predict
the required heating load of buildings. Input data included the areas and types of
windows, walls and floors, roof classification, and room temperature. Lu and Viljanen
[38] used the ANN approach to predict air temperature and relative humidity in a test
house using indoor and outdoor temperature and humidity. Soleimani-Mohsenishown
et al. [59] showed that the operative temperature can be estimated fairly well by using
variables, such as the indoor and outdoor temperature, the electrical power use in the
room, the wall temperatures, the ventilation flow rates and the time of day. Ekici
and Aksoy [3] used a backpropagation three-layered ANN for the prediction of the
heating energy requirements of different building samples, benefitting from orientation,
insulation thickness, and transparency ratio. Using heating loads calculated with a
finite difference approach as ground truth, they reported accuracies of 94.8% to 98.5%.
Nassif [42] proposed a model-based optimization process for HVAC systems, capturing
very well the system performance and reducing cooling energy consumption by about
11% when compared to the traditional operating strategies applied.

Gonzalez and Zamarreno [17] showed an ANN approach to predict the hourly energy
consumption in buildings. The inputs of the network were current and forecasted
values of temperature, the current load, the hour, and the day. Saboksayr et al. [53]
designed a neural network based decentralized controller to improve the operation of
a multizone space heating (MZSH) system. Morel et al. [40] developed a predictive
heating controller-algorithm, using ANNs to allow the adaptation of the control model
to real conditions and accommodate the non-linearities of buildings.

Egilegor et al. [12] presented a neuro-fuzzy control system. By tuning zone temper-
ature according to the humidity level, they optimized the value of the thermal comfort
index PMV (predicted mean vote), which was used as a comfort variable. Ben-Nakhi
and Mahmoud [5] demonstrated an HVAC setback scheduling optimization, focusing
on energy conservation in air conditioning of public buildings, which are used for only
part of every workday. Allowing the temperature to rise inside the building when it
is not in use, leads to energy savings, and is known as off-hours thermostat setback.
This is achieved by setting back the thermostat temperature after work hours, then
resetting it early enough before the start of the workday, such that the desired tem-
perature in the building is restored in time for actual work start. Additionally, there
are other examples of ANN design, including PMV-based thermal comfort controller
for zone thermal environment control [37], as well as optimization of air conditioning
setback scheduling using the outdoor temperature [5]. Garnier et al. [15] also proposed
a strategy based on predictive control and managed thermal comfort in non-residential

4

buildings equipped with HVAC sub-systems without online optimization, saving up
to 65% of energy when compared with the current strategy used in the real build-
ing. They modeled the non-linear behavior of the PMV index from solar radiation,
outdoor temperature, and internal gains and considered the PMV index as a control
set-point. Hence, thermal comfort could be maintained in a desired interval which can
be adjusted by people working in the given building.

In addition to these specific cases, Attoue et al. [1] developed a simplified model
for indoor temperature forecasting, based on the selection of input parameters, an-
alyzing a large set of combinations, including solar radiation outdoor temperature
history, outdoor humidity, indoor facade temperature, and humidity. They proposed a
methodology, which could be followed for the use of the ANN approach for the indoor
temperature forecasting in any type of building.

Karatasou et al. [31] discussed how ANNs, applied to predict energy consumption in
buildings, can advantageously be improved, guided by statistical procedures, such as
hypothesis testing, information criteria, and cross validation. Their approach consists
of identifying all potential relevant input, selecting hidden units for this preliminary
set of inputs, through an additive phase, and removing irrelevant inputs and useless
hidden units through a subtractive phase. Li et al. [34] compared different network
architectures and Jovanovic et al. analyzed the possible application of various network
topologies on the same case study. The prediction results achieved with feedforward,
radial basis, and adaptive neuro-fuzzy inference system were compared and then com-
bined into an ensemble. The ensemble of ANNs is a very successful technique where
the outputs of a set of separately trained neural networks are combined to form one
unified prediction [68]. The authors created an ensemble of ANNs for the prediction
of heating energy consumption.

1.3 Outline

The thesis is divided into eight sections. After this introduction, Section 2 describes
a general thermodynamic model. Later in Section 3 the optimization approach is
introduced to the reader. In Section 4 the structure and the problem-solving approach
of ANNs are depicted. Section 5 introduces to the reader the real-world data on which
the ANN approach was tested. In Section 6 our case study is presented. The next
section states our recommendations and proposes future work to be carried out. In the
final section, we make our acknowledgments.

2 Modeling thermal load in buildings

The first goal of our study is to identify a proper model, which serves as a basis for
the structure of the prediction process. A thermal model usually describes the process
of displacement and heat propagation between the temperature of the room and the
adjacent room in a building [56]. In order to obtain accurate data with minimal error,
we need to analyze the thermodynamic behavior of multi-zoned buildings.

5

Liang and Du [37] describe the design of a thermal comfort controller for indoor ther-
mal environment regulation and develop a thermal space model. They use computer
simulation to show that the controller can maintain the indoor comfort level within
the desired range under both heating/cooling modes. The HVAC and thermal space
model is shown in Figure 1 and the nomenclature of the used control parameters can
be found in Table 1.

Figure 1: HVAC and thermal space model. Copied from [37].

Then, the following assumptions are made:

1. The wall temperature Tw is equal to the mean radiant temperature Tmrt.
Tw = Tmrt

2. The indoor air velocity Vair is proportional to the supply air flow rate fmix

Vair = k · fmix

3. The humidity mass ratio Wa is proportional to the vapor pressure Kwv

Wa = l ·Kwv

4. The heat transfer coefficients h are the sum of a natural convective heat transfer
coefficient hc and a forced convective hvV

2
3

h = hc + hvV
2
3

5. Time delay is negligible.

Considering both the sensible and latent heat exchange, the mathematical model is
derived from the energy conservation and mass balance in different system components:

In the airflow mixer, the return air and the fresh air are mixed perfectly:

Tmix =
1

r
To +

r − 1

r
Ta (1)

6

where To is the outdoor ambient temperature and Ta is the temperature in the thermal
space, and r is the system-to-fresh-air volumetric flow-rate ratio.

Wmix =
1

r
Wo +

r − 1

r
Wa (2)

where Wmix is the humidity mass ratio of mixed air, Wo is the outdoor humidity mass
ratio, Wa is the humidity mass ratio in thermal space.

pmix =
1

r
po +

r − 1

r
pa (3)

where pmix is the vapor pressure of water in mixed air, po is the outdoor vapor pressure
of water, and pa is the vapor pressure of water in the thermal space.

Supply air heat exchanger:

ρCpVheṪs = fmixρCp(Tmix−Ts)+fmixρHfgKwv(pmix−ps)+Qhe+ lh′he min
[
p(The)−ps, 0

]
(4)

where ρ is the air density, Cp is the constant pressure specific heat of air, Vhe is the
effective heat exchanger volume, Ts is the supply air from the heat exchanger, fmix is
the mixed air volumetric flow rate, Ts is the supply air from the heat exchanger, Hfg is
the enthalpy of water vapor, ps is the vapor pressure near heat exchanger, Qhe is the
thermal power from the heat exchanger, l is the Lewis relation, derived as l =

HfgKwv

Cp
,

h′he is heat transfer coefficient on the surface of heat exchanger, which is derived as

h′he = hheV
′ 2
3

airAhe.

Kwvṗs =
lh′he
HfgVhe

min
[
p(The)− ps, 0

]
+Kwv

fmix

Vhe
(pmix − ps) (5)

h′he = hheV
′ 2
3

airAhe (6)

Qhe = hheV
′ 2
3

airAhe(The − Ts) (7)

Che
˙The = −hheV ′

2
3

airAhe(The − Ts)− lh′he min
[
p(The)− ps, 0

]
+Qin (8)

Governing equations:

Ẇa =
fmix

Va
(Ws −Wa) (9)

ṗa =
fmix

Va
(ps − pa) (10)

ρCpVaṪa = fmixρCp(Ts − Ta) + ρfmixHfgKwv(ps − pa) +Qload +Qw (11)

Qw = hwAw(Tw − Ta) (12)

7

Equation describing the heat transfer process:

CwṪw = −hwAw(Tw − Ta)− hoAw(Tw − To) (13)

Based on the above equations, the state-space model for the HVAC and thermal
space can be derived as follows:

Ṫs =
fmix

Vhe
[(

1

r
To +

r − 1

r
Ta)− Ts] +

fmixHfgKwv

C|pVhe
[(

1

r
po +

r − 1

r
pa)− ps]

+
hheV

′ 2
3

airAhe

ρCpVhe
l(The − Ts) min

[
p(The)− ps, 0

]
Ṫa =

fmix

Va
(Ts − Ta) +

fmixHfgKwv

CpVa
(ps − pa) +

Qload + hc + hvV
′ 2
3

air

ρCpVa
[Aw(Tw − Ta)]

˙The =
−hheV ′

2
3

airAhe

Che

(The − Ts)−
lhheV

′ 2
3

airAhe

Che

min
[
p(The)− ps, 0

]
+
Qin

Che

Ṫw =
−(hc + hvV

2
3
air)Aw

Cw

(Tw − Ta)−
hoAw

Cw

(Tw − To)

ṗs =
lhheV

′ 2
3

airAhe

HfgVheKwv

min
[
p(The)− ps, 0

]
+
fmix

Vhe
[(

1

r
po +

r − 1

r
pa)− ps]

ṗa =
fmix

Va
(ps − pa)

Bacher and Madsen [4] suggest a procedure for the identification of suitable models
for the heat dynamics of a building. The models can be used for different purposes,
e.g., control of the indoor climate, forecasting of energy consumption, and for the
accurate description of the energy performance of the building. All of the above are
from significance for the following work. Based on prior physical knowledge, grey-box
and data-driven models can be applied. Furthermore, taking into account time series
of weather forecast data and measured indoor data, a suitable model with increased
complexity is formulated.

In order to obtain an accurate prognosis of the building heating load, a thermody-
namic zone model has to be designed concerning specific input and output variables.
The selection of the former is of great significance for the complexity of the predic-
tive model. Additional redundant input variables could unnecessarily increase the
obscurity during the development and execution of the model. However, the lack of
information for a building’s construction and materials could also restrict the amount
of the selected input variables. Hence, a reasonable number of inputs must be selected,
choosing the most relevant and giving up the uninformative ones to retain the accuracy
and efficiency of the model.

8

Taking into consideration these observations, the input variables introduced to the
model should be based on the control parameters, the weather forecast, the measured
indoor conditions, the building geometry and construction materials, the internal loads,
and the HVAC configurations.

2.1 Control data

There are three possible states of the HVAC system, i.e., heating, cooling, and venti-
lation. Every state is measured in continuous values (%). Both heating and cooling
are mutually exclusive. This is ensured by the climate profile, which will be explained
later in the next section.

The ratio of the HVAC states depends on the temperature of the water, which flows
from a heating source into a pump. Exactly the inlet temperature is the parameter we
have control on. Adjusting its value has a direct impact on the HVAC mode, conse-
quently on the measured indoor temperature and therefore, on the thermal comfort of
the occupants. To enhance the reader’s understanding of the connection between the
inlet temperature and the rate of the HVAC mode, we use the HVAC heating mode.
For example, the smallest possible value of the inlet temperature when in heating mode
is 20◦C, which corresponds to 0% heating. Respectively, when the largest value is 80◦C,
the corresponding ratio is 100% heating.

The control parameters, i.e., the inlet temperature, and the possible HVAC states
are shown in Table 1.

Variable Unit
Inlet temperature (Heating mode) ◦C
Inlet temperature (Cooling mode) ◦C
Inlet temperature (Ventilation mode) ◦C

Table 1: Input variables describing the control data

2.2 Future weather data and measured indoor data

The second and the third group of input variables, i.e., the future weather data and the
measured indoor data are represented in Table 2. Only the former must be forecasted
as the latter is directly related to the building’s construction and internal heating
control. Consequently, it can be easily derived from the given input. In some papers,
it is stated that since the model is indexed with respect to the ambient temperature,
there is no need to refine the model further to include the type of day or the season
of the year [66]. This could be investigated through reasonable examples and testings
of various combinations of input data. In further research, the influence of the use
of different sets of input parameters on the mean square error (MSE) and on the
coefficient of correlation (R) between the input and the output variables has been
examined [1]. The indoor temperature can be forecasted with good precision even if

9

only outdoor temperature and outdoor temperature history are taken into account.
Predictions of the facade temperature are also sufficient in their accuracy within the
time period of two hours. However, indoor activities are not included in the input
variables, i.e., meetings, use of energy-consuming devices, opening doors and windows.
If these activities affect the temperature in the building, they should be monitored and
included in the input data of the heating model.

Future weather data Measured indoor data
Variable Unit Variable Unit
Outdoor temperature ◦C Indoor zone temperature ◦C
Relative humidity % Relative humidity %
Global radiation W/m2

Wind speed m/s
Sky clearness index KT

Table 2: Input variables describing the future weather and the measured indoor data

2.3 Construction material data

The next group of input variables is the construction material data and can be seen in
Table 3. Some parameters such as window, wall and roof type are described through
U-values. In these cases, exact U-values were not used. Instead, class numbers n ∈
[1,4] corresponding to each type of construction have been assigned. This methodology
is applied for simplification of the calculations. The wall, window, and roof type are
additionally described in Table 4, Table 5 and Table 6 accordingly. The construction
material data can be held constant in our future computation since we only consider
one prototype zone. In a later phase, the same computation can be made for an entire
multi-zoned building with only a few modifications.

Variable Unit
Volume m3

Floor area m2

Wall area m2

Glazing area m2

Window Type -
Wall Type -
Roof Type -

Table 3: Input variables describing the construction material data

10

Class Description U-value (W/m2K)
1 Single glazing 6.4
2 Double glazing 3.2

Table 4: Window types under examination

Class Description U-value (W/m2K)
1 Single wall without insulation 2.0
2 Double wall without insulation 1.5
3 Double wall with 25mm polystyrene 0.83
4 Double wall with 50mm polystyrene 0.53

Table 5: Wall types under examination

Class Description U-value (W/m2K)
1 Non insulated roof 2.3
2 Roof with 25mm polystyrene 0.88
4 Roof with 50mm polystyrene 0.55

Table 6: Roof types under examination

2.4 Internal loads

The internal load of a building can be calculated correctly if all of the sources of internal
heat gains are taken into account. The main sources of internal loads are occupants,
lighting devices, and electrical equipment.

The determination of the heating/cooling load of a building depends on heat gains in
the building energy model [8]. The dynamic relationship between building occupancy
and energy consumption is of significant importance. Therefore, since we observe
office buildings, the working hours of the building should also be included in the input
parameters. On the other hand, the produced CO2 levels from the occupants are a
further factor, which should be taken into account as they have an impact on the
humidity of the zone.

Another aspect that should also be considered is the clothing of the occupants,
which influences the perception of the temperature in the building and it depends on
the season of the year. For example, in winter, people are wearing more insulating
clothing than in summer and consequently, the indoor temperature would be felt as
higher in the winter although it is held constant, no matter the season. An additional
detail is the metabolic rate - the total energy produced by the occupants. Feasibly, it
is assumed that the higher the activity level is, the higher the metabolic rate and thus,
the produced heat inside the building.

Lighting devices are also a source of convectional and radiant heat gains in the
building. There are some possible ways to decrease the cooling load of the building by
changing the lighting type, e.g., the LED lighting has the potential to provide energy
savings.

11

Sample input variables are presented in Table 7.

Variable Unit
Heat input W
Thermal power from the wall W
Thermal power from the heat exchanger W
Indoor wall temperature ◦C
Occupancy people
Clothing insulation m2K/W
CO2 level %
Working hours h
Metabolic rate W/m2

Lightning W/m2

Table 7: Input variables describing the internal gains

2.5 HVAC data

Finally, the parameters of the HVAC equipment are also fed into the model, as they
represent a fundamental part of the calculation process. They are considered in the
thermodynamic zone model as well and are those mentioned in the equations describing
the thermal comfort model at the beginning of this section. The variables describing
the HVAC characteristics are listed in Table 8.

Variable Unit
Air velocity m/s
Air flow rate m3/h
Water mass flow kg/s
Partial water vapor pressure Pa
Mixed air volumetric flow rate m3

Vapor pressure Pa
Radiator dimensions m
Floor heating W
Humidity mass ratio %

Table 8: Input variables describing the HVAC data under examination

2.6 Future indoor data

Output variables are the thermal loads, which will be forecasted from the model for
the next hours or day, i.e., depending on the desired prediction. This future indoor
data can be used for further analysis considering the goal of the optimization task,
e.g., thermal comfort and cost minimization.

12

All of the represented input and output data and the concept of the thermodynamic
model are shown in Figure 2. However, not all models make use of all of the input
variables, since an accurate calculation can be made using only a subset of the initial
set.

Thermodynamic
Zone Model

Future
control data

Future
weather data

Measured
indoor data

Construction
material data

Internal loads

HVAC data

Future
indoor data

•

•

•

•

•

•

•

Figure 2: Construction of the thermodynamic zone model - the input consists of fu-
ture control data, future weather data, measured indoor data, construction
material data, internal loads, and HVAC data. The expected output is the
future indoor data which is needed for the optimization task.

3 Optimization of climate in buildings

Since one time feeding the thermodynamic model with the input variables from the
categories, described in the previous section, is not sufficient to compute the minimum
costs of the HVAC system to maintain the temperature in the desired boundaries,
we upgrade the computational process with an optimizer. The optimizer performs
this task several times in order to estimate the optimal settings of the HVAC system
and consequently, the required control parameters, which define the indoor climate.
The process of optimizing the control data consists of several computation rounds,
i.e., iterations, performed by a smart iterator. Initially, the described input data is
fed into the thermodynamic model and a first prediction for the future indoor data is
made. Then the future indoor data obtained from the thermodynamic zone model is
compared to a climate profile given as an input into the optimizer.

3.1 Climate profile

The climate profile sets an upper and a lower boundary for the indoor temperature.
The profile is updated every 15 minutes with a prediction for the next two days. The

13

indoor temperature must be preserved between these boundaries in order to meet the
required environment expectations. If the predicted temperature does not fit into the
boundaries, then the procedure of optimizing the control data is repeated until a proper
configuration is found. An example of climate profile can be seen in Figure 3.

0 5 10 15 20
15

20

25

30

35

Time series in hours

T
em

p
er
at
u
re

in
◦ C

Upper boundary
Actual temperature
Lower boundary

Figure 3: Climate profile example: the measured temperature in the room must not
fall below the lower boundary or exceed the upper boundary

The input variables regarding the climate profile are outlined in Table 9.

Variable Unit
Climate profile upper limit ◦C
Climate profile lower limit ◦C

Table 9: Input variables describing the climate profile

3.2 Economic energy model

If the predicted future indoor data lies in the climate profile boundaries and hence
the temperature is maintained in compliance with the climate profile, the optimizer
proceeds with the estimation of the energy costs and then obtains the minimum costs,
according to an economic energy model, shown in Figure 4. The economic energy model
takes a vector of future control data and computes the minimum energy costs, needed
to reach the values of the control parameters which determine the indoor temperature.
The minimum cost is estimated considering the future energy profile, which is known
in advance and is also fed into the model.

14

Economic
Energy Model

Future
energy profile

Future
control data

Costs•
•

•

Figure 4: Construction of the economic energy model which computes the minimum
energy costs according to the future indoor data and the future energy profile

3.3 Optimization

Lastly, when both the future indoor temperature and the minimum costs are estimated,
the smart iterator computes the future control data and gives it as an output. If both
previous conditions, i.e., the climate profile compliance and the minimality of the cots
are not preserved, then the future control data is once again fed into both the ther-
modynamic zone model and the economic energy model, closing the circle and making
another attempt to compute the optimal solution. Otherwise, if both conditions are
kept true, the future control data is outputted as a result of the optimization task.
The structure of the optimizer is shown in Figure 5.

Thermodynamic
Zone Model

Smart Iterator

Economic
Energy Model

Future
control data

Future
weather data

Measured
indoor data

Construction
material data

HVAC data

Internal loads

Future
climate profile

Future
energy profile

Future
indoor data

Future
control data

Optimal future
control data

Costs

•

•

•

•

•

•

•

•

•

•

•

•
•
•

• •

Figure 5: Construction of the optimizer including three substructures: a thermody-
namic zone model, an economic energy model and a smart iterator

15

However, this optimization process may turn out to be very slow as the number
of iterations can increase drastically in case of high energy prices and little difference
between both boundaries. Therefore, we need to develop this approach further in order
to accomplish our goals of minimizing the computation time of the future control data.

4 Artifical Neural Networks

Artificial neural networks (ANNs) are one of the main tools used in machine learn-
ing and have been applied successfully in various fields of mathematics, engineering,
medicine, neurology, psychology, economics, meteorology, etc. ANN models may be
used as an alternative method in engineering analysis and predictions [29]. Instead of
complex rules and mathematical routines, ANNs are able to learn the key information
patterns using multidimensional data. Based on these patterns, ANNs are capable of
predicting other combinations of unseen input. Moreover, ANNs are fault-tolerant,
robust, and noise immune [52].

ANNs are essentially inspired by the biological neural superstructure of the powerful
cognitive and sensory functions of the human brain, e.g., the eyes or the nerve endings
in the hand, and are intended to replicate the way that humans learn and react to the
external environment, for example, light, touch, or heat. They operate like a ’black box’
model, requiring no detailed information about the inner system. Instead, they ’learn’
the relationship between the input parameters and the variables by studying previously
recorded data. ANNs usually perform successfully where other classical methods of
analysis do not, e.g., non-linear problems such as pattern recognition. Among the
main advantages of using ANNs is their ability to handle large and complex systems
with many interrelated parameters, e.g., coupled control processes [30].

4.1 Configurations and ANN types

ANNs are composed of multiple nodes, which imitate biological neurons of the human
brain and are organized in different layers. The minimum architecture includes one
input layer with one neuron corresponding to each input parameter and one output
layer with one neuron for each output parameter. Every other layer in between is called
’hidden layer’ and is connected with the following by links associated with adaptable
synaptic weights through which the nodes interact with each other. Each neuron in the
network is able to receive input signals, to process them, and to send an output signal.
Every neuron is connected at least with one neuron, and each connection is evaluated
by a real number, called a weight coefficient, that reflects the degree of importance of
the given connection in the neural network [62]. The last hidden layer is connected
with the output layer. The basic structure of an ANN is represented in Fig. 6.

A key point in using ANN to describe nonlinear dynamics is to define the right
topology of the network. There are many types of ANN, but the basic principles are
very similar. The general rule states that the higher the number of hidden layers, the
greater the ability to represent highly nonlinear hypotheses. However, at the same

16

I1

I2

I3

In

...

H1

Hm

...

O1

Op

...

Input
layer

Hidden
layer

Output
layer

Figure 6: Structure of an ANN with n nodes in the input layer, m nodes in the hidden
layer and p nodes in the output layer

time, too many hidden layers can result in ’overtraining’ or ’overfitting’, i.e., lack of
generalization, and lead to large verification errors. In contrast, too few layers can
result in ’underfitting’, i.e., inability to adequately detect the signals in a complicated
data set and consequently, also leading to verification errors. The number of neurons
in the hidden layers is approximately the average of the inputs and outputs, but it also
depends on the number of training cases [64].

4.1.1 Multi layer feed-forward neural netwoks

Multi-layer feed-forward neural networks (MLFNN) are the most popular neural net-
works and are the foundation of most deep learning models. MLFNNs are mainly used
for supervised machine learning tasks where the target function is already known, i.e.,
the result to be achieved. This approach originates from the 50s and is applied to a
wide variety of chemistry-related problems, computer vision, natural language process-
ing (NLP), time series prediction, pattern recognition, financial prediction, autonomous
driving, etc. The primary goal of an MLFNN is to approximate some function f ∗, e.g.,
a regression function y = f(x). The function maps an input x to a value y. An MLFNN
defines a mapping y = f(x; θ) and learns the value of the parameters θ that result in
the best function approximation. The flow of information takes place in the forward
direction, as x is used to calculate some intermediate functions in the hidden layers,
which in turn are used to calculate y. If feedback from the last hidden layer to the
first hidden layer is added, it would represent a recurrent neural network.

17

4.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) contain cyclic connections that make them a more
powerful tool to model complex time-varying signals, e.g., speech, than MLFNNs.
RNNs have demonstrated great success in sequence labeling and prediction tasks such
as handwriting recognition and language modeling [54]. Unlike MLFNNs, RNNs can
use their internal state, i.e., memory, to process sequences of inputs. There are many
variations, e.g., passing the state to input nodes and variable delay. This type of NNs
is mainly used when context is important, e.g., decisions from past or future iterations
can influence current ones. For example in texts - a word can be analyzed only in
context of previous words or sentences. The information persists using loops, which
pass it from one step of the network to the next and so the network ’remembers’ its
importance in the following states. However, a problem occurs when the gap between
the relevant information and the point where it is needed has become very large. The
network ’forgets’ slowly the information received and analyzed at far earlier stages and
so the computation of the final result is not accurate and precise enough. This problem
is also known as the vanishing gradient problem [22].

The solution is found using long short term memory networks (LSTMNs), which are
type of RNNs with the ability to learn long-term dependencies. Every state of the NN
is called a cell. In every cell the information forwarded to the next one is processed and
transformed into a vector, persisting only parts of the input, e.g., filtering the most
valuable information. This process is carefully regulated by structures called gates.
They optionally let information through imitating a biological cell membrane’s selec-
tive permeability. Gates are representing neural network layers, which use activation
functions, e.g., sigmoid and tanh. The activation functions filter, update with the
new input knowledge, and cut only the relevant parts to be outputted. This eliminates
the vanishing gradient problem since the model is not forgetting the new input every
single time but instead is keeping it and passing it down to the next time steps of the
network. Thus, the potential long-distance dependencies are captured [7].

The gated recurrent unit (GRU) is a new approach recently proposed on sequence
modeling [7]. Instead of using three gates, i.e., forget, input, and output gate, as de-
scribed in the LSTMN’s method, GRU uses only two - reset and update gates. This
means that the model neither does include separate memory cells nor has any mech-
anism to control the degree to which its state is exposed, but exposes its full content
each time. Another difference between both models is in the location of the input gate
in the LSTMN and the location of the reset gate in the GRU. The LSTM unit has con-
trol over the amount of new memory content added to the memory cell independently
from the forget gate. The GRU, on the other hand, controls the information flow from
the previous activation when computing the new candidate activation, but does not
independently control the amount of the candidate activation being added. Based on
these comparisons, both structures show their advantages for different computation
tasks. Chung et al. [7] cannot conclude which of the either is better, so they plan their
future work conducting more thorough experiments.

18

4.1.3 Sequence to sequence neural networks

Another issue when working with sequences is their variable length, e.g., in speech
recognition and machine translation problems. Using a multilayered RNN to map the
input sequence to a vector of fixed dimensionality, and then another RNN to decode
the target sequence from the vector eliminates the significant limitation of express-
ing sequences whose lengths are not known a-priori. This model is called sequence
to sequence (Seq2Seq) and aims to map sequences of different lengths to each other.
The model contains three submodels, i.e., encoder, encoder vector, and decoder. The
encoder is formed as a stack of several recurrent units (LSTM or GRU cells). Each
one accepts a single element of the input sequence. Then the recurrent unit collects
information for that element and propagates it forward. The final hidden state pro-
duced from the encoder part of the model is the encoder vector. It plays the role of an
initial hidden state of the decoder which is also formed as a stack of several recurrent
units. Each one accepts a hidden state from the previous unit and produces an output
as well as its hidden state at every time step.

4.1.4 Deep neural networks

Another type of NNs is deep neural networks (DNNs). DNNs have greater capabilities
for image pattern recognition and are widely used in computer vision algorithms where
the basis of most is to classify an image into known labels. A convolutional neural
network (CNN) is a class of DNN that is most commonly applied to analyzing visual
imagery and for text classification in NLP. ANN takes a very long time to be trained
in case of processing images with fully connected hidden layers. Due to that fact,
CNN was used first to reduce the size of images using convolutional and pooling layers
and then feed the reduced data to fully connected layers. The convolutional and the
pooling layer are used as a filter in order to downsize the input matrix by only selecting
the highest value pixel present in the filter. This reduces the amount of computation
required for training significantly [10].

4.2 Mathematical definition

The key benefit of ANNs is the fact that they are able to use some a-priori unknown
information hidden in data. However, they do not have the ability to extract it. The
process of ’capturing’ the unknown information is called ’learning’ or ’training’ [62].
There exist two main types of training processes - supervised and unsupervised. When
the desired output is not known, the system is provided with a group of facts, i.e.,
patterns, and let to settle down itself to a stable state in some number of iterations.
This type of training is called unsupervised. Alternatively, in the supervised training,
the ANN knows the desired output and adjusts the weight coefficients so that the
calculated and desired outputs are as close as possible.

19

4.2.1 Activation functions

For training the network a training data is used, i.e., a group of matched input and
output patterns. The outputs are the dependent variables that the network produces
for the corresponding input. Starting from an initially randomized weighted network,
the nodes on the input layer take data and perform simple operations on it, e.g., sum-
mation and activation functions. Among the most commonly used activation functions
is the sigmoid function [6, 25, 64], having the following form:

sigmoid(x) =
1

1 + e−x
(14)

and range [0,1]. The advantage of the sigmoid function is that it is a differentiable
function. Differentiation is a necessary part of the learning process when applying
the most widely used training algorithm - backpropagation [64]. It uses a gradient
descent technique to minimize the cost function. The details of the backpropagation
algorithm are rather complex but do not contribute significantly to the understanding
of this work. Therefore, for details, readers can refer to [19]. The sigmoid function
is monotonic, but it’s derivative is not, which might give rise to a vanishing gradient
problem. Consequently, it can result in the network refusing to learn further, causing
the NN to get stuck at the training time or being too slow to reach an accurate
prediction.

Another possibility is to use a hyperbolic tangent function which is also sigmoidal:

tanh(x) = 2 sigmoid(2x)− 1 (15)

The range of the function is [-1,1]. The advantage is that the negative inputs are
mapped strongly negative and the zero inputs near zero in the tanh graph. This func-
tion is also differentiable and monotonic, but then again its derivative is not monotonic.
Both logistic sigmoid activation and tanh functions are used in MLFNNs.

The most used in the world right now is the ReLU (Rectified Linear Unit) activation
function:

R(x) = max(0, x) (16)

It’s range is [0, ∞). The function and its derivative are monotonic. The constant
gradient of ReLU results in faster learning, controversial to the gradient of sigmoids
which are shrinking as the absolute value of x increases. Due to its simplicity and
effectiveness, ReLU has become the default activation function used across the deep
learning community [49]. The main disadvantage of this function is that all negative
values are mapped to zero, also known as the Dying ReLU problem. For activations
in that region of ReLu, the gradient is 0 because of which the weights do not get
adjusted. Consequently, those neurons which go into that state stop responding to
variations in error and make a substantial part of the network passive. The solution
here is to draw a slightly inclined line rather than a horizontal line for inputs less than
0. This variation of the ReLU is the Leaky ReLU activation function:

20

LR(x) =

{
x if x > 0,

0.01x otherwise
(17)

4.2.2 Feed-forward technique

When the result of the function is computed, it is passed to the neurons on the next
layer, then multiplied with the weight values of the next layer and summed up. The
data is propagated through the network to provide an estimate of the output value.
Equation 15 describes a minimum architecture, e.g., ANN including only the input
and output layer with no hidden layers:

Yj = f(
n∑

i=1

WijXi) for j ∈ [1,m] (18)

where Xi stands for the input variables and Yj denotes the output values. Wij identifies
the weights between the input layer and the output layer.
Analogously, Equation 16 describes a two-layered ANN:

Yk = f(
m∑
j=1

Wjk × f(
n∑

i=1

WijXi)) for k ∈ [1, p] (19)

The output is then compared to the training pattern, i.e., the correct or desired
output, i.e., the label. The ANN performances could be evaluated using the mean
square error (MSE) based on the difference between the input Xi and the output Yi:

MSE =
n∑

i=1

(
(Yi −Xi)

2

N
) (20)

If there is a difference, the connection weights are altered in order to decrease the
error. If all the input patterns are already run through and the error is still greater than
the maximum desired tolerance, the procedure is repeated until the required tolerance
is reached. After the termination of the training phase, the weights are held constant.
Consequently, the ANN ignores superfluous data that is of minimal significance and
concentrate instead on the more important and relevant inputs. Hence, knowledge is
usually stored as a set in the synaptic weights [30]. Further, the trained network is
capable of making decisions, identifying patterns, or defining associations in new input
data sets not used to train it.

4.2.3 ANN model

Leveraging the benefits of ANNs, we once again upgrade our solution aiming to ac-
celerate the optimization process. Applying this powerful tool leads our research to a
new level of computation speed. Our final model can be seen in Fig. 7.

21

Neural Network
(MLFNN,

RNN, Seq2Seq)

Future
weather data

Measured
indoor data

Construction
material data

Internal loads

HVAC data

Future
climate profile

Future
energy profile

Optimal future
control data

•

•

•

•

•

•

•

•

Figure 7: Construction of the model including an ANN with inputs: future weather
data, measured indoor data, future climate profile, future energy profile, and
output - optimal future control data; the construction material data, the
internal loads, and the HVAC data can be held constant as they stay the
same when observing only one thermal zone, otherwise when a multi-zone
building is a part of the optimization process, these data sets are treated as
input variables

5 Data

To verify the effectiveness of the ANN models, simulations were conducted on real-
world data. The dataset used in this research is provided by the facility management
company MeteoViva. MeteoViva controls the indoor climate in buildings in a most
efficient and cost-effective manner. Their solution results in reduced costs, a stable
indoor climate, and lower CO2 emissions.

5.1 Data description

The HVAC system of the building chosen for the research purposes has only a heating
mode. In such a way the complexity of the task is decreased, as we examine the
compatibility of this particular type of optimization task with the neural network
approach. The data describes the weather conditions and the behavior of the HVAC
system of one thermal zone. This method can later easily be applied to a multiple
thermal zone building. Hence, we also propose this technique for more sophisticated
cases. However, our example is a real-world task given by a client of MeteoViva. The
data is collected in the last four years (2016-2019), 24 hours a day, seven days a week
in time series of 15 minutes.

22

5.2 Parameter selection

Parameter selection is performed to eliminate parameters of less importance to the
model of the neural network to increase comprehensibility, simplicity, and the accuracy
of the resulting model. Table 10 includes seven parameters that were selected as the
candidates for building the models to be discussed later in the paper.

Variable Unit
Future weather data

Outdoor temperature ◦C
Global radiation W/m2

Wind speed m/s
Measured indoor data

Indoor zone temperature ◦C
Future climate profile

Climate profile upper limit ◦C
Climate profile lower limit ◦C

Future energy profile
Energy price cents/kWh

Table 10: Input variables of the NN

In our test case, the energy price was considered constant. Thus, we omitted this
variable later in the simulations. As mentioned above, the HVAC system of the re-
viewed building has only one mode, i.e., heating. Therefore, only the inlet temperature
is considered as an output value of the neural network instead of the combination of
both, i.e., inlet temperature and the mode to be maintained, i.e., heating, ventilation
or cooling (see Table 1). The output is depicted in Table 11.

Variable Unit
Future control data

Inlet temperature ◦C

Table 11: Output variables of the NN

5.3 Data processing

Real-world data sets can be messy, incomplete, and in a variety of formats. MeteoViva
has provided our study with a significantly big data set which serves its purpose, i.e.,
to train and test our neural network on it. For every month of the year, there is a
separate csv file, containing more variables than needed for the conduction of this
survey. Additionally, the used separator between the values was ’;’, which makes it
difficult to work with the data set.

In order to prepare the data for our case study, we set the delimiter of the values
to ’,’, so we could have a better overview of the data. The data is cleaned out of

23

cells containing NaN values which causes errors when computations are carried out.
Moreover, only the relevant columns of parameters are extracted. Then the csv files
are concatenated into one file. Further, we normalize the data, changing its values to
a common scale, without distorting differences in their ranges. This step is of great
importance since it is required in case the dataset features vary significantly, e.g., in
our case the value of global radiation fluctuates in the range [0, 1000] and wind speed
is less than 18. Thus, we prevent oscillation of the ANN, making training less sensitive
to the scale of features, preserving consistency for comparing results across models,
and improving the convergence rate of gradient descent. These tasks were performed
using Python (version 3.7.3) and Jupyter Notebook (version 6.0.0).

5.4 Data visualization

We also visualize the data which will help us to gain insight into it. For the visualization
of the main features we have chosen the time period 8-10 May 2019 (see Figure 8). In
May the outdoor temperatures climb every day to a certain peak and then go down
in the night hours of the day. This observation gives us the opportunity to point out
the relations between the features. It is clear to see that the lower limit of the climate
profile fluctuates between 18◦C and 22◦C and the upper limit is held constant at 34◦C.
The measured temperature in the thermal zone is maintained between the limits of
the climate profile and whenever it draws near the lower one, the inlet temperature is
increased in order to preserve the indoor temperature acceptable, i.e., in the boundaries
required by the customer. The outdoor temperature has an influence on the indoor
temperature as well. Its highest points correspond to the highest points of the indoor
temperature.

0

50 1
00

1
50

2
00

2
50

3
00

10

20

30

40

50

60

Time series of 15 min

T
em

p
er

at
u
re

[◦
C

]

Indoor zone temperature
Outdoor temperature

Inlet temperature
Climate profile lower limit
Climate profile upper limit

Figure 8: Data visualization for 8-10 May 2019; the relation between the indoor zone,
outdoor and inlet temperature as well as the lower and the upper limit

24

6 Case study

6.1 Case description

This case study investigates the most appropriate ANN type, structure and configura-
tions to be used in finding the optimal control parameters which serve as initialization
variables for the optimization task of the HVAC system. In the next sections our ap-
proach for the configurations testing, the simulations of different ANN architectures
and configurations, and the obtained results are going to be discussed in greater detail.

6.2 Configurations

ANNs have many internal parameters that control the structure of the network. In the
following are listed the main hyperparameters:

• Type of ANN

• Number of layers

• Number of nodes

• Activation function

• Loss function

• Optimization algorithm

• Number of epochs

• Patience

When configuring the network’s topology, we must specify the values of these pa-
rameters as they play an important role in training the model efficiently and effectively.
They have a significant influence on the learning process and on the output.

6.2.1 Type

Firstly, the ANN type must be determined. We chose the Multi-Layer Feed-forward
Neural Network (MLFNN) and the Recurrent Neural Network (RNN) for the conduc-
tion of this research. The reason behind the decision of choosing these types of ANNs
is that the MLFNN is the simplest and most straightforward ANN structure and as
such, provides a great base case for the study. However, all inputs are independent
of each other and the information about previous computations is not preserved for
future predictions. On the other side, the RNN takes a series of inputs with no prede-
termined limit on size. This feature enables the opportunity to investigate serialization
problems with unlimited length of sequences as an input. RNNs are considered more
complex and hard to train.

25

6.2.2 Layers

Secondly, we must choose the number of layers which is one of the most significant
hyperparameters that control the topology of the network. The most reliable way of
finding the optimal number for our specific predictive problem is through thorough
and systematic testing of different combinations. The universal approximation the-
orem states that a feedforward network with a linear output layer and at least one
hidden layer with any activation function can approximate any Borel measurable func-
tion from one finite-dimensional space to another with any desired non-zero amount of
error, provided that the network is given enough hidden units [18]. Further theoreti-
cal finding reveals that although a single hidden layer is optimal for some functions,
there are others for which a single-hidden-layer-solution is very inefficient compared to
solutions with more layers [58]. Therefore, we begin our testing with an MLFNN with
just two hidden layers but then extend the investigation two steps further by testing
architectures with three and four hidden layers.

6.2.3 Nodes

The number of nodes is another hyperparameter to be estimated through testing.
However, the number of nodes in the input and output layer is fixed. The number of
inputs corresponds with the number of nodes in the input layer of the ANN and the
number of outputs with the number of nodes in the output layer. Depending on the
different cases we examine, i.e., with and without index data for the time, we have
six or seven inputs and therefore, six or seven nodes in the input layer (see section
6.3 Simulations for more information about the three types of datasets). Since we
analyze a regression problem, i.e., the output is one predicted integer value and thus,
there is only one node on the last layer. In general, there is no analytical approach
to calculate the number of nodes to use. Given the fact that every specific real-world
problem has its unique nature, the predictive modeling problem must be addressed
with caution, systematic robust test harness, and controlled experiments. Therefore,
we choose to examine a different number of nodes and combinations of them per layer,
only following the dependency that every subsequent has equal or less nodes than the
previous, as it helps promote generalizability. There exist many thumb rules used
as a good starting point for different problems in the machine learning community.
Along the most commonly used is the following upper bound for the number of hidden
neurons given by:

Nh =
Ns

α.(Ni +No)
(21)

Nh:= number of hidden neurons
Ni:= number of input neurons
No:= number of output neurons
Ns:= number of samples in training data set
α:= an arbitrary scaling factor, usually α ∈ [2, 10].

26

The number of input neurons is six or seven (see section 6.3 Simulations for more
information about the three types of datasets), the number of output nodes is one
and the training dataset consists of 87732 samples (90% of all samples). Therefore,
following this thumb rule, we choose our starting point, using a different number of
nodes and combinations of them among the hidden layers. The possible configurations
of layers consist of the number of nodes in the set {50, 100, 150, 200, 300, 400, 600}.
Consequently, the minimum number of nodes we use is 50 and the maximum is 600.

6.2.4 Activation function

As already discussed in section 4.2.1, there are multiple options for activation function.
Thus, we test all of the described, excluding the ReLU activation function, since we
choose to use its variation, i.e., the Leaky ReLU, in order to avoid the Dying ReLU
problem.

6.2.5 Loss function

To evaluate a candidate solution, objective functions are used. In our research, we
seek to minimize the error. As such, the objective function is often called an error
or a loss function. The value calculated by the loss function is referred to as loss.
The loss function reduces all the various good and bad aspects of a possibly complex
system down to a single number, which allows candidate solutions to be ranked and
compared [58]. As already mentioned, we observe a regression problem. The final layer
of the neural network has one neuron and the value it returns is a continuous numerical
value. Consequently, to evaluate the accuracy of the prediction, it is compared with the
actual value, which is also a continuous number. We choose to use a linear function for
the output layer, as recommended in the machine learning community. The spectrum
of the most widely used regression loss functions consists of the Mean Squared Error
(MSE), the Mean Squared Logarithmic Error (MSLE), and the Mean Absolute Error
(MAE).

The MSE is calculated as the average of the squared differences between the predicted
and the actual values. The output is always positive, regardless of the sign of the
predicted and actual values. The perfect value is 0. The larger the error is, the larger
the result of the MSE is. The purpose of the squaring is that the model is evaluated
lowly for making larger mistakes. Models trained with the MSE converge reasonably
quickly and both train and test performance remain almost equivalent.

Another possibility is to use the MSLE, which has the effect of relaxing the punishing
effect, i.e., when we do not want to penalize the model for large differences between
the predicted and the exact values. MSLE is appropriate when the model is predicting
unscaled quantities directly.

The third option is the MAE. The benefit here is that it is more robust to outliers
since it does not make use of the square.

We chose first to scale the data and then to use the MSE, considering the fact that
large errors have much bigger consequences than equivalent smaller ones.

27

6.2.6 Optimization algorithm

As deep learning represents an iterative process and the amount of parameters to be
set is significantly large, the importance of the training speed is great as well. The
optimization algorithms minimize the loss function and update the learnable parame-
ters, i.e., the weights, with the direction of finding the optimal solution of the problem.
Some methods show better performance than others in terms of speed and accuracy
[51]. Among the most used in machine learning are the stochastic gradient descent
(SGD), Adagrad, and Adam optimizer.

SGD is often implemented with a method called momentum, which accelerates gra-
dients vectors in the right direction and dampens oscillations, thus leading to faster
converging, i.e., taking more steps towards the minimum [48]. When using SGD, we
can also tune the learning rate, which determines the size of the performed update, i.e.,
the steps we take to reach a (local) minimum. The learning rate controls how quickly
the model is adapted to the problem. If a value too small is chosen, it may result in
a long training process that could get stuck, given the smaller changes made to the
weights each update. Otherwise, a value too large may result in learning a sub-optimal
set of weights in fewer training epochs which makes the training process unstable.

Adagrad adapts the learning rate to the parameters, performing larger updates for
infrequent and smaller updates for frequent parameters. Its main weakness is the
accumulation of the squared gradients. The consequence is a fast-shrinking learning
rate, eventually becoming so infinitesimally small that at some point the model will
not learn again [51].

The adaptive moment estimation (Adam) computes adaptive learning rates for each
parameter and keeps an exponentially decaying average of past gradients. This makes
it the easiest to use since it tunes the learning rate itself. Adam is well suited for
problems that are large in terms of data or parameters, outperforms other adaptive
techniques and achieves the most precise results [33, 51].

Implementing SGD and Adam led us to the same conclusion, that Adam is much
faster than the alternative and gives better results, even when setting the momentum
and the learning rate to different values for the SGD optimizer. Thus, we further
consider the Adam optimizer as the best choice for optimization algorithm and proceed
with our research to refine the remaining configurations.

6.2.7 Epochs and patience

Another configuration of great importance is the number of training epochs. An epoch
is one forward and one backward pass of all the training examples through the ANN.
Too many epochs can lead to overfitting of the training dataset, i.e., the model showing
poor performance on the test set. Too few epochs may result in underfitting the model,
i.e., the training set error is significantly larger than the expected error of an ideal
model.

To prevent ’memorization’ of training examples, we apply the early stopping method
that is used to avoid overfitting when training an ANN model. It allows the specifi-

28

cation of a sufficiently large number of training epochs and stops training once the
model performance stops improving after a certain amount of epochs. This permitted
number of epochs is denoted as patience and is set in advance. We chose three differ-
ent values for the patience to test, i.e., 20, 25 and 30. The early stopping procedure
was repeated several times. The epoch number at which training was stopped was
recorded. Patience with a value of 20 resulted in models which stopped training before
reaching a reasonable accuracy, i.e., converging, and the models with patience values
set to 30 needed a great amount of time to be trained and moreover, did not show a
higher accuracy than the models trained with patience value set to 25. Consequently,
the patience values were set to 25 for all of the test cases.
Further, a much higher value than the average of the epoch number across all re-
peats of early stopping was used when fitting a final model. The maximum amount of
epochs the models could be trained was set to 1000, as this number was never reached.
However, it is reasonable to choose such a large value in order to prevent underfitting
the model, since it may need more time to be trained and still not show any signs of
overfitting.

6.3 Simulations

We implement every ANN structure on Python (version 3.7.3), using Keras (version
2.2.4) - Python deep learning library with TensorFlow (version 1.14.0) - open-source
machine learning library for research and production, and Theano (version 1.0.3) -
a Python library for defining, optimizing, and evaluating mathematical expressions,
as backend. Other libraries we make use of during this research are numpy (version
1.17.1), pandas (version 0.24.2), sklearn (version 0.21.2), and matplotlib (version 3.1.0).

We perform a number of experiments on 235 different networks and three datasets
in order to investigate the interrelations between the time of the year and the behavior
of the HVAC system:

• Dataset without time index

• Dataset with seasonal index, i.e. winter:= 1, spring:= 2, summer:= 3, autumn:=
4

• Dataset with month index, i.e. january:= 1, february:= 2, march:= 3, etc.

This is done because we cannot have strings in the input of the ANN, since we are
not able to carry out simulation calculations on strings.

Every dataset and every activation are also denoted by an index (see Table 12 and
Table 13). This notation is later used in the name of each produced model when
training every of the examined ANN architectures.

29

Dataset Index
No index 0
Seasonal index 1
Month index 2

Table 12: Dataset indices

Activation function Index
Leaky ReLU 0
Sigmoid 1
Tanh 2

Table 13: Activation function indices

We first conducted a very comprehensive research to find the most optimal hyper-
parameters for the MLFNN architecture. Afterwards, the RNN structure was also
implemented and taking into consideration the results of the MLFNN, we set the hy-
perparameters of the RNN. The training phase of an RNN is more time consuming
and complex, since it consists of substructures, i.e., the LSTMNs, and has more hy-
perparameters, e.g., sequential length, future period prediction, dropout layers, etc.

The results of both approaches are presented in the following section, as well as an
analysis of their performance.

6.4 Results

The following three subsections represent the results of the simulations on both ANNs
- MLFNN and RNN, and the analysis used to test the trained models. The purpose of
this study is to find an ANN structure that suits best the specific problem of finding
the optimal control parameters to be used as initialization for the optimization task.

6.4.1 MLFNN

To assess the MLFNN, we distinguish between different layer structures - three, four
and five-layered. Every version is tested on each of the three datasets - without time
index, with seasonal index, and with month index. Every simulation was carried out
with each of the activation functions - leaky ReLU, sigmoid, and tanh. Additionally,
the three, four and five-layered models vary in their node distribution in the layers.

The first set of analyses investigates the three-layered architecture of the MLFNN.
The data does not show any uphill or downhill pattern as we increase the number
of nodes in the network. From the scatter plot on Fig. 9 we can see that only in
the simulation with the sigmoid activation function, there is a slight decreasement in
the MSE as we add more nodes. However, the time index, together with the type of
activation function, seem to be the most significant factor which influences the MSE.
In each of the three plots, the MSE is reduced as we include the time index in the
input variables, and more precisely, when the index describes the season in which the
data was collected. From the three activation function possibilities sigmoid shows the
best results with an MSE on the dataset with seasonal index preserved in the range of
[0.287, 0.352].

The second MLFNN structure we investigate is the four-layered (see Fig. 10). If we
compare solely the results of the three and the four-layered MLFNNs, our statement
would like to suggest that the MSE declines with a difference of 0.065 for the best

30

MLFNN models of each category, i.e., showing the minimum MSE of all other alterna-
tives. These best MLFNN models among the three and four-layered architectures are
namely the ones trained on the dataset with the seasonal index with the sigmoid
function. Nevertheless, we still state that the improvement of the overall results is
mainly achieved by the activation function and the dataset used for the simulations
and not by the number of layers.

The last MLFNN structure to be tested is the five-layered. Here the model with the
best performance on the test data is again the one simulated on the dataset with the
seasonal index with the sigmoid activation function. Surprisingly, the achieved an
MSE is higher than the one reached from the best four-layered model. Concretely, this
model performed with an MSE value of 0.227, while the four-layered model achieved
0.222. Furthermore, the other two activation functions show improvement when in-
creasing the number of layers of the network. The best five-layered model trained with
tanh accomplishes an MSE of 0.257, while the four-layered only reaches 0.266. The
leaky ReLU simulations provide even greater difference in the results, 0.270 and 0.309
for the four and the five-layered models accordingly.

31

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Leaky ReLU with no index
Leaky ReLU with seasonal index
Leaky ReLU with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Sigmoid with no index
Sigmoid with seasonal index
Sigmoid with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Tanh with no index
Tanh with seasonal index
Tanh with month index

Figure 9: MLFNN with three layers and various node distributions in both hidden
layers, tested on the three datasets, respectively with different activation
function: leaky ReLU, sigmoid and tanh.

32

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Leaky ReLU with no index
Leaky ReLU with seasonal index
Leaky ReLU with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Sigmoid with no index
Sigmoid with seasonal index
Sigmoid with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Tanh with no index
Tanh with seasonal index
Tanh with month index

Figure 10: MLFNN with four layers and various node distributions in the layers, tested
on the three datasets, respectively with different activation function: leaky
ReLU, sigmoid and tanh.

33

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Leaky ReLU with no index
Leaky ReLU with seasonal index
Leaky ReLU with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Sigmoid with no index
Sigmoid with seasonal index
Sigmoid with month index

20
0

40
0

60
0

80
0

1,
00
0

1,
20
0

0.2

0.25

0.3

0.35

0.4

0.45

Total number of nodes

T
ra
in
in
g
M
S
E

Tanh with no index
Tanh with seasonal index
Tanh with month index

Figure 11: MLFNN with five layers and various node distributions in the layers, tested
on the three datasets, respectively with different activation function: leaky
ReLU, sigmoid and tanh.

34

6.4.2 RNN

An alternative solution to the prediction problem is using RNNs. As is well known,
RNNs are extremely time-consuming to train and if one epoch of training for the
MLFNN takes about 20 to 60 seconds, the time needed for one epoch of RNN to
train is from 20 to 60 minutes. One limitation of our research is that the surveys
were not conducted in the same period. Thus, we have succeeded in testing only 25
different structures of RNNs. We first chose to set the activation function to tanh, as
this was the default one when using the GPU version of TensorFlow to calculate the
predictions. However, we did not have access to GPUs and consequently, trained the
RNNs on CPUs, which was much slower than expected. To train all of the RNN models
with tanh as activation function, we needed two days. Further, we implemented RNNs
with leaky ReLU as activation function. These took more than three days. We tested
the RNN models with tanh using two different configurations regarding the sequence
length and the batch size of the network. Both tests predicted the next 24 time series,
and more precisely the next six hours, i.e., six values for the inlet temperature. The
first test was carried out with a sequence length of the data set to 288, i.e., representing
the previous three days, and batch size of 512. The second one was conducted with a
sequence length set to 96, i.e., representing the previous day, and a batch size of 288.
We observe from Fig. 12 that there is no clear trend set regarding neither the total
number of nodes nor the dataset used (with or without time index). However, the
RNN model with a sequence length of 96 and a batch size of 288 does show slightly
better results.

60
0

70
0

80
0

90
0

1,
00
0

1
,1
00

1,
20
0

1,
3
00

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Total number of nodes

T
ra
in
in
g
M
S
E

Tanh with no index
Tanh with seasonal index
Tanh with month index

60
0

70
0

80
0

90
0

1,
00
0

1
,1
00

1,
20
0

1,
3
00

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Total number of nodes

T
ra
in
in
g
M
S
E

Tanh with no index
Tanh with seasonal index
Tanh with month index

Figure 12: RNN with five layers and various node distributions in the layers, tested on
the three datasets, using tanh as activation function; on the left figure we
used sequence length of 288 and batch size of 512; on the right figure we
used sequence length of 96 and batch size of 288.

35

Table 14 compares the results of the better RNN model configuration with tanh
regarding the MSE during training and during testing. The training MSE is about
two times higher than the testing MSE. It is apparent that the best model is the one
with the configuration 400/400/300/200. However, the difference between both MSE
values remains quite large. Additionally, the testing MSE is not considered as a good
result, since values closer to zero are better.

Layer 1 Layer 2 Layer 3 Layer 4 Dataset Train MSE Test MSE
200 200 150 100 0 0.414100006 1.180930207
200 200 150 100 1 0.417502378 1.034280589
200 200 150 100 2 0.50042631 1.172782502
300 300 200 150 0 0.498871568 1.147611099
300 300 200 150 1 0.401906525 1.165682642
300 300 200 150 2 0.417380867 1.032484549
400 400 300 200 0 0.436355539 1.085691187
400 400 300 200 1 0.483980823 1.089005239
400 400 300 200 2 0.437019167 1.026820914

Table 14: RNNs with four hidden layers and the results from their training/testing on
the three datasets using tanh, sequence length: 96, and batch size: 288
(see Table 12)

6.4.3 Discussion

The tests revealed that no significant correlation was found between the measured MSE
value and the total number of the nodes in the layers of the MLFNN. In fact, in contrast
with what was previously thought, we found that the MSE stays on the same level with
almost no fluctuations regardless of the total number of nodes. Initially, we considered
that the more nodes were included, the higher the accuracy of the results would be,
as widening consistently improves performance across networks of different depth [67].
However, a closer inspection revealed that this intuition is not always correct. These
findings need to be interpreted with caution because our research involves ANNs no
deeper than five layers. We did not continue to conduct experiments in that direction
since our specific problem was not influenced by these modifications.

It is interesting to note that adding depth to the ANNs was not the key feature
that improved the accuracy of the achieved results but rather the choice of input
variables contained in the dataset on which it was trained on. The current study
was not specifically designed to test different input combinations. Instead, our goal
was to test types of ANNs and to study the influence of the hyperparameters on the
obtained results. Nevertheless, we note that the input variables are of just as much
or sometimes even more significance than the establishment of some hyperparameters.
Consequently, we can state that the simulations run on the dataset without time index
are clearly more inaccurate than these on the datasets with time index for all of the

36

simulations without exception. It may easily be verified that the seasonal index gives
more accuracy to the predictions than the month index (see Fig. 9, Fig. 10, and
Fig. 11). A reasonable explanation for this is that the seasonal index is more general
than the month index. Simultaneously, the outdoor conditions are very similar in each
season and apparently, this information is sufficient to the model.

On combining the results of the MLFNN model, we conclude that if we have to
evaluate each activation function, sigmoid is definitely the winner, followed by tanh.
However, further analysis showed that while training sigmoid is the slowest, which is
consistent with previous results [16]. Despite this, models are trained only once and
thus, there is no difference in the length of the prediction process. Therefore, this
would not represent any problem for the application of this approach, since there are
no limitations regarding the training time.

As far as the MSE can show us how close a regression line is to a set of points, we
want to get a better overview of the quality of the obtained predictions. With this
said, we take the best MLFNN model - four-layered MLFNN with 200 nodes per layer,
with sigmoid activation function, trained on the data set with seasonal index (see Fig.
13).

I1

I2

I3

I4

I5

I6

I7

H1
1

H1
2

H1
3

H1
4

H1
5

H1
6

H1
7

H1
200

...

H2
1

H2
2

H2
3

H2
4

H2
5

H2
6

H2
7

H2
200

...

H3
1

H3
2

H3
3

H3
4

H3
5

H3
6

H3
7

H3
200

...

O Inlet temperature

Input
Layer Three Hidden Layers

Output
Layer

Outdoor temperature

Global radiation

Wind speed

Indoor zone temperature

Climate profile upper limit

Climate profile lower limit

Seasonal index

Figure 13: The best MLFNN model structure in terms of reached minimal MSE on the
dataset with a seasonal index

37

Using this model, we estimated the values of the predicted inlet temperature. Then
we compared the results to the exact values, calculating the relative error and mul-
tiplying it by 100 in order to work in percentage. The results show that the highest
relative error is 470.9220835% and the lowest is 0.001507492%. However, 89.17% of
the data’s relative error lays in the range of [-50%, 50%]. As illustrated on Fig. 14,
the highest peaks are within the range [0%, 7%], where 48.5% of the data lays.

Although the performance of the MLFNN models was not ideal, we still believe
that the experimental results show a reasonable low error and the proposed MLFNN
approach can be used for prediction of the initialization variables of the optimizer.

−50 −25 0 25 50

500

1,000

1,500

2,000

2,500

Relative error in %∗
∗(89.17% of the data lays inside the [-50%, 50%] range)

F
re
q
u
en
cy

Figure 14: Frequency of the relative error of the predictions made by the best MLFNN
model - three-layered with 200 nodes in each layer and sigmoid as activation
function

Despite the limitations of our RNN testing method and consequently the poor results
in our first tests, our findings do nevertheless suggest that there are several reasons
for such high testing MSE values and they all lead to the main problem arising and
namely overfitting, which can be more closely observed in Fig. 15 where our best RNN
model with nodes distributed in the hidden layers as follows 300/300/200/150 and
trained with leaky ReLU shows signs of overfitting. Overfitting occurs when a model
is too complex and the overall cost is minimal, but the generalization of the model is
unreliable. This makes the model informed by too many features. Consequently, the
model memorizes training data rather than learning to generalize from trend. We will
propose possible solutions to face the problem later in the next section.

38

Figure 15: Training process of the 300/300/300/150 RNN model with leaky ReLU; the
model shows signs of overfitting, since the training error decreases, converges
and reaches fairly good results, whereas the testing error raises with every
epoch

7 Future work

We hope that our research will serve as a base for future studies on finding the optimal
values for the optimization task not only as initialization parameters but also as an
accurate solution of the given problem. It is recommended that further research should
be undertaken in the following areas.

7.1 Number of nodes

This research has given rise to the question if the number of nodes influences the
punctuality of the ANN or it just adds unnecessary complexity to the structure of the
model and hence, causes it to overfit. This apparent lack of correlation between the
number of nodes and the MSE value can be attributed to the fact that we examined a
very narrow range for the total amount of nodes in the networks, i.e., [100, 1200] for
the MLFNN models and [650, 1300] for the RNN models. The reason for this rather
contradictory result is still not completely clear, but our results are promising and
should be validated by a larger sample size.

39

7.2 Overfitting

More broadly, research is also needed to determine if the ANN models are prone to
overfit. If we examine closer our best MLFNN model which reaches an MSE of 0.222
during testing, we can identify that the MSE value during training is about 1.6 times
lower, i.e., 0.137 and thus, overfitting is not inconceivable. Future work should also
focus on enhancing the quality of the proposed RNN models because of the large gap
between the training and the testing error (see Fig. 15). In fact, we have undertaken
measures to prevent our models from overfitting by employing techniques such as early
stopping and dropout. However, they do not provide us with tolerable values of the
error, especially in the RNN case and must be investigated further.

The following subsections propose other possible solutions that future researchers
should take into account when facing this problem.

7.2.1 More data

Such a solution is suggested due to the fact that the number of training examples may
be insufficient for the model in order to learn the patterns properly. Increasing the
size of the new observations of the training dataset may improve the accuracy of the
model. Nevertheless, this is not always the case and may have no influence on the
precision of the model.

7.2.2 Dropout

Dropout is a method for addressing overfitting by randomly dropping units and their
connections from the ANN during training. This prevents units from co-adapting too
much and significantly reduces overfitting by giving major improvements over other
regularization methods [60]. In each training case, each hidden unit is randomly omit-
ted from the network with a probability that can vary, depending on the rate of every
layer [21]. The rate can be set to a value in the range [0, 1]. Therefore, a hidden
unit cannot rely on other hidden units being present. We used this approach in the
implementation of our RNN models with rates in the set {0.5, 0.7, 0.8, 0.9} taking
into consideration the fact that large networks are very slow to train. However, it did
not show sufficiently good results and therefore, further experimental investigations
are needed to estimate the optimal values of the rate for each layer.

7.2.3 Pruning

Pruning is another technique that produces smaller, faster and more power-efficient
models that compute their predictions with minimal loss. Applying pruning, the neu-
rons in the network are ranked according to the importance of their connections, i.e.,
how much they contribute to the overall result. Then the low ranked neurons are
removed from the network. This leads to better generalization results, improved pro-
cessing speed, and reduced size.

40

7.2.4 Ensembling

Another course of action to be taken is ensembling. Ensembling multiple neural net-
works, i.e., training them and then combining their predictions can significantly im-
prove their generalization ability [68]. Ensembling also reduces the variance of predic-
tions and may produce a higher prediction accuracy than any other single model.

7.2.5 Weight constraints

Large weights lead to unstable ANNs that are sensitive to changes in the input vari-
ables, i.e., overfit ANNs. In turn, the overfit networks have poor performance when
making predictions on new unseen data. Therefore, a practical way to circumvent this
issue is to use a weight constraint. A weight constraint triggers the minimization of
the weight size and scales the weights according to a pre-defined threshold. Thus, the
weights are forced to shrink, avoiding very large learning rates.

8 Acknowledgments

First and foremost, I have to thank my research supervisor Dr. rer. nat. Pascal
Richter. Without his support and dedicated involvement in every step throughout the
process, this thesis would have never been accomplished.

I gratefully acknowledge Ahmed Abida for the valuable suggestions and discussions,
and Gereon Kremer for the provided help.

I also thank Prof. Dr. rer. nat. Erika Ábrahám for giving me the opportunity to
work on this thesis.

41

References

[1] Nivine Attoue, Isam Shahrour, and Rafic Younes. Smart building: Use of the
artificial neural network approach for indoor temperature forecasting. Energies,
11(2):395, 2018.

[2] Mesut Avci, Murat Erkoc, Amir Rahmani, and Shihab Asfour. Model predictive
HVAC load control in buildings using real-time electricity pricing. Energy and
Buildings, 60:199–209, 2013.

[3] U. Teoman Aksoy B. B. Ekici. Prediction of building energy consumption by using
artificial neural networks. Applied Energy, 2008.

[4] Peder Bacher and Henrik Madsen. Identifying suitable models for the heat dy-
namics of buildings. Energy and Buildings, 43(7):1511–1522, 2011.

[5] Abdullatif E Ben-Nakhi and Mohamed A Mahmoud. Energy conservation in
buildings through efficient a/c control using neural networks. Applied Energy, 73
(1):5–23, 2002.

[6] M Castilla, JD Álvarez, MG Ortega, and MR Arahal. Neural network and poly-
nomial approximated thermal comfort models for hvac systems. Building and
Environment, 59:107–115, 2013.

[7] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[8] Turgay Coşkun. The importance of internal heat gains for building cooling design.
Journal of Thermal Engineering, 3(1):1060–1064, 2017.

[9] Organisation de coopération et de développement économiques. Transition to
sustainable buildings: Strategies and opportunities to 2050. OECD Publishing,
2013.

[10] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and
Michael Pfeiffer. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2015.

[11] IEA Energy Efficiency. Market report series. IEA: Paris, France, 2017.

[12] B Egilegor, JP Uribe, G Arregi, E Pradilla, and L Susperregi. A fuzzy control
adapted by a neural network to maintain a dwelling within thermal comfort. In
Proceedings of Building Simulation, volume 97, pages 87–94. Citeseer, 1997.

42

[13] Ping Fang, Tingzhang Liu, Kai Liu, Yingqi Zhang, and Jianfei Zhao. A simula-
tion model to calculate temperature distribution of an air-conditioned room. In
2016 8th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC), volume 1, pages 378–381. IEEE, 2016.

[14] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural networks, 2(3):183–192, 1989.

[15] Antoine Garnier, Julien Eynard, Matthieu Caussanel, and Stéphane Grieu. Low
computational cost technique for predictive management of thermal comfort in
non-residential buildings. Journal of Process Control, 24(6):750–762, 2014.

[16] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256, 2010.

[17] Pedro A Gonzalez and Jesus M Zamarreno. Prediction of hourly energy con-
sumption in buildings based on a feedback artificial neural network. Energy and
buildings, 37(6):595–601, 2005.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[19] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier, 1992.

[20] Hugo Hens, Wout Parijs, and Mieke Deurinck. Energy consumption for heating
and rebound effects. Energy and buildings, 42(1):105–110, 2010.

[21] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[22] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[23] Richard Holz, Andrew Hourigan, Richard Sloop, Paul Monkman, and Moncef
Krarti. Effects of standard energy conserving measures on thermal comfort. Build-
ing and environment, 32(1):31–43, 1997.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[25] Hao Huang, Lei Chen, and Eric Hu. A neural network-based multi-zone modelling
approach for predictive control system design in commercial buildings. Energy and
buildings, 97:86–97, 2015.

43

[26] Hao Huang, Lei Chen, and Eric Hu. A new model predictive control scheme for
energy and cost savings in commercial buildings: An airport terminal building
case study. Building and environment, 89:203–216, 2015.

[27] S Kalogirou, G Florides, C Neocleous, and C Schizas. Estimation of daily heating
and cooling loads using artificial neural networks. In 2001 World Congress, Napoli
(September), 2001.

[28] SA Kalogirou, CC Neocleous, and CN Schizas. Building heating load estimation
using artificial neural networks. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, volume 8, page 14, 1997.

[29] Soteris A Kalogirou. Artificial intelligence in renewable energy systems mod-
elling and prediction. Proceedings of the World Renewable Energy Congress VII,
Cologne, Ger, 2002.

[30] Soteris A Kalogirou. Artificial neural networks in energy applications in buildings.
International Journal of Low-Carbon Technologies, 1(3):201–216, 2006.

[31] S Karatasou, M Santamouris, and V Geros. Modeling and predicting building’s
energy use with artificial neural networks: Methods and results. Energy and
buildings, 38(8):949–958, 2006.

[32] Tuğçe Kazanasmaz, Murat Günaydin, and Selcen Binol. Artificial neural networks
to predict daylight illuminance in office buildings. Building and Environment, 44
(8):1751–1757, 2009.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[34] Kangji Li, Hongye Su, and Jian Chu. Forecasting building energy consumption us-
ing neural networks and hybrid neuro-fuzzy system: A comparative study. Energy
and Buildings, 43(10):2893–2899, 2011.

[35] Nan Li, Jun-young Kwak, Burcin Becerik-Gerber, and Milind Tambe. Predicting
hvac energy consumption in commercial buildings using multiagent systems. In
ISARC. Proceedings of the International Symposium on Automation and Robotics
in Construction, volume 30, page 1. Vilnius Gediminas Technical University, De-
partment of Construction Economics . . . , 2013.

[36] Qiong Li, Qinglin Meng, Jiejin Cai, Hiroshi Yoshino, and Akashi Mochida. Pre-
dicting hourly cooling load in the building: A comparison of support vector ma-
chine and different artificial neural networks. Energy Conversion and Manage-
ment, 50(1):90–96, 2009.

[37] Jian Liang and Ruxu Du. Thermal comfort control based on neural network for
hvac application. In Proceedings of 2005 IEEE Conference on Control Applica-
tions, 2005. CCA 2005., pages 819–824. IEEE, 2005.

44

[38] Tao Lu and Martti Viljanen. Prediction of indoor temperature and relative hu-
midity using neural network models: model comparison. Neural Computing and
Applications, 18(4):345, 2009.

[39] Mohamad Kheir Mohamad. developing a thermal model forresidential room us-
ing simulink/matlab. SetkáǹıcatederlvlecbanikyTekutin A Termomechaniky26.-28.
Cervna, 2012.

[40] Nicolas Morel, Manuel Bauer, Mario El-Khoury, and Jens Krauss. Neurobat, a
predictive and adaptive heating control system using artificial neural networks.
International Journal of solar energy, 21(2-3):161–201, 2001.

[41] D Subbaram Naidu and Craig G Rieger. Advanced control strategies for hvac&r
systems—an overview: Part ii: Soft and fusion control. HVAC&R Research, 17
(2):144–158, 2011.

[42] Nabil Nassif. Modeling and optimization of hvac systems using artificial neural
network and genetic algorithm. In Building Simulation, volume 7, pages 237–245.
Springer, 2014.

[43] Alberto Hernandez Neto and Flávio Augusto Sanzovo Fiorelli. Comparison be-
tween detailed model simulation and artificial neural network for forecasting build-
ing energy consumption. Energy and buildings, 40(12):2169–2176, 2008.

[44] Jennifer L Nguyen, Joel Schwartz, and Douglas W Dockery. The relationship be-
tween indoor and outdoor temperature, apparent temperature, relative humidity,
and absolute humidity. Indoor air, 24(1):103–112, 2014.

[45] Vildan Ok. A procedure for calculating cooling load due to solar radiation: the
shading effects from adjacent or nearby buildings. Energy and buildings, 19(1):
11–20, 1992.

[46] Linda Pedersen. Use of different methodologies for thermal load and energy esti-
mations in buildings including meteorological and sociological input parameters.
Renewable and Sustainable Energy Reviews, 11(5):998–1007, 2007.

[47] Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings energy
consumption information. Energy and buildings, 40(3):394–398, 2008.

[48] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[49] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation
functions. arXiv preprint arXiv:1710.05941, 2017.

[50] Antonio E Ruano, Eduardo M Crispim, Eusébio ZE Conceiçao, and
Ma Manuela JR Lúcio. Prediction of building’s temperature using neural net-
works models. Energy and Buildings, 38(6):682–694, 2006.

45

[51] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[52] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[53] SH Saboksayr, RV Patel, and M Zaheer-Uddin. Energy-efficient operation of hvac
systems using neural network based decentralized controllers. In Proceedings of
1995 American Control Conference-ACC’95, volume 6, pages 4321–4325. IEEE,
1995.

[54] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling. In Fif-
teenth annual conference of the international speech communication association,
2014.

[55] Gianluca Serale, Massimo Fiorentini, Alfonso Capozzoli, Daniele Bernardini, and
Alberto Bemporad. Model predictive control (mpc) for enhancing building and
hvac system energy efficiency: Problem formulation, applications and opportuni-
ties. Energies, 11(3):631, 2018.

[56] Nugroho Setiawan, I Wayan Mustika, Adha Imam Cahyadi, and Muhammad Fikri.
State space modeling of thermal in a room for temperature estimation in wireless
sensor network. In 2017 2nd International conferences on Information Technol-
ogy, Information Systems and Electrical Engineering (ICITISEE), pages 202–206.
IEEE, 2017.

[57] Xiaoliang Shao, Xiaojun Ma, Xianting Li, and Chao Liang. Fast prediction of non-
uniform temperature distribution: A concise expression and reliability analysis.
Energy and Buildings, 141:295–307, 2017.

[58] Neural Smithing. Supervised learning in feedforward artificial neural networks,
1999.

[59] Mohsen Soleimani-Mohseni, Bertil Thomas, and Per Fahlen. Estimation of oper-
ative temperature in buildings using artificial neural networks. Energy and Build-
ings, 38(6):635–640, 2006.

[60] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[61] GM Stavrakakis, DP Karadimou, PL Zervas, H Sarimveis, and NC Markatos.
Selection of window sizes for optimizing occupational comfort and hygiene based
on computational fluid dynamics and neural networks. Building and environment,
46(2):298–314, 2011.

46

[62] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer
feed-forward neural networks. Chemometrics and intelligent laboratory systems,
39(1):43–62, 1997.

[63] Anders Thavlov and Henrik W Bindner. Thermal models for intelligent heating
of buildings. In 4th International Conference on Applied Energy (ICAE 2012):
Energy innovations for a sustainable world, 2012.

[64] Jörn von Grabe. Potential of artificial neural networks to predict thermal sensation
votes. Applied energy, 161:412–424, 2016.

[65] Ye Yao, Zhiwei Lian, Shiqing Liu, and Zhijian Hou. Hourly cooling load prediction
by a combined forecasting model based on analytic hierarchy process. Interna-
tional journal of thermal sciences, 43(11):1107–1118, 2004.

[66] Kyungtae Yun, Rogelio Luck, Pedro J Mago, and Heejin Cho. Building hourly
thermal load prediction using an indexed arx model. Energy and Buildings, 54:
225–233, 2012.

[67] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[68] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many
could be better than all. Artificial intelligence, 137(1-2):239–263, 2002.

47

	Introduction
	Background
	Related Work
	Thermodynamic models
	Optimization
	Artificial Neural Networks

	Outline

	Modeling thermal load in buildings
	Control data
	Future weather data and measured indoor data
	Construction material data
	Internal loads
	HVAC data
	Future indoor data

	Optimization of climate in buildings
	Climate profile
	Economic energy model
	Optimization

	Artifical Neural Networks
	Configurations and ANN types
	Multi layer feed-forward neural netwoks
	Recurrent neural networks
	Sequence to sequence neural networks
	Deep neural networks

	Mathematical definition
	Activation functions
	Feed-forward technique
	ANN model

	Data
	Data description
	Parameter selection
	Data processing
	Data visualization

	Case study
	Case description
	Configurations
	Type
	Layers
	Nodes
	Activation function
	Loss function
	Optimization algorithm
	Epochs and patience

	Simulations
	Results
	MLFNN
	RNN
	Discussion

	Future work
	Number of nodes
	Overfitting
	More data
	Dropout
	Pruning
	Ensembling
	Weight constraints

	Acknowledgments
	References

